Skip to main content

Zusammenfassung

Zusätzlich zur „Scheitel-Steiß-Länge“ SSL als Standardmaß wird hier das Carnegie-Stadien-System benutzt. Dieses wurde von O’Rahilly und Müller 1987 auf Grundlage der „Streeter-Horizons“ für die eigentliche Embryonalzeit, d.h. bis zum Ende der 8. Woche post ovulationem eingeführt, da häufig bei Embryonen mit gleichgroßer SSL unterschiedliche Entwicklungen erkennbar sind. Diese Stadieneinteilung basiert auf der Beobachtung einzelner Entwicklungsschritte sogenannter „Schlüsselloragane“, die zusammengefaßt das jeweilige Stadium ergeben. Die zeitliche Komponente spielt dabei eine untegeordnete Rolle. Zur besseren Einordnung möglicher teratologischer Einwirkungen innerhalb der Embryonalzeit, haben wir hier zusätzlich das Alter der Embryonen angegeben.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Alvarez-Byalla A, Merchant-Larios H (1986) Mouse primordial germ cells use fibronectin as a sub-strate for migration. Exp Cell Res 165:362–368

    Article  Google Scholar 

  2. Aoki A (1966) Development of the human renal glomerulus 1. Differentiation of the filtering membrane. Anat Rec 155:339–352

    Article  PubMed  CAS  Google Scholar 

  3. Austin HB (1995) DiI analysis of cell migration during Mullerian duct regression Dev Biol 169:29–36

    Article  PubMed  CAS  Google Scholar 

  4. Behringer RR (1995) The Müllerian inhibitor and mammalian sexual development. Phil Trans R Soc Lond B 350:285–289

    Article  CAS  Google Scholar 

  5. Bishop-Calame S (1966) Etude expérimentale de l’organogénèse du système uro-génital de l’embryon de poulet. Arch Anat micr Morph exp 55:215–309

    PubMed  CAS  Google Scholar 

  6. Buehr M, Gu S, Mc Laren A (1993) Mesonephric contribution to testis differentiation in the fetal mouse. Development 117:273–281

    PubMed  CAS  Google Scholar 

  7. Burkl W, Politzer G (1952) Über die genetischen Beziehungen des Müller-Ganges zum Wolffschen Gang beim Menschen. Z Anat Entwickl-Gesch 116:552–572

    Article  Google Scholar 

  8. Celio MR, Groscurth P, Inagami T (1985) Ontogeny of renin immunoreactive cells in the human kidney. Anat Embryol 173;149–155

    Article  PubMed  CAS  Google Scholar 

  9. Chwalla R (1927) Über die Entwicklung der Harnblase und der primären Harnröhre beim Menschen mit besonderer Berücksichtigung der Art und Weise, in der sick die Ureteren von den Urnierengängen trennen, nebst Bemerkungen über die Entwicklung der Müller-Gäuge und des Mastdarmes. Z Anat Entwickl-Gesch 83:615–733

    Article  Google Scholar 

  10. Cunha GR (1994) Role of mesenchymal-epithelial interactions in normal and abnormal development of the mammary gland and prostate. Cancer 74:1030–1044

    Article  PubMed  CAS  Google Scholar 

  11. Davies JA (1996) Mesenchyme to epithelium transition during development of the mammalian kidney tubule. Acta Anat 156:187–201

    Article  PubMed  CAS  Google Scholar 

  12. Davies JA, Brandli AW (1996) The Kidney Development Database. World Wide Web address http://mbisg2.sbc.man.ac.uk/kidbase/kidhome.html

    Google Scholar 

  13. Davies J, Lyon M, Gallagher J, Garrod D (1995) Sulphated proteoglycan is required for collecting duct growth and branching but not nephron formation during kidney development. Development 121:1507–1517

    PubMed  CAS  Google Scholar 

  14. Dehbi M, Pelletier J (1996) PAX8-mediated activation of the wt1 tumor suppressor gene. EMBO J 15:4297–4306

    PubMed  CAS  Google Scholar 

  15. Didier E (1973) Recherches sur la morphogénèse du canal de Müller chez les Oiseaux. II. Etude expérimentale. Wilhelm Roux ’ Arch Entwickl-Mech Org 172:287–302

    Article  Google Scholar 

  16. Dørup J, Maunsbach AB (1982) The ultrastructural development of the distal nephron segments in the human fetal kidney. Anat Embryol 164:19–41

    Article  PubMed  Google Scholar 

  17. Dressler GR, Douglas EC (1992) Pax-2 is a DNA-binding protein expressed in embryonic kidney and Wilms tumor. Proc Nat Acad Sci USA 89:1179–1183

    Article  PubMed  CAS  Google Scholar 

  18. Dressler GR, Deutsch U, Chowdhury K, Nornes HO, Gruss P (1990) Pax-2 a new paired-box-containing gene and its expression in the developing excretory system. Development 109:787–795

    PubMed  CAS  Google Scholar 

  19. Eccles MR, Wallis LJ, Fidler AE, Spur NK, Goodfellow PJ, Reeve AE (1992) Expression of the Pax-2 gene in human fetal kidney and Wilms’s tumor. Cell Growth Diff 3:279–289

    PubMed  CAS  Google Scholar 

  20. Erzner S (1994) Experimentelle Untersuchungen zur Wechselwirkung zwischen Wolffschem Gang and angrenzendem Mesoderm bei Vogelchimären. Diplomarbeit, Ruhr-Universität Bochum

    Google Scholar 

  21. Felix W (1911) Die Entwicklung der Harn-und Geschlechtsorgane. In: Keibel F, Mall FH (Hrsg) Handbuch der Entwicklungsgeschichte des Menschen. Bd 2. Hirsel, Leipzig S 732–955

    Google Scholar 

  22. Frutinger P (1969) Zur Frühentwicklung der Ductus paramesonephrici und des Müller-Hügels beim Menschen. Acta anat 72:233–245

    Article  Google Scholar 

  23. Gilpin SA, Gosling JA (1983) Smooth muscle in the wall of the developing human urinary bladder and urethra. J Anat 137:503–512

    PubMed  Google Scholar 

  24. Glenister TW (1962) The development of the utricle and of the so-called middle or median lobe of the human prostate. J Anat 96:443–455

    PubMed  CAS  Google Scholar 

  25. Gomperts M, Garcia-Castro M, Wylie C, Heasman J (1994) Interactions between primordial germ cells play a role in their migration in mouse embryos. Development 120:135–141

    PubMed  CAS  Google Scholar 

  26. Grobstein C (1953) Inductive epithelio-mesenchymal interaction in cultured organ rudiments of the mouse. Science 118:52–55

    Article  PubMed  CAS  Google Scholar 

  27. Grünwald P (1937) Zur Entwicklungsmechanik des Urogenitalsystems beim Huhn. Wilhelm Roux ’ Arch Entwickl-Mech Org 136:786–813

    Article  Google Scholar 

  28. Gyllensten L (1949) Contribution to the embryology of the urinary bladder. Acta anat 7:305–344

    Article  PubMed  CAS  Google Scholar 

  29. Halfter W, Schurer B, Hasselhorn H-M, Christ B, Gimpel E, Epperlein HH (1996) An ovomucin-like protein on the surface of migrating primordial germ cells of the chick and rat. Development 122;915–923

    PubMed  CAS  Google Scholar 

  30. Himmelmann S, Jacob HJ (1995) Differentiation of the splanchnopleure in the genital area: morphological and experimental investigations on avian embryos. In: Organization of the early vertebrate embryo. Zagris N. (Hrsg) Plenum Press, New York S 323–331

    Google Scholar 

  31. Horster M, Huber S, Tschop J, Dittrich G, Braun G (1997) Epithelial Nephrogenesis. Pflügers Arch 434:647–660

    Article  PubMed  CAS  Google Scholar 

  32. Hutson JM, Baker M, Terada M, Zhou B, Paxton G (1994) Hormonal control of testicular descent and the cause of cryptorchidism. Reprod Fertil Dev 6:151–156

    Article  PubMed  CAS  Google Scholar 

  33. Inke G (1987) The protolobar structure of the human kidney. Its biology and clinical significance. Liss, New York

    Google Scholar 

  34. Jacob HJ, Christ B (1978) Experimentelle Untersuchungen am Exkretionsapparat junger Hühnerembryonen. XIXth Morphological Congress Symposia Charles University Prague 1978, S 219–225

    Google Scholar 

  35. Jacob HJ, Jacob M (1990) Entwicklung der Harnorgane. In: Hinrichsen KV (Hrsg) Humanembryologie. Springer, Berlin Heidelberg New York, S 723–744

    Google Scholar 

  36. Jacob HJ, Jacob M, Christ B (1977) Die Ultrastruktur der externen Glomerula. Ein Beitrag zur Nierenentwicklung bei Hühnerembryonen. Verh.Anat.Ges. 71:909–912

    PubMed  Google Scholar 

  37. Jacob M, Christ B, Jacob HJ, Poelmann RE (1991) The role of fibronectin and laminin in development and migration of the avian Wolffian duct with reference to somitogenesis. Anat Embryol 183:385–395

    Article  PubMed  CAS  Google Scholar 

  38. Jacob M, Konrad K, Jacob HJ (1999) Early Development of the Müllerian Duct in Arian Embryos with Reference to the Human. Cells Tissues Organs 164:63–81

    Article  PubMed  CAS  Google Scholar 

  39. Jirasek JE (1976) Principles of reproductive embryology. In: Simpson JL (Hrsg) Disorders of sexual differentiation. Etiology and clinical delineation Academic Press New York S 51–110

    Google Scholar 

  40. Josso N, Picard JY, Tran D (1977) The antimüllerian hormone. Recent Prog Horm Res 33:117–167

    Google Scholar 

  41. Koff AK (1933) Development of the vagina in the human fetus. Contrib Embryol Carnegie Inst Wash 24:61–90

    Google Scholar 

  42. Koseki C, Herzlinger D, al-Awqati Q (1992) Apoptosis in metanephric development. J Cell Biol 119:1327–1333

    Article  PubMed  CAS  Google Scholar 

  43. Kreidberg JA, Sariola H, Loring JM, Maeda M, Pelletier J, Housman D, Jaenisch R (1993) WT-1 is required for early kidney development. Cell 74:679–691

    Article  PubMed  CAS  Google Scholar 

  44. Lawson KA, Hage WJ (1994) Clonal analysis of the origin of primordial germ cells in the mouse. Ciba Found Symp 182:68–91

    PubMed  CAS  Google Scholar 

  45. Lechner MS, Dressler GR (1997) The molecular basis of embryonic kidney development. Mech Dev 62:105–120

    Article  PubMed  CAS  Google Scholar 

  46. LeDouarin NM, Teillet M-AM (1974) Experimental analysis of the migration and differentiation of neuroblasts of the autonomic nervous system and of neuroectodermal mesenchymal derivatives using a biological cell marking technique. Dev BiOl 41:162–184

    Article  CAS  Google Scholar 

  47. Ludwig KS (1965) Über die Beziehungen der Kloakenmembran zum Septum urorectale bei menschlichen Embryonen von 9 bis 33 mm SSL. Z Anat Entwickl-Gesch 124:401–413

    Article  CAS  Google Scholar 

  48. Lyet L, Vigier B, van der Schoot P (1996) Anti-Müllerian hormone in relation to the growth and differentiation of the gubernacular primordia in mice. J Reprod Fertil 108:281–288

    Article  PubMed  CAS  Google Scholar 

  49. Matsui Y, Nishikawa S, Nishikawa S-L, Williams D, Zsebo K, Hogan BLM (1991) Effect of Steel factor and leukemia inhibitory factor on murine primordial germ cell in culture. Nature 353:750–752

    Article  PubMed  CAS  Google Scholar 

  50. McKay DG, Hertig AT, Adams EC, Danziger S (1953) Histochemical observations on the germ cells of human embryos. Anat Rec 117:201–220

    Article  PubMed  CAS  Google Scholar 

  51. Moszkowicz L (1935) Das Gubernaculum Hunteri und seine Bedeutung für den Descensus testiculorum beim Menschen. Z Anat Entwickl-Gesch 105:37–52

    Article  Google Scholar 

  52. Muller P, Musset R, Netter A, Solal R, Vinourd J-C, Gillet J-Y (1967) Etat du haut appareil urinaire chez les porteuses de malformations utérines. Etude de 132 observations. II. Essai d’interprétation. La Presse Medicale 75:1331–1336

    PubMed  CAS  Google Scholar 

  53. Mundlos S, Pelletier J, Darveau A, Bachmann M, Winterpacht A, Zabel B (1993) Nuclear localization of the protein encoded by the Wilms’ tumor gene WT1 in embryonic and adult tissues. Development 119:1329–1341

    PubMed  CAS  Google Scholar 

  54. Newman J, Antonakopolous GN (1989) The fine structure of the human fetal urinary bladder. J Anat 166:135–150

    PubMed  CAS  Google Scholar 

  55. O’Rahilly R, Müller F (1987) Developmental stages in human embryos. Carnegie Inst Wash Publ 637

    Google Scholar 

  56. Osathanondh V, Potter EL (1963) Development of human kidney as shown by micro dissection. II: Renal pelvis, calyces and papillae. Arch PathOl 76:277–289

    PubMed  CAS  Google Scholar 

  57. Pichel JG, Shen L, Sheng HZ, Granholm A-C, Drago J, Grinberg A, Lee EJ, Huang SP, Saarma M, Hoffer Bj, Sariola H, Westphal H (1996) Defects in enteric innervation and kidney development in mice lacking GDNF. Nature 382:73–76

    Article  PubMed  CAS  Google Scholar 

  58. Plachov D, Chowdhury K, Walther C, Simon D, Guenet J-L, Gruss P (1990)Pax8, a murine paired box gene expressed in the developing excretory system and thyroid gland. Development 110:643–651

    PubMed  CAS  Google Scholar 

  59. Poole TJ, Steinberg MS (1982) Evidence for the guidance of pronephric duct migration by a craniocaudally traveling adhesion gradient. Dev Biol 92:144–158

    Article  PubMed  CAS  Google Scholar 

  60. Sariola H, Holm K, Henke-Fable S (1988) Early innervation of the metanephric kidney. Development 104:571–573

    Google Scholar 

  61. Saxen L (1987) Organogenesis of the kidney. Cambridge University Press, Cambridge

    Book  Google Scholar 

  62. van der Schoot P (1993) Doubt about the ‘first phase of testis descent’ in the rat as a valid concept. Anat Embryol 187:203–208

    Article  PubMed  Google Scholar 

  63. Schuchardt A, Dagati V, Pachnis V, Costantini F (1996) Renal agenesis and hypodysplasia in ret-k(-) mutant mice result from defects in ureteric bud development. Development 122:1919–1929

    PubMed  CAS  Google Scholar 

  64. Sciavolino PJ, Abrams EW, Yang L, Austenberg LP, Shen MM, Abate-Shen C (1997) Tissue-specific expression of murine Nkx3.1in the male urogenital system. Dev Dyn 209:127–138

    Article  PubMed  CAS  Google Scholar 

  65. Shima H,Tsuji M,Elfman F, Cunha GR (1995) Development of male urogenital epithelia elicited by soluble mesenchymal factors. J Androl 16:233–241

    PubMed  CAS  Google Scholar 

  66. Silvermann H (1969) Über die Entwicklung der Epithelplatten in den Corpuscula renalia der menschfichen Urniere. Acta gnat 74:36–43

    Article  Google Scholar 

  67. Sinclair AH, Berta P, Palmer MS, Hawkins JR, Griffiths BL, Smith MJ, Foster JW, Frischauf AM, Lovell-Badge R, Goodfellow PN (1990) A gene from the human sex-determining region encodes a protein with homology to a conserved DNA-binding motif. Nature 346:240–244

    Article  PubMed  CAS  Google Scholar 

  68. Stark K, Vainio S, Vassileva G, McMahon AP (1994) Epithelial transformation of metanephric mesenchyme in the developing kidney regulated by Wnt-4. Nature 372:679–683

    Article  PubMed  CAS  Google Scholar 

  69. Tandler J (1905) Über Vornierenrudimente beim menschlichen Embryo. Anat H 28:255–84

    Google Scholar 

  70. Terruhn V (1980) A study of impression moulds of the genital tract of female fetuses. Arch Gynecol 229:207–217

    Article  PubMed  CAS  Google Scholar 

  71. Torres M, Gómez-Parch E, Dressler GR, Gruss P (1995) A study of impression moulds of thePax-2controls multiple steps of urogenital development. Development 121;4057–4065

    PubMed  CAS  Google Scholar 

  72. Vainio S, Lehtonen E, Jalkanen M, Bernfield M, Saxén L (1989) Epithelial-mesenchymal interactions regulate the stage-specific expression of a cell surface proteoglycan, syndecan, in the developing kidney. Dev Biol 152:221–232

    Article  Google Scholar 

  73. van Wagenen G, Simpson ME (1965) Embryology of the ovary and testis Homo sapiens and Macaca mulatta, Yale University Press, New Haven and London

    Google Scholar 

  74. Wartenberg H (1982) Development of the early human ovary and role of the mesonephros in the differentiation of the cortex. Anat Embryol 165:253–280

    Article  PubMed  CAS  Google Scholar 

  75. Wartenberg H (1990) Entwicklung der Genitalorgane und Bildung der Gameten. In: Hinrichsen KV (Hrsg) Humanembryologie. Springer, Berlin S 745 – 822

    Google Scholar 

  76. Wartenberg H, Kinsky I, Viebahn C, Schmolke C (1991) Fine structural characteristics of testicular cord formation in the developing rabbit gonad. J Electron Microscop Techn 19:133–157

    Article  CAS  Google Scholar 

  77. Weismann A (1885) Die Kontinuität des Keimplasmas. Jena

    Google Scholar 

  78. Witschi E (1948) Migration of the germ cells of human embryos from the yolk sac to the primitive gonadal folds. Contrib Embryol Carnegie Inst 32:67–80

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jacob, M., Jacob, H.J., Barteczko, K. (2000). Embryologie des Urogenitalsystems. In: Wullich, B., Zang, K.D. (eds) Genetik von Krankheiten des Urogenitalsystems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59589-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59589-9_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64039-1

  • Online ISBN: 978-3-642-59589-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics