Skip to main content

The Human Immunodeficiency Virus Type 1 Rev Protein: A Pivotal Protein in the Viral Life Cycle

  • Chapter
Transacting Functions of Human Retroviruses

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 193))

Abstract

The human immunodeficiency virus type 1 (HIV-1) and related lentiviruses have more complex genomes than typical retroviruses (Cullen 1991). HIV-1 expresses at least nine different genes in a temporally regulated manner (Kim et al. 1989). In addition to the gag, pol, and env genes common to all retroviruses, HIV-1 also encodes genes for tat, rev, nef, vif, vpu, and vpr (Rosenblat et al., this volume). To encode nine different genes in a small, approximately 9-kb genome, the virus employs alternative reading frames and complex patterns of RNA splicing (Gallo et al. 1988; Schwartz et al. 1990a). The HIV-1 protein Rev (regulator of expression of the virion) plays an essential role in the temporal regulation of virus gene expression during a replication cycle (Kim et al. 1989; Pomerantz et al. 1990). The genes expressed by HIV-1 can be separated into two distinct groups based on whether their expression is Rev-dependent or not (Schwartz et al. 1990b; Hammerskjöld et al. 1989; Malim et al. 1989; Garrett et al. 1991). The Rev-inde-pendent or early genes encode Tat, Rev, and Nef. The Rev-dependent or late genes are important for virion production and encode the structural proteins Gag, Pol, and Env and the accessory products Vif, Vpu, and Vpr. Rev is absolutely required for HIV-1 replication. Proviruses that lack Rev function remain transcriptionally active, but fail to generate new viral particles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Ahmad N, Maitra RK, Venkatesan S (1989) Rev induced modulation of Nef protein underlies temporal regulation of human immunodeficiency virus replication. Proc Natl Acad Sci USA 86: 6111–6115

    Article  PubMed  CAS  Google Scholar 

  • Arrigo SJ, Chen ISY (1991) Rev is necessary for translation but not cytoplasmic accumulation of HIV-1 vif, vpr, and env/vpu 2 RNAs. Genes Dev 5: 808–819

    Article  PubMed  CAS  Google Scholar 

  • Baltimore D (1988) Intracellular immunization. Nature 335: 395–396

    Article  PubMed  CAS  Google Scholar 

  • Bartel DP, Zapp ML, Green MR, Szostak JW (1991) HIV-1 Rev regulation involves recognition of non-Watson-Crick base pairs in viral RNA. Cell 67: 529–536

    Article  PubMed  CAS  Google Scholar 

  • Berberich SL, Stoltzfus CM (1991) Mutations in the regions of the Rous sacroma virus 3′ splice sites: implications for regulation of alternative splicing. J Virol 65: 2640–2646

    PubMed  CAS  Google Scholar 

  • Berberich SL, Macias M, Zhang L, Turek LP, Stoltzfus CM (1990) Comparison of RSV RNA processing in chicken (CEF) and mouse (3T3) fibroblasts: evidence for double-spliced RNA in nonpermissive mouse cells. J Virol 64: 4313–4320

    PubMed  CAS  Google Scholar 

  • Bogerd HP, Greene WC (1993) Dominant negative mutants of HTL-1 Rex and HIV-1 Rev fail to multimerize in vivo. J Virol 67: 2496–2502

    PubMed  CAS  Google Scholar 

  • Bogerd HP, Fridell RA, Blair WS, Cullen BR (1993) Genetic evidence that the Tat proteins of human immunodeficiency virus types 1 and 2 can multimerize in the eukaryotic cell nucleus. J Virol 67: 5030–5034

    PubMed  CAS  Google Scholar 

  • Bray M, Prasad S, Dubay JW, Hunter E, Jeang K-T, Rekosh D, Hammarskjold M-L (1994) A small element from the Mason-Pfizer monkey virus genome makes HIV-1 expression and replication rev-independent. Proc Natl Acad Sci USA 90: 1256–1260

    Article  Google Scholar 

  • Calnan BJ, Tidor B, Biancalana S, Hudson D, Frankel AD (1991) Arginine-mediated RNA recognition: the arginine fork. Science 252: 1167–1171 (published erratum appears in Science (1992) 255: 665)

    Article  CAS  Google Scholar 

  • Chang DD, Sharp PA (1989) Regulation by HIV Rev depends upon recognition of splice sites. Cell 59: 789–795

    Article  PubMed  CAS  Google Scholar 

  • Chang DD, Sharp P (1990) Messenger RNA transport and HIV Rev. Science 249: 614–615

    Article  PubMed  CAS  Google Scholar 

  • Cochrane AW, Golub E, Volsky D, Ruben S, Rosen CA (1989) Functional significance of phosphorylation of the human immunodeficiency virus Rev protein. J Virol 63: 4438–4441

    PubMed  CAS  Google Scholar 

  • Cochrane AW, Chen C-H, Rosen CA (1990a) Specific interaction of the human immunodeficiency virus Rev protein with a structured region in the env mRNA. Proc Natl Acad Sci USA 87: 1198–1202

    Article  PubMed  CAS  Google Scholar 

  • Cochrane AW, Perkins A, Rosen CA (1990) Identification of sequences important in the nucleolar localization of human immunodeficiency virus Rev: relevance of nucleolar localization to function. J Virol 64: 881–885

    PubMed  CAS  Google Scholar 

  • Cochrane AW, Jones KS, Beidas S, Dillon PJ, Skalka AM, Rosen CA (1991) Identification and characterization of intragenic sequences which repress human immunodeficiency virus structural gene expression. J Virol 65: 5305–5313

    PubMed  CAS  Google Scholar 

  • Cullen BR (1991) Human immunodeficiency virus as a prototypic complex retrovirus. J Virol 65: 1053–1056

    PubMed  CAS  Google Scholar 

  • D’Agostino DM, Felber BK, Harrison JE, Pavlakis GN (1992) The Rev protein of human immunodeficiency virus type 1 promotes polysomal association and translation of gag/pol and vpu/env mRNAs. Mol Cell Biol 12: 1375–1386

    PubMed  Google Scholar 

  • Daly TJ, Cook KS, Gran GS, Maione TE, Rusche JR (1989) Specific binding of HIV-1 recombinant Rev protein to the Rev-responsive element in vitro. Nature 342: 816–819

    Article  PubMed  CAS  Google Scholar 

  • Duan LX, Bagasra O, Laughlin MA, Oakes JW, Pomerantz RJ (1994) Potent inhibition of human immunodeficiency virus type 1 replication by an intracellular anti-Rev single-chain antibody. Proc Natl Acad Sci USA 91: 5075–5079

    Article  PubMed  CAS  Google Scholar 

  • Emerman M, Vazeux R, Peden K (1989) the rev gene product of the human immunodeficiency virus affects envelope-specific RNA localization. Cell 57: 1155–1165

    Article  PubMed  CAS  Google Scholar 

  • Feinberg MB, Jarrett RF, Aldovini A, Gallo RC, Wong-Staal F (1986) HTLV-III expression and production involve complex regulation at the levels of splicing and translation of viral RNA. Cell 56: 807–817

    Article  Google Scholar 

  • Felber BK, Hadzopoulou-Cladaras M, Cladaras C, Copeland T, Pavlakis GN (1989) Rev protein of human immunodeficiency virus type 1 affects the stability and transport of the viral mRNA. Proc Natl Acad Sci USA 86: 1495–1499

    Article  PubMed  CAS  Google Scholar 

  • Felber BK, Drysdale CM, Pavlakis GN (1990) Feedback regulation of the human immunodeficiency virus type 1 expression by the Rev protein. J Virol 64: 3734–3741

    PubMed  CAS  Google Scholar 

  • Gallo R, Wong-Staal F, Montagnier L, Haeltine WA, Yoshida M (1988) HIV/HTLV gene nomenclature. Nature 333: 504–505

    Article  PubMed  CAS  Google Scholar 

  • Garrett E, Tiley L and Cullen BR (1991) Rev activates expression of the human immunodeficiency virus type 1 vif and vpr gene products. J Virol 65: 1653–1657

    PubMed  CAS  Google Scholar 

  • Green MR (1991) Biochemical mechanisms of constitutive and regulated pre-mRNA splicing. Annu Rev Cell Biol 7: 559–599

    Article  PubMed  CAS  Google Scholar 

  • Green MR, Zapp ML (1989) Human immunodeficiency virus: revving up gene expression. Nature 338: 200–201

    Article  PubMed  CAS  Google Scholar 

  • Hadzopoulou-Cladaras M, Felber BK, Cladaras C, Athanassopoulos A, Tse A, Pavlakis GN (1989) The rev (trs/art) protein of human immunodeficiency virus type 1 affects viral mRNA and protein expression via a cis-acting sequence in the env region. J Virol 63: 1265–1274

    PubMed  CAS  Google Scholar 

  • Hammarskjöld M-L, Heimer J, Hammarskjöld B, Sangwan I, Albert L, Rekosh D (1989) Regulation of human immunodeficiency virus env expression by the rev gene product. J Virol 63: 1959–1966

    PubMed  Google Scholar 

  • Hauber J, Bouvier M, Malim MH, Cullen BR (1988) Phosphorylation of the rev gene product of human immunodeficiency virus type 1. J Virol 62: 4801–4804

    PubMed  CAS  Google Scholar 

  • Heaphy S, Finch JT, Gait MJ, Kam J, Singh M (1991) Human immunodeficiency virus type 1 regulator of virion expression, rev, forms nucleoprotein filaments after binding to a purine-rich “bubble” located within the rev-responsive region of viral RNAs. Proc Natl Acad Sci USA 88: 7366–7370

    Article  PubMed  CAS  Google Scholar 

  • Herskowitz I (1987) Functional inactivation of genes by dominant negative mutations. Nature 329: 219–222

    Article  PubMed  CAS  Google Scholar 

  • Hope TJ, McDonald D, Huang X, Low J, Parslow TG (1990a) Mutational analysis of the human immunodeficiency virus type 1 Rev transactivator: essential residues near the amino terminus. J Virol 65: 5360–5366

    Google Scholar 

  • Hope TJ, Huang X, McDonald D, Parslow TG (1990b) Steroid-receptor fusion of the HIV-1 Rev transactivator: mapping cryptic functions of the arginine-rich motif. Proc Natl Acad Sci USA 87: 7787–7791

    Article  PubMed  CAS  Google Scholar 

  • Hope TJ, Bond BL, McDonald D, Klein NP, Parslow TG (1991) Effector domains of human immunodeficiency virus type 1 Rev and human T-cell leukemia virus type 1 Rex are functionally interchangeable and share an essential peptide motif. J Virol 65: 6001–6007

    PubMed  CAS  Google Scholar 

  • Hope TJ, Klein NP, Elder ME, Parslow TG (1992) trans-Dominant inhibition of human immunodeficiency virus type 1 Rev occurs through formation of inactive protein complexes. J Virol 66: 1849–1855

    PubMed  CAS  Google Scholar 

  • Huang X, Hope TJ, Bond BL, McDonald D, Grahl K, Parslow TG (1991) Minimal Rev-response element for type 1 human immunodeficiency virus. J Virol 65: 2131–2134

    PubMed  CAS  Google Scholar 

  • Ivey-Hoyle M, Rosenberg M (1990) Rev-dependent expression of human immunodeficiency virus type 1 gp160 in Drosophila melanogaster cells. Mol Cell Biol 10: 6152–6160

    PubMed  CAS  Google Scholar 

  • Katz RA, Skalka AM (1990) Control of retroviral RNA splicing through maintenance of suboptimal processing signals. Mol Cell Biol 10: 696–704

    PubMed  CAS  Google Scholar 

  • Kim SY, Byrn R, Groopman J, Baltimore D (1989) Temporal aspects of DNA and RNA synthesis during human immunodeficiency virus infection: evidence for differential gene expression. J Virol 63: 3708–3713

    PubMed  CAS  Google Scholar 

  • Kjems J, Sharp PA (1993) The basic domain of Rev from human immunodeficiency virus type 1 specifically blocks the entry of U4/U6. U5 small nuclear ribonucleoprotein in spliceosome assembly. J Virol 67: 4769–4776

    PubMed  CAS  Google Scholar 

  • Kjems J, Frankel AD, Sharp PA (1991) Specific regulation of mRNA splicing in vitro by a peptide from HIV-1 Rev. Cell 67: 169–178

    Article  PubMed  CAS  Google Scholar 

  • Kjems J, Calnan BJ, Frankel AD, Sharp PA (1992) Specific binding of a basic peptide from HIV-1 Rev. EMBO J 11: 1119–1129

    PubMed  CAS  Google Scholar 

  • Knight DM, Flomerfelt FA, Ghrayeb J (1987) Expression of the art/trs protein of HIV and study of its role in viral envelope synthesis. Nature 236: 837–840

    CAS  Google Scholar 

  • Laughlin M, Zeichner S, Kolson D, Alwine JC, Seshamma T, Pomerantz RJ, Gonzales-Scarano F (1993) Sodium butyrate treatment of cells latently infected with HIV-1 results in the expression of unspliced viral RNA. Virology 196: 496–505

    Article  PubMed  CAS  Google Scholar 

  • Lazinski D, Grzadzielska E, Das A (1989) Sequence-specific recognition of RNA hairpins by bacteriophage antiterminators requires a conserved arginine-rich motif. Cell 59: 207–218

    Article  PubMed  CAS  Google Scholar 

  • Lee T, Coligan JE, Allan JS, McLane MF, Groopman JE, Essex M (1986) A new HTLV-III/LAV protein encoded by a gene forund in cytopathic retroviruses. Science 231: 1546–1549

    Article  PubMed  CAS  Google Scholar 

  • Legrain P, Rosbash M (1989) Some cis- and trans-acting mutants for splicing target pre-mRNA to the cytoplasm. Cell 57: 573–583

    Article  PubMed  CAS  Google Scholar 

  • Lu XB, Heimer J, Rekosh D, Hammarskjold ML (1990) U1 small nuclear RNA plays a direct role in the formation of a rev-regulated human immunodeficiency virus env mRNA that remains unspliced. Proc Natl Acad Sci USA 87: 7598–7602

    Article  PubMed  CAS  Google Scholar 

  • Malim MH, Cullen BR (1991) HIV-1 structural gene expression required the binding of multiple Rev monomers to the viral RRE: Implication for HIV-1 latency. Cell 65: 241–248

    Article  PubMed  CAS  Google Scholar 

  • Malim MG, Cullen BR (1993) Rev and the fate of pre-mRNA in the nucleus—implications for the regulation of RNA processing in eukaryotes. Mol Cell Biol 13: 6180–6189

    PubMed  CAS  Google Scholar 

  • Malim MH, Hauber J, Le S-Y, Maizel JV, Cullen BR (1989a) The HIV-1 rev trans-activator acts through a structured target sequence to activate nuclear export of unspliced viral mRNA. Nature 338: 254–257

    Article  PubMed  CAS  Google Scholar 

  • Malim MH, Bohnlein S, Hauber J, Cullen BR (1989b) Functional dissection of the HIV-1 Rev transactivator—derivation of a trans-dominant repressor of Rev function. Cell 58: 205–214

    Article  PubMed  CAS  Google Scholar 

  • Malim MH, Böhnlein S, Fenrick R, Le S-Y, Maizel JV, Cullen BR (1989c) Functional comparison of the Rev trans-activators encoded by different primate immunodeficiency virus species. Proc Natl Acad Sci USA 86: 8222–8226

    Article  PubMed  CAS  Google Scholar 

  • Malim MH, McCarn DF, Tiley LS, Cullen BR (1991) Mutational definition of the human immunodeficiency virus type 1 rev activation domain. J Virol 65: 4248–4254

    PubMed  CAS  Google Scholar 

  • McDonald D, Hope TJ, ParslowTG (1992) Posttranscriptional regulation by the human immunodeficiency virus type 1 Rev and human T-cell leukemia virus type 1 Rex proteins through a heterologous RNA binding site. J Virol 66: 7232–7238

    PubMed  CAS  Google Scholar 

  • Nalin CM, Purcell RD, Antelman D, Mueller D, Tomchak L, Wegrynski D, McCarney E, Toome V, Kramer R, Hsu M-C (1990) Purification and characterization of recombinant Rev protein of human immunodeficiency virus type 1. Proc Natl Acad Sci USA 87: 7593–7597

    Article  PubMed  CAS  Google Scholar 

  • Olsen HS, Cochrane AW, Dillon PJ, Nalin CM, Rosen CA (1990) Interaction of the human immunodeficiency virus type 1 Rev protein with a structured region in env mRNA is dependent on multimer formation mediated through a basic stretch of amino acids. Genes Dev 4: 1357–1364

    Article  PubMed  CAS  Google Scholar 

  • Perkins A, Cochrane A, Ruben S, Rosen C (1989) Structural and functional characterization of the human immunodeficiency virus rev protein. J AIDS 2: 256–263

    CAS  Google Scholar 

  • Pomerantz RJ, Trono D, Feinberg MB, Baltimore D (1990) Cells nonproductively infected with HIV-1 exhibit an aberrant pattern of viral RNA expression: a molecular model for latency. Cell 61: 1271–1276

    Article  PubMed  CAS  Google Scholar 

  • Pomerantz RJ, Seshamma T, Trono D (1992) Efficient replication of human immunodeficiency virus type 1 requires a threshold level of Rev: potential implications for latency. J Virol 66: 1809–1813

    PubMed  CAS  Google Scholar 

  • Quintrell K et al (1980) Structure of viral DNA and RNA in mammalian cells infected with avian sarcoma virus. J Mol Biol 143: 363–393

    Article  PubMed  CAS  Google Scholar 

  • Rice AP, Mathews MB (1988) Transcriptional but not translational regulation of HIV-1 by the tat gene product. Nature 332: 551–553

    Article  PubMed  CAS  Google Scholar 

  • Robert-Guroff M, Popovic M, Gartner S, Markham P, Gallo RC, Reitz MS (1990) Structure and expression of tat-, rev-, and nef-specific transcripts of human immunodeficiency virus type 1 in infected lymphocytes and macrophages. J Virol 64: 3391–3398

    PubMed  CAS  Google Scholar 

  • Rosen CA, Terwilliger E, Dayton A, Sodroski JG, Haseltine WA (1988) Intragenic cis-acting art gene responsive sequences of the human immunodeficiency virus. Proc Natl Acad Sci USA 85: 2071–2075

    Article  PubMed  CAS  Google Scholar 

  • Ruhl M, Himmelspach M, Bahr GM, Hammerschmid F, Jaksche H, Wolff B, Aschauer H, Farrington GK, Probst H, Bevec D, Hauber J (1993) Eukaryotic initiation factor 5A is a cellular target of the human immunodeficiency virus type 1 Rev activation domain mediating trans-activation. J Cell Biol 123: 1–12

    Article  Google Scholar 

  • Saikumar P, Murali R, Reddy EF (1990) Role of tryptophan repeats and flanking amino acids in Myb-DNA interactions. Proc Natl Acad Sci USA 87: 8452–8456

    Article  PubMed  CAS  Google Scholar 

  • Schwartz S, Felber BK, Fenyo EM, Pavlakis GN (1990a) Cloning and functional analysis of multiply spliced mRNA species of human immunodeficiency virus type 1. J Virol 64: 2519–2529

    PubMed  CAS  Google Scholar 

  • Schwartz S, Felber BK, Fenyo EM, Pavlakis GN (1990b) Env and Vpu proteins of human immunodeficiency virus type 1 are produced from multiple bicistronic mRNAs. J Virol 64: 5448–5456

    PubMed  CAS  Google Scholar 

  • Schwartz S, Campbell M, Nasioulas G, Harrison J, Felber BK, Pavlakis GN (1992a) Mutational inactivation of an inhibitory sequence in human immunodeficiency virus type 1 results in Rev-independent gag expression. J Virol 66: 7176–7182

    PubMed  CAS  Google Scholar 

  • Schwartz S, Felber BK, Pavlakis GN (1992b) Distinct RNA sequences in the gag region of human immunodeficiency virus type 1 decrease RNA stability and inhibit expression in the absence of Rev protein. J Virol 66: 150–159

    PubMed  CAS  Google Scholar 

  • Seshamma T, Bagasra O, Trono D, Baltimore D, Pomerantz RJ (1992) Blocked early-stage latency in the peripheral blood cells of certain individuals infected with human immunodeficiency virus type 1. Proc Natl Acad Sci USA 89: 10663–10667

    Article  PubMed  CAS  Google Scholar 

  • Sodroski J, Goh WC, Rosen C, Dayton A, Terwilliger E, Haseltine W (1986) A second post-transcriptional trans-activator gene required for HTLV-III replication. Nature 321: 412–417

    Article  PubMed  CAS  Google Scholar 

  • Tan R, Chen L, Buettner JA, Hudson D, Frankel AD (1993) RNA recognition by an isolated α helix. Cell 73: 1031–1040

    Article  PubMed  CAS  Google Scholar 

  • Tao J, Frankel AD (1993) Electrostatic interactions modulate the RNA-binding and transactivation specificities of the human immunodeficiency virus and simian immunodeficiency virus Tat proteins. Proc Natl Acad Sci USA 90: 1571–1575

    Article  PubMed  CAS  Google Scholar 

  • Trono D, Baltimore D (1990) A human cell factor is essential for HIV-1 Rev action. EMBO J 9: 4155–4160

    PubMed  CAS  Google Scholar 

  • Venkatesh LK, Mohammed S, Chinnadurai G (1990) Functional domains of the HIV-1 rev gene required for trans-regulation and subcellular localization. Virology 176: 29–47

    Article  Google Scholar 

  • Venkatesan S, Gerstberger SM, Par H, Holland SM, Nam Y-S (1992) Human immunodeficiency virus type 1 Rev activation can be achieved without rev-responsive element RNA if Rev is directed to the target as a Rev/MS2 fusion protein which tethers the MS2 operator RNA. J Virol 66: 7469–7480

    PubMed  CAS  Google Scholar 

  • Winslow BJ, Trono D (1993) The blocks to human immunodeficiency virus type 1 Tat and Rev functions in mouse cell lines are independent. J Virol 67: 2349–2354

    PubMed  CAS  Google Scholar 

  • Zapp ML, Green MR (1989) Sequence-specific RNA binding by the HIV-1 Rev protein. Nature 342: 714–716

    Article  PubMed  CAS  Google Scholar 

  • Zapp ML, Hope TJ, Parslow TG, Green MR (1991) Oligomerization and RNA binding domains of the HIV-1 Rev protein: a dual function for an arginine-rich binding motif. Proc Natl Acad Sci USA 88: 7734–7738

    Article  PubMed  CAS  Google Scholar 

  • Zapp ML, Stern S, Green MR (1993) Small molecules that selectively block RNA binding of HIV-1 Rev protein inhibit Rev function and viral production. Cell 75: 969–978

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hope, T., Pomerantz, R.J. (1995). The Human Immunodeficiency Virus Type 1 Rev Protein: A Pivotal Protein in the Viral Life Cycle. In: Chen, I.S.Y., Koprowski, H., Srinivasan, A., Vogt, P.K. (eds) Transacting Functions of Human Retroviruses. Current Topics in Microbiology and Immunology, vol 193. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78929-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78929-8_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78931-1

  • Online ISBN: 978-3-642-78929-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics