Skip to main content

Background Notions

  • Chapter
Morphological Image Analysis

Abstract

Mathematical morphology stems from set theory and if one wishes to get an insight into its theoretical basis, some knowledge on set theory and topology is required. However, if we restrict our attention to the digital framework, only simple mathematical concepts such as set unions and intersections are necessary. It is the scope of this chapter to present these background notions. Moreover, we will see that many definitions related to the geometry of a Euclidean object do not apply to discrete objects. For example, how should we define the neighbours of a point and what is the best approximation of a line on a raster grid? There is therefore a need to introduce a few principles of discrete geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographical notes and references

  • Aho, A., Hoperoft, J. and Ullman, J. (1983), Data structures and algorithms, Addison-Wesley, Reading, Mass.

    MATH  Google Scholar 

  • Alnuweiri, H. and Kumar, V. (1991), ‘Fast image labeling using local operators on mesh-connected computers’, IEEE Transactions on Pattern Analysis and Machine Intelligence 13(2), 202–207.

    Google Scholar 

  • Batchelor, B. (1978), ‘Using concavity trees for shape description’, Computers and Digital Techniques 2 (4), 157–167.

    Article  Google Scholar 

  • Berge, C. (1962), The theory of graphs and its applications, Wiley, New York.

    Google Scholar 

  • Birkhoff, G. (1967), Lattice theory, Vol. 25 of American Mathematical Society Colloquium Publications, American Mathematical Society, Providence, RI.

    Google Scholar 

  • Bister, M., Cornelis, J. and Rosenfeld, A. (1990), ‘A critical view of pyramid segmentation algorithms’, Pattern Recognition Letters 11, 605–617.

    Google Scholar 

  • Borgefors, G. (1984), ‘Distance transformations in arbitrary dimensions’, Computer Vision, Graphics, and Image Processing 27, 321–345.

    Google Scholar 

  • Borgefors, G. (1986), ‘Distance transformations in digital images’, Computer Vision, Graphics, and Image Processing 34, 344and371.

    Google Scholar 

  • Borgefors, G. and Sanniti di Baja, G. (1996), ‘Analysing nonconvex 2D and 3D patterns’, Computer Vision and Image Understanding 63 (1), 145–157.

    Article  Google Scholar 

  • Bresenham, J. (1965), ‘Algorithm for computer control of digital plotter’, IBM System Journal 4, 25–30.

    Article  Google Scholar 

  • Chassery, J.-M. and Montanvert, A. (1991), Géométrie discrète en analyse d’images, Hermès, Paris.

    Google Scholar 

  • Coster, M. and Chermant, J.-L. (1985), Précis d’analyse d’images, Presses du CNRS, Paris.

    Google Scholar 

  • Danielsson, P.-E. (1980), ‘Euclidean distance mapping’, Computer Graphics and Image Processing 14, 227–248.

    Article  Google Scholar 

  • Döhler, H.-U. and Zamperoni, P. (1985), ‘Compact contour codes for convex binary patterns’, Signal Processing 8, 23–39.

    Article  Google Scholar 

  • Foley, J., van Dam, A., Feiner, S. and Hughes, J. (1990), Computer graphics -Principles and Practice, 2nd edn, Addison-Wesley.

    Google Scholar 

  • Golay, M. (1969), ‘Hexagonal parallel pattern transformation’, IEEE Transactions on Computers 18 (8), 733–740.

    Article  Google Scholar 

  • Gondran, M. and Minoux, M. (1995), Graphes et algorithmes, 3rd edn, Eyrolles, Paris. Harary, F. and Nieminen, J. (1981), ‘Convexity in graphs’, Journal of Differential Geometry 16, 185–190.

    Google Scholar 

  • Heijmans, H. (1993), ‘A note on the umbra transform in gray-scale morphology’, Pattern Recognition Letters 14, 877–881.

    Article  MATH  Google Scholar 

  • Jarvis, R. (1973), ‘On the identification of the convex hull of a finite set of points in the plane’, Information Processing Letters 2, 18and21.

    Google Scholar 

  • Kim, C. and Rosenfeld, A. (1982a), ‘Convex digital solids’, IEEE Transactions ora Pattern Analysis and Machine Intelligence 4 (6), 612–618.

    Article  MATH  Google Scholar 

  • Kim, C. and Rosenfeld, A. (1982b), ‘Digital straight lines and convexity of digital regions’, IEEE Transactions on Pattern Analysis and Machine Intelligence 4 (2), 149–153.

    Article  MATH  Google Scholar 

  • Kim, C. and Sklansky, J. (1982), ‘Digital and cellular convexity’, Pattern Recognition 15 (5), 359–367.

    Article  MathSciNet  MATH  Google Scholar 

  • Kim, S. (1978), The impossible skew quadrilateral, in D. Brisson, ed., ‘Proceedings of the 1978 A.A.A.S. Symposium on hypergraphics: visualizing complex relationships in art and science’, Westview Press, Boulder, Colorado.

    Google Scholar 

  • Kong, T. and Rosenfeld, A. (1989), ‘Digital topology: introduction and survey’, Computer Vision, Graphics, and Image Processing 48, 357–393.

    Google Scholar 

  • Maragos, P. and Ziff, R. (1990), ‘Threshold superposition in morphological image analysis systems’, IEEE Transactions on Pattern Analysis and Machine Intelligence 12 (5), 498–504.

    Article  Google Scholar 

  • Melter, R. (1991), ‘A survey of digital metrics’, Contemporary Mathematics 119, 95–106.

    Article  MathSciNet  Google Scholar 

  • Meyer, F. (1992), ‘Mathematical morphology: from 2D to 3D’, Journal of Microscopy 165, Pt 1, 5–28.

    Google Scholar 

  • Preparata, F. and Shamos, I. (1985), Computational geometry —An introductionand,Texts and Monographs in Computer Science, 2nd edn, Springer-Verlag, New York.

    Google Scholar 

  • Ragnemalm, I. (1990), Contour processing distance transforms,World Scientific, pp. 204–211.

    Google Scholar 

  • Rivest, J.-F., Serra, J. and Soille, P. (1992), ‘Dimensionality in image analysis’, Jour- nal of Visual Communication and Image Representation 3 (2), 137–146.

    Article  Google Scholar 

  • Ronse, C. (1989), ‘A bibliography on digital and computational convexity (19611988)’, IEEE Transactions on Pattern Analysis and Machine Intelligence 11 (2), 181–190.

    Article  MATH  Google Scholar 

  • Rosenfeld, A. (1974), ‘Digital straight line segments’, IEEE Transactions on Computing 23, 1264–1269.

    Article  MathSciNet  MATH  Google Scholar 

  • Rosenfeld, A. and Pfaltz, J. (1966), ‘Sequential operations in digital picture processing’, J. Assoc. Comp. Mach. 13 (4), 471–494.

    Article  MATH  Google Scholar 

  • Rosenfeld, A. and Pfaltz, J. (1968), ‘Distance functions on digital pictures’, Pattern Recognition 1, 33–61.

    Google Scholar 

  • Schmitt, M. and Mattioli, J. (1994), ‘Strong and weak convex hulls in non-Euclidean metric: theory and application’, Pattern Recognition Letters 15, 943–947.

    Article  MATH  Google Scholar 

  • Serra, J. (1988), Measurements on numerical functions, in J. Serra, ed., ‘Image analysis and mathematical morphology. Volume 2: theoretical advances’, Academic Press, chapter 14, pp. 297–315.

    Google Scholar 

  • Serra, J. and Laÿ, B. (1985), ‘Square to hexagonal lattices conversion’, Signal Processing 9, 1–13.

    Google Scholar 

  • Shih, F. and Mitchell, 0. (1989), ‘Threshold decomposition of gray-scale morphology into binary morphology’, IEEE Transactions on Pattern Analysis and Machine Intelligence 11(1), 31–42.

    Google Scholar 

  • Soille, P. (1991), ‘Spatial distributions from contour lines: an efficient methodology based on distance transformations’, Journal of Visual Communication and Image Representation 2 (2), 138–150.

    Article  Google Scholar 

  • Soille, P. and Rivest, J.-F. (1993), Dimensionality of morphological operators and cluster analysis, in E. Dougherty, P. Gader and J. Serra, eds, ‘Image algebra and morphological image processing IV’, Vol. SPIE-2030, pp. 43–53.

    Google Scholar 

  • Sternberg, S. (1986), ‘Grayscale morphology’, Computer Graphics and Image Processing 35, 333–355.

    Article  Google Scholar 

  • Verwer, B. (1991), Distance transforms: metrics, algorithms and applications, PhD thesis, Technische Universiteit Delft.

    Google Scholar 

  • Vincent, L. (1991), Exact Euclidean distance function by chain propagations, in ‘Prot. IEEE Computer Vision and Pattern Recognition’, pp. 520–525.

    Google Scholar 

  • Wendt, P., Coyle, E. and Gallagher, N. (1986), ‘Stack filters’, IEEE Transactions on Acoustics, Speech and Signal Processing 34(4), 898–911.

    Google Scholar 

  • Wüthrich, C. and Stucki, P. (1991), ‘An algorithmic comparison between square and hexagonal based grids’, Computer Vision, Graphics, and Image Processing: Graphical Models and Image Processing 53 (4), 324–339.

    Article  Google Scholar 

  • Zadeh, L. (1965), ‘Fuzzy sets’, Information and Control 8, 338–353.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Soille, P. (1999). Background Notions. In: Morphological Image Analysis. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03939-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03939-7_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-03941-0

  • Online ISBN: 978-3-662-03939-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics