Skip to main content

Abstract

Living systems are exposed to electromagnetic sources, including microwaves, from different sources such as sun, wireless communication technology, household microwave oven, etc. Microwaves are nonionizing but can affect biological systems through their thermal and non-thermal effects. These effects are presented at all levels of organism from subcellular structures to tissues, organs, and biological membranes, including the skin barrier that is the subject of the present chapter. The skin provides a natural barrier against permeation of chemicals, and, therefore, many drugs cannot be delivered transdermally in therapeutic amounts. To overcome this problem, many enhancement strategies have been employed. These enhancement methods are classified as physical methods and chemical penetration enhancers. This chapter introduces the use of microwaves as a novel physical percutaneous penetration enhancement method. It has been shown that microwaves are able to increase permeation of drugs through the skin in an intensity and time-dependent manner. These effects are due to both thermal and non-thermal effects of microwaves on the skin barrier. Skin permeation studies and mechanistic investigation of interaction of microwaves with skin material by Fourier transform infrared spectroscopy (FTIR) show that microwaves might induce their effects through disruption of intercellular lipids of the stratum corneum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Adair RK (2003) Biophysical limits on athermal effects of RF and microwave radiation. Bioelectromagnetics 24:39–48

    Article  PubMed  Google Scholar 

  • Alinaghi A (2006) Studying the effects of microwave on drug diffusion. PharmD Thesis. School of Pharmacy, Shahid Beheshti University of Medical Sciences. Tehran. p. 110.

    Google Scholar 

  • Allis JW, Sinha-Robinson BL (1987) Temperature-specific inhibition of human red cell Na+/K+ ATPase by 2450-MHz microwave radiation. Bioelectromagnetics 8(2):203–212

    Article  CAS  PubMed  Google Scholar 

  • Al-Saidan SM, Barry BW, Williams AC (1998) Differential scanning calorimetry of human and animal stratum corneum membranes. Int J Pharm 168:117–122

    Article  Google Scholar 

  • ANSI/IEEE [American National Standards Institute/Institute of Electrical and Electronics Engineers] (1992) C95.1 Safety levels with respect to human exposure to radio frequency electromagnetic fields, 3 kHz to 300 GHz. The Institute of Electrical and Electronics Engineers, New York

    Google Scholar 

  • Atmaca S, Akdag Z, Dasdag S et al (1996) Effect of microwaves on survival of some bacterial strains. Acta Microbiol Immunol Hung 43(4):371–378

    CAS  PubMed  Google Scholar 

  • Aulton E (2007) Drying. In: Aulton E (ed) Aulton’s pharmaceutics. Churchill Livingstone, Edinburgh, pp 425–440

    Google Scholar 

  • Ballardin M, Tusa I, Fontana N et al (2011) Non-thermal effects of 2.45 GHz microwaves on spindle assembly, mitotic cells and viability of Chinese hamster V-79 cells. Mutat Res 716(1–2):1–9

    Article  CAS  PubMed  Google Scholar 

  • Belyaev IY, Shcheglov VS, Alipov ED et al (2000) Non-thermal effects of extremely high frequency microwaves on chromatin conformation in cells in vitro: dependence on physical, physiological and genetic factors. IEEE Trans Microwave Theory Tech 48:2172–2179

    Article  CAS  Google Scholar 

  • Belyaev IY, Hillert L, Protopopova M et al (2005) 915 MHz microwaves and 50 Hz magnetic field affect chromatin conformation and 53BP1 foci in human lymphocytes from hypersensitive and healthy persons. Bioelectromagnetics 26(3):173–184

    Article  CAS  PubMed  Google Scholar 

  • Beneduci A, Filippelli L, Cosentino K et al (2012) Microwave induced shift of the main phase transition in phosphatidylcholine membranes. Bioelectrochemistry 84:18–24

    Article  CAS  PubMed  Google Scholar 

  • Bradshaw SM, Wyk EJS, Swardt JBD (1998) Microwave heating principles and the application to the regeneration of granular activated carbon. J S Afr Inst Min Metall 4:201–212

    Google Scholar 

  • Brovkovich VM, Kurilo NB, Barishpol’ts VL (1991) Action of millimeter-range electromagnetic radiation on the Ca pump of sarcoplasmic reticulum. Radiobiologiia 31(2):268–271

    CAS  PubMed  Google Scholar 

  • Byus CV, Lundak RL, Fletche RM et al (1984) Alteration in protein kinase activity following exposure of cultured human lymphocytes to modulated microwave fields. Bioelectromagnetics 5(3):341–351

    Article  CAS  PubMed  Google Scholar 

  • Celik U, Alagoz N, Yildirim Y et al (2013) New method of microwave thermokeratoplasty to correct myopia in 33 eyes: one-year results. J Cataract Refract Surg 39(2):225–233

    Article  PubMed  Google Scholar 

  • Challis LJ (2005) Mechanisms for interaction between RF fields and biological tissue. Bioelectromagnetics 7:S98–S106

    Article  PubMed  Google Scholar 

  • Chinnadayyala SSM, Santhosh M, Goswami P (2012) Microwave based reversible unfolding and refolding of alcohol oxidase protein probed by fluorescence and circular dichroism spectroscopy. Chem Mater Sci 3(4):317–323

    CAS  Google Scholar 

  • CSIRO (2013) Biological effects and safety of electromagnetic radiation. http://electricwords.emfacts.com/csiro. Accessed 9 Mar 2013

  • Daily LKG, Wakim JF, Herrick E et al (1950) The effects of microwave diathermy on the eye. Am J Ophthalmol 33:1241–1254

    Article  PubMed  Google Scholar 

  • Daily LKG, Wakim JF, Herrick EM (1952) The effects of microwave diathermy on the eye of the rabbit. Am J Ophthalmol 35:1001–1017

    Article  PubMed  Google Scholar 

  • Daniells C, Duce I, Thomas D et al (1998) Transgenic nematodes as biomonitors of microwave-induced stress. Mutat Res 399:55–64

    Article  CAS  PubMed  Google Scholar 

  • Diem E, Schwarz C, Adlkofer F et al (2005) Non-thermal DNA breakage by mobile-phone radiation (1800 MHz) in human fibroblasts and in transformed GFSH-R17 rat granulosa cells in vitro. Mutat Res 583(2):178–183

    Article  CAS  PubMed  Google Scholar 

  • Eskandari SE, Azimzadeh A, Bahar M et al (2012) Efficacy of microwave and infrared radiation in the treatment of the skin lesions caused by leishmania major in an animal model. Irn J Publ Health 41(8):80–83

    Google Scholar 

  • Fang Y, Hu J, Xiong S et al (2011) Effect of low dose microwave radiation on Aspergillus parasiticus. Food Control 22:1078–1084

    Article  CAS  Google Scholar 

  • Foster KR, Glaser R (2007) Thermal mechanisms of interaction of radiofrequency energy with biological systems with relevance to exposure guidelines. Health Phys 92(6):609–620

    Article  CAS  PubMed  Google Scholar 

  • Frey AH, Feld SR, Frey B (1975) Neural function and behavior: defining the relationship. Ann NY Acad Sci 247:433–439

    Article  CAS  PubMed  Google Scholar 

  • Fröhlich H (1988) Biological coherence and response to external stimuli. Springer, Berlin

    Book  Google Scholar 

  • Gaber MH, Halim NAE, Khalil WA (2005) Effect of microwave radiation on the biophysical properties of liposomes. Bioelectromagnetics 26(3):194–200

    Article  CAS  PubMed  Google Scholar 

  • Geletyuk VI, Kazachenko VN, Chemeris NK et al (1995) Dual effects of microwaves on single Ca2+−activated K+ channels in cultured kidney cells. FEBS Lett 359(1):85–88

    Article  CAS  PubMed  Google Scholar 

  • Hardell L, Sage C (2008) Biological effects from electromagnetic field exposure and public exposure standards. Biomed Pharmacother 62(2):104–109

    Article  CAS  PubMed  Google Scholar 

  • Hyland GJ (2000) Physics and biology of mobile telephony. Lancet 356(25):1833–1836

    Article  CAS  PubMed  Google Scholar 

  • ICNIRP (1996) Guideline on UV radiation exposure limits. Health Phys 71(6):978

    Google Scholar 

  • ICNIRP (1998) Guideline for limiting exposure to time-varying electric, magnetic and electromagnetic fields (up to 300 GHz). Health Phys 74(4):494–522

    Google Scholar 

  • Karinen A, Heinävaara S, Nylund R et al (2008) Mobile phone radiation might alter protein expression in human skin. BMC Genomics 9:77

    Article  PubMed  PubMed Central  Google Scholar 

  • Khounsary A (2013) Microwave health effects. Argonne National Laboratory, US Department of Energy. http://www.newton.dep.anl.gov. Accessed 24 June 2013

  • Kim SY, Jo EK, Kim HJ et al (2008) The effects of high-power microwaves on the ultrastructure of Bacillus subtilis. Lett Appl Microbiol 47:35–40

    Article  PubMed  Google Scholar 

  • Kitchen R (2001) Radiofrequency and microwave radiation safety handbook. Newnes, Oxford, pp 59–60

    Google Scholar 

  • Kiyatkin EA, Sharma HS (2009) Permeability of the blood–brain barrier depends on brain temperature. Neuroscience 161:929–939

    Article  Google Scholar 

  • Korpan NN, Resch KL, Kokoschinegg P (1994) Continuous microwave enhances the healing process of septic and aseptic wounds in rabbits. J Surg Res 57:667–671

    Article  CAS  PubMed  Google Scholar 

  • Kurumi Y, Tani T, Naka S et al (2007) MR-guided microwave ablation for malignancies. Int J Clin Oncol 12(2):85–93

    Article  PubMed  Google Scholar 

  • Ku HS, Siu F, Siores E et al (2002) Application of fixed and variable frequency microwave (VFM) facilities in polymeric materials processing and joining. 2nd World Engineering Congress, 22–25, Kuching, Malaysia. From University of Queensland (Australia) Website at: http://eprints.usq.edu.au/2438/. Accessed 14 June 2013

  • Lai H, Singh NP (1996) Single and double-strand DNA breaks after acute exposure to radiofrequency radiation. Int J Radiat Biol 69:13–521

    Article  Google Scholar 

  • Lammers RJM, Witjes JA, Inman BA et al (2011) The role of a combined regimen with intravesical chemotherapy and hyperthermia in the management of non-muscle-invasive bladder cancer: a systematic review. Eur Urol 60(1):81–93

    Article  PubMed  Google Scholar 

  • Laurence JA, French PW, Lindner RA et al (2000) Biological effects of electromagnetic fields-mechanisms for the effects of pulsed microwave radiation on protein conformation. J Theor Biol 206:291–298

    Article  CAS  PubMed  Google Scholar 

  • Lin JC (2006) Microwave surgery inside the heart. IEEE Microw Mag 7(3):32–36

    Article  Google Scholar 

  • Lipman RM, Tripathi BJ, Tripathi RC (1988) Cataracts induced by microwave and ionizing radiation. Surv Ophthalmol 33(3):200–210

    Article  CAS  PubMed  Google Scholar 

  • Lu GW, Flynn GL (2009) Cutaneous and transdermal delivery-processes and systems of delivery. In: Florence A, Siepmann J (eds) Modern pharmaceutics, Vol. 2. Informa Healthcare, New York, pp 43–101

    Google Scholar 

  • Mady MM, Allam MA (2011) The influence of low power microwave on the properties of DPPC vesicles. Phys Med 28:48–53

    Article  PubMed  Google Scholar 

  • Marjanović AM, Pavičić I, Trošić I (2012) Biological indicators in response to radiofrequency/microwave exposure. Arh Hig Rada Toksikol 63(3):407–416

    PubMed  Google Scholar 

  • Mayers CP, Habeshaw JA (1973) Depression of phagocytosis: anon-thermal effect of microwave radiation as a potential hazard to health. Int J Radiat Biol 24(5):449–461

    CAS  Google Scholar 

  • Moghimi HR, Williams AC, Barry BW (1997) A lamellar matrix model for stratum corneum intercellular lipids. V. Effects of terpene penetration enhancers on the structure and thermal behavior of the matrix. Int J Pharm 146:41–54

    Article  CAS  Google Scholar 

  • Moghimi HR, Barry BW, Williams AC (1999) Stratum corneum and barrier performance; a model lamellar structural approach. In: Bronaugh RL, Maibach HI (eds) Percutaneous absorption, 3rd edn. Dekker, New York, pp 515–553

    Google Scholar 

  • Moghimi HR, Alinaghi A, Erfan M (2010) Investigating the potential of non-thermal microwave as a novel skin penetration enhancement method. Int J Pharm 401(1–2):47–50

    Article  CAS  PubMed  Google Scholar 

  • Moghimi HR, Jamali B, Farahmand S et al (2013) Effect of essential oils, hydrating agents, and ethanol on hair removal efficiency of thioglycolates. J Cosmet Dermatol 12:41–48

    Article  PubMed  Google Scholar 

  • Moriyama E, Salcman M, Broadwell RD (1991) Blood–brain barrier alteration after microwave-induced hyperthermia is purely a thermal effect: I. Temperature and power measurements. Surg Neurol 35(3):177–182

    Article  CAS  PubMed  Google Scholar 

  • Moulder JE (1998) Power-frequency fields and cancer. Crit Rev Biomed Eng 26(1–2):1–116

    Article  CAS  PubMed  Google Scholar 

  • Mousa A (2011) Electromagnetic radiation measurements and safety issues of some cellular base stations in Nablus. J Eng Sci Technol Rev 4:35–42

    Google Scholar 

  • Nageswari NS (2003). Biological effects of microwaves and mobile telephony. Proceedings of the International Conference on Non-ionizing Radiation at UNITEN (ICNIR 2003) Electromagnetic Fields and Our Health. 20–22 Oct 2003.

    Google Scholar 

  • Nakai Y, Tsujita Y, Yoshimizu H (2002) Control of gas permeability for cellulose acetate membrane by microwave irradiation. Desalination 145(1):375–377

    Article  CAS  Google Scholar 

  • Nittby H, Brun A, Eberhardt J et al (2009) Increased blood–brain barrier permeability in mammalian brain 7 days after exposure to the radiation from a GSM-900 mobile phone. Pathophysiology 16:103–112

    Article  CAS  PubMed  Google Scholar 

  • Oscar KJ, Hawkins TD (1977) Microwave alteration of the blood–brain barrier system of rats. Brain Res 126:281–293

    Article  CAS  PubMed  Google Scholar 

  • Persson BRR, Salford LG, Brun A et al (1992) Increased permeability of the blood–brain barrier induced by magnetic and electromagnetic fields. Annal N Y Acad Sci 649:356–358

    Article  CAS  Google Scholar 

  • Persson BRR, Salford LG, Brun A et al (1997) Blood–brain barrier permeability in rats exposed to electromagnetic fields used in wireless communication. Wirel Netw 3:455–461

    Article  Google Scholar 

  • Phelan AM, Lange DG, Kues HA et al (1992) Modification of membrane fluidity in melanin-containing cells by low-level microwave radiation. Bioelectromagnetics 13:131–146

    Article  CAS  PubMed  Google Scholar 

  • Phelan AM, Neubauer CF, Timm R et al (1994) Athermal alterations in the structure of the canalicular membrane and ATPase activity induced by thermal levels of microwave radiation. Radiat Res 137(1):52–58

    Article  CAS  PubMed  Google Scholar 

  • Porcelli M, Cacciapuoti G, Fusco S et al (1997) Non-thermal effects of microwaves on proteins: thermophilic enzymes as model system. FEBS Lett 402:102–106

    Article  CAS  PubMed  Google Scholar 

  • Ramundo-Orlando A, Mossa G, d’Inzeo G (1994) Effect of microwave radiation on the permeability of carbonic anhydrate loaded with unilamellar liposome. Bioelectromagnetics 15:303–313

    Article  Google Scholar 

  • Repacholi MH (1998) Low-level exposure to radiofrequency electromagnetic fields: health effects and research needs. Bioelectromagnetics 19:1–19

    Article  CAS  PubMed  Google Scholar 

  • Saalman E, Norden B, Arvidsson L et al (1991) Effect of 2.45 GHz microwave radiation on permeability of unilamellar liposomes to 56-carboxyfluorescein. Evidence of non-thermal leakage. Biochim Biophys Acta 1064:124–130

    Article  CAS  PubMed  Google Scholar 

  • Sanchez S, Haro E, Ruffie G et al (2007) In vitro study of the stress response of human skin cells to GSM-1800 mobile phone signals compared to UVB radiation and heat shock. Radiat Res 167:572–580

    Article  CAS  PubMed  Google Scholar 

  • Shamis Y, Taube A, Shramkov Y et al (2008) Development of a microwave treatment technique for bacterial decontamination of raw meat. Int J Food Eng 4:1–15

    Article  Google Scholar 

  • Shamis Y, Taube A, Mitik-Dineva N et al (2011) Specific electromagnetic effects of microwave radiation on Escherichia coli. Appl Environ Microbiol 77(9):3017–3022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simon JC, Dupuy DE, Mayo-Smith WW (2005) Microwave ablation: principles and applications. Radiographics 25:S69–S83

    Article  PubMed  Google Scholar 

  • Stam R (2010) Electromagnetic fields and the blood–brain barrier. Brain Res Rev 65:80–97

    Article  PubMed  Google Scholar 

  • Sorrentino R, Bianchi G (2010) Microwave and RF engineering. Wiley, New York, pp 1–8

    Book  Google Scholar 

  • Stewart-DeHaan PJ, Creighton MO, Larsen LE et al (1983) In vitro studies of microwave-induced cataract, separation of field and heating effects. Exp Eye Res 36:75–90

    Article  CAS  PubMed  Google Scholar 

  • Stewart DA, Gowrishankar TR, Weaver JC (2006) Skin heating and injury by prolonged millimeter-wave exposure: theory based on a skin model coupled to a whole body model and local biochemical release from cells at supra physiologic temperatures. IEEE Trans Plasma Sci 34(4):1480–1493

    Article  CAS  Google Scholar 

  • Stuerga D, Loupy A (eds) (2006) Microwaves in organic synthesis, 2nd edn. WILEY-VCH Verlag, Weinheim

    Google Scholar 

  • Sutton CH, Carroll FB (1979) Effects of microwave-induced hyperthermia on the blood–brain barrier of the rat. Radio Sci 14(65):329–334

    Article  Google Scholar 

  • Tamyis NM, Ghodgaonkar DK, Taib MN and Wui WT (2013) Dielectric properties of human skin in vivo in the frequency range 20–38 GHz for 42 healthy volunteers. URSI: Union Radio-Scientific Internationale. http://www.ursi.org/proceedings/ProcGA05/pdf/KP.45(0850). Accessed 24 June 2013

  • Taylor LS (1981) The mechanism of athermal microwave biological effects. Bioelectromagnetics 2:259–267

    Article  CAS  PubMed  Google Scholar 

  • Taylor LA, Meek TT (2005) Microwave sintering of lunar soil: properties, theory, and practice. J Aerospace 18(3):188–196.

    Google Scholar 

  • Töre F, Dulou PE, Haro E et al. (2001) Two-hour exposure to 2-W/kg, 900-MHz GSM microwaves induces plasma protein extravasation in rat brain and dura matter. Proceedings of the 5th International congress of the EBEA, Helsinki; 2001. pp 43–45

    Google Scholar 

  • Töre F, Dulou PE, Haro E et al (2002) Effect of 2 h GSM-900 microwave exposures at 2.0, 0.5 and 0.12 W/kg on plasma protein extravasation in rat brain and dura matter. Proceedings of the 24th Annual Meeting of the Bioelectromagnetics Society (BEMS), 2002; 61–62

    Google Scholar 

  • Toutouzas K, Grassos C, Drakopoulou M et al (2012) First in vivo application of microwave radiometry in human carotids. J Am Coll Cardiol 59(18):1645–1653

    Article  PubMed  Google Scholar 

  • Vojisavljevic V (2011) Low intensity microwave radiation as modulator of the l-lactate dehydrogenase activity. Med Biol Eng Comput 49(7):793–799

    Article  PubMed  Google Scholar 

  • Vorst VA, Rosen A, Koysuk Y (2006) RF/Microwave interaction with biological tissue. Wiley, Hoboken

    Google Scholar 

  • Walters TJ, Blick DW, Johnson LR (2000) Heating and pain sensation produced in human skin by millimeter waves: comparison to a simple thermal model. Health Phys 78(3):259–267

    Article  CAS  PubMed  Google Scholar 

  • Webber MM, Barnes FS, Seltzer LA et al (1980) Short microwave pulses cause ultrastructural membrane damage in neuroblastoma cell. J Ultrastruct Res 71:321–330

    Article  CAS  PubMed  Google Scholar 

  • Williams AC, Barry BW (2004) Penetration enhancers. Adv Drug Deliv Rev 56:603–618

    Article  CAS  PubMed  Google Scholar 

  • Wong TW, Khaizan AN (2013) Physicochemical modulation of skin barrier by microwave for transdermal drug delivery. Pharm Res 30(1):90–103

    Article  CAS  PubMed  Google Scholar 

  • Xie Y, Guo B, Xu L et al (2006) Multistatic adaptive microwave imaging for early breast cancer detection. IEEE Trans Biomed Eng 53(8):1647–1657

    Article  PubMed  Google Scholar 

  • Yu Y, Yao K (2010) Non-thermal cellular effects of low power microwave radiation on the lens and lens epithelial cells. J Int Med Res 38(3):729–736

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid R. Moghimi PharmD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Moghimi, H.R., Alinaghi, A. (2017). Microwaves as a Skin Permeation Enhancement Method. In: Dragicevic, N., I. Maibach, H. (eds) Percutaneous Penetration Enhancers Physical Methods in Penetration Enhancement. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53273-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-53273-7_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-53271-3

  • Online ISBN: 978-3-662-53273-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics