Skip to main content

Therapeutic Applications of Sonophoresis and Sonophoretic Devices

  • Chapter
  • First Online:
Percutaneous Penetration Enhancers Physical Methods in Penetration Enhancement

Abstract

The use of ultrasound for the delivery of drugs through the skin is commonly known as sonophoresis. The use of therapeutics and high frequencies of ultrasound for sonophoresis dates back to the 1950s, while low-frequency sonophoresis has only been investigated considerably during the past two decades. The use of ultrasound in therapeutics and drug delivery has gained significance in recent years; this is evident by the augment in patents filed and new commercial devices launched.

This chapter presents the main findings in the field of sonophoresis. Particular attention is paid to therapeutic applications in transdermal drug delivery, gene therapy, and sonophoretic devices in the current pharmaceutical market.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abadi D, Zderic V (2011) ULS-mediated nail drug delivery system. J ULS Med 30(12):1723–1730

    Google Scholar 

  • Abreu VG, Correa GM, Silva TM, Fontoura HS et al (2013) Anti-inflammatory effects in muscle injury by transdermal application of gel Lychnophora pinaster aerial parts using phonophoresis in rats. BMC Complement Alter Med 13(270):1–8

    Google Scholar 

  • Akinbo SR, Aiyejusunle CB, Akinyemi OA et al (2007) Comparison of the therapeutic efficacy of phonophoresis and iontophoresis using dexamethasone sodium phosphate in the management of patients with knee osteoarthritis. Niger Postgrad Med J 14(3):190–194

    CAS  PubMed  Google Scholar 

  • Álvarez-Román R, Merino G, Kalia Y et al (2003) Skin permeability enhancement by low frequency sonophoresis: lipid extraction and transport pathways. J Pharm Sci 92(6):1138–1146

    Article  PubMed  CAS  Google Scholar 

  • Amit J, Jaideep R (2002) Sonicated transdermal drug transport. J Control Release 83:13–22

    Article  Google Scholar 

  • Andrade PC, Flores GP, Uscello Jde F et al (2011) Use of iontophoresis or phonophoresis for delivering onabotulinumtoxinA in the treatment of palmar hyperhidrosis: a report on four cases. An Bras Dermatol 86(6):1243–1246

    Article  PubMed  Google Scholar 

  • Aoi A, Watanabe Y, Mori S et al (2007) Herpes simplex virus thymidine kinase mediated suicide gene therapy using nano/microbubbles and ULS. ULS Med Biol 34(39):425–434

    Google Scholar 

  • Banche G, Prato M, Magnetto C et al (2015) Antimicrobial chitosan nanodroplets: new insights for ultrasound-mediated adjuvant treatment of skin infection. Future Microbiol 10(6):929–939

    Article  CAS  PubMed  Google Scholar 

  • Becker B, Helfrich S, Baker E et al (2005) ULS with topical anesthetic rapidly decreases pain of intravenous cannulation. Acad Emerg Med 12(4):289–295

    Article  PubMed  Google Scholar 

  • Benwell AD, Bly SHP (1987) Sources and applications of ULS. In: Repacholi MH, Grandolfo M, Rindi A (eds) ULS: Medical application, biological effects and hazard potentials. Plenum Press, New York, pp 29–47

    Google Scholar 

  • Boucaud A, Machet L, Arbeille B et al (2001a) In vitro study of low-frequency ULS-enhanced transdermal transport of fentanyl and caffeine across human and hairless rat skin. Int J Pharm 228:69–77

    Article  CAS  PubMed  Google Scholar 

  • Boucaud A, Montharu J, Machet L et al (2001b) Clinical histological, an electron microscopy study of skin exposed to low-frequency ULS. Anat Rec Part A 264(1):114–119

    Article  CAS  Google Scholar 

  • Brown M, Martin G, Jones S, Akomeah F (2006) Dermal and transdermal drug delivery systems: current and future prospects. Drug Deliv 13(3):175–187

    Article  CAS  PubMed  Google Scholar 

  • Byl NN, McKenzie A, Halliday B et al (1993) The effects of phonophoresis with corticosteroids controlled pilots study. J Orthop Sports Phys Ther 18(5):590–600

    Article  CAS  PubMed  Google Scholar 

  • Cabak A, Maczewska M, Lyp M et al (2005) The effectiveness of phonophoresis with ketoprofen in the treatment of epocondylopathy. Ortop Traumatol Rehabil 37(6):660–665

    Google Scholar 

  • Cage SA, Rupp KA, Castel JC et al (2013) Relative acoustic transmission of topical preparations used with therapeutic ultrasound. Arch Phys Med Rehabil 94(11):2126–2130

    Article  PubMed  Google Scholar 

  • Cancel LM, Tarbell JM, Ben-Jebria A (2004) Fluorescein permeability and electrical resistance of human skin during low frequency ULS application. J Pharm Pharmacol 56:1109–1118

    Article  CAS  PubMed  Google Scholar 

  • Chen B, Wei J, Iliescu C (2010) Sonophoretic enhanced microneedles array (SEMA)—improving the efficiency of transdermal drug delivery. Sensors Actuators B 145(1):54–60

    Article  CAS  Google Scholar 

  • Chuang H, Trieu MQ, Hurley J et al (2008) Pilot Studies of Transdermal Continuous Glucose Measurement in Outpatient Diabetic Patients and in Patients during and after Cardiac Surgery. J Diabetes Sci Technol 2(4):595–602

    Article  PubMed  PubMed Central  Google Scholar 

  • Dahlan A, Alpar H, Murdan S (2009) An investigation into the combination of low frequency ULS and liposomes on skin permeability. Int J Pharm 379(1):139–142

    Article  CAS  PubMed  Google Scholar 

  • Dakowicz A, Latosiewicz R (2005) The value of iontophoresis combined with ULS in patients with the carpal tunnel syndrome. Rocz Akad Med Bialymst 50(1):196–198

    PubMed  Google Scholar 

  • Deelman LE, Declèves AE, Rychak JJ et al (2010) Targeted renal therapies through microbubbles and ULS. Adv Drug Deliv Rev 62(14):1369–1377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Domínguez-Delgado CL, Rodríguez-Cruz IM, López-Cervantes M (2010) Chapter 1: The Skin: A valuable route for administration of drugs. In: José Juan E-C, Virginia M (eds) Current technologies to increase the transdermal delivery of drugs. Bentham Science Publishers Ltd, Bussum, pp 1–22

    Google Scholar 

  • Domínguez-Delgado CL, Rodríguez-Cruz IM, Escobar-Chávez JJ et al (2011) Preparation and characterization of triclosan nanoparticles intended to be used for the treatment of acné. Eur J Pharm Biopharm 79(1):102–107

    Article  PubMed  CAS  Google Scholar 

  • Ebrahimi S, Abbasnia K, Motealleh A et al (2012) Effect of lidocaine phonophoresis on sensory blockade: pulsed or continuous mode of therapeutic ultrasound? Physiotherapy 98(1):57–63

    Article  CAS  PubMed  Google Scholar 

  • El-Kamel AH, Al-Fagih IM, Alsarra IA (2008) Effect of sonophoresis and chemical enhancers on testosterone transdermal delivery from solid lipid microparticles: an in vitro study. Curr Drug Deliv 5(1):20–26

    Article  CAS  PubMed  Google Scholar 

  • Escobar Chávez JJ, Díaz-Torres R, Rodríguez Cruz IM et al (2012) Nanocarriers for transdermal drug delivery. Res Rep Transdermal Drug Deliv 1:3–17

    Google Scholar 

  • Escobar-Chávez JJ, Bonilla-Martínez D, Villegas-González A et al (2009a) The use of sonophoresis in the administration of drugs through the skin. J Pharm Pharmaceut Sci 12(1):88–115

    Article  Google Scholar 

  • Escobar-Chávez JJ, Bonilla-Martínez D, Villegas-González MA et al (2009b) The electroporation as an efficient physical enhancer for transdermal drug delivery. J Clin Pharmacol 49(11):1262–1283

    Article  PubMed  CAS  Google Scholar 

  • Escobar-Chávez JJ, Merino-Sanjuán V, López-Cervantes M et al (2009c) The use of iontophoresis in the administration of drugs through the skin for smoking cessation. Curr Drug Discov Technol 6(3):171–185

    Article  PubMed  Google Scholar 

  • Escobar-Chávez JJ, Bonilla-Martínez D, Villegas-González MA (2010) Sonophoresis: a valuable physical enhancer to increase transdermal drug delivery. In: José Juan E-C, Virginia M (eds) Current technologies to increase the transdermal delivery of drugs, vol 1. Bentham Science Publishers, Bussum, Netherlands, pp 53–76

    Google Scholar 

  • Escobar-Chávez JJ, Bonilla-Martínez D, Villegas-González A et al (2011) Microneedles: a valuable physical enhancer for transdermal drug delivery. J Clin Pharmacol 51(7):964–977

    Article  PubMed  CAS  Google Scholar 

  • Escobar-Chávez JJ, Rodríguez Cruz IM, Domínguez-Delgado CL et al (2012a) Nanocarrier systems for transdermal drug delivery. In: Sezer AD (ed) Recent advances in novel drug carrier systems. InTech, Rijeka, pp 201–240

    Google Scholar 

  • Escobar-Chávez JJ, Rodríguez Cruz IM, Domínguez-Delgado CL (2012b) Chemical and physical enhancers for transdermal drug delivery. In: Gallelli L (ed) Pharmacology. InTech Rijeka, Croatia., pp 397–434

    Google Scholar 

  • Fang J, Fang C, Hong C et al (2001) Capsaicin and nonivamide as novel skin permeation enhancers for indomethacin. Eur J Pharm Sci 12(3):195–203

    Article  CAS  PubMed  Google Scholar 

  • Fang J, Hwang T, Huang Y et al (2002) Transdermal iontophoresis of sodium nonivamide acetate: V. Combined effect of physical enhancement methods. Int J Pharm 235(1–2):95–105

    Article  CAS  PubMed  Google Scholar 

  • Fechheimer M, Boylan JF, Parker S et al (1987) Transfection of mammalian cells with plasmid DNA by scrape loading and sonication loading. Proc Natl Acad Sci 84(23):8463–8467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feiszthuber H, Bhatnagar S, Gyöngy M, Coussios CC (2015) Cavitation-enhanced delivery of insulin in agar and porcine models of human skin. Phys Med Biol 60(6):2421–2434

    Article  CAS  PubMed  Google Scholar 

  • Griffin JE, Touchstone JC (1972) Effects of ULS frequency on cortisone into swine tissue. Am J Phys Med 51:62–78

    CAS  PubMed  Google Scholar 

  • Hehn B, Moll F (1996) Phonophoretic permeation of procaine hydrochloride through and MDCK cell monolayer. Pharmazie 51(5):341–345

    CAS  PubMed  Google Scholar 

  • Herwadkar A, Sachdeva V, Taylor LF et al (2012) Low frequency sonophoresis mediated transdermal and intradermal delivery of ketoprofen. Int J Pharm 423(2):289–296

    Article  CAS  PubMed  Google Scholar 

  • Hikima T, Ohsumi S, Shirouzu K et al (2009) Mechanisms of synergistic skin penetration by sonophoresis and iontophoresis. Biol Pharm Bull 32(5):905–909

    Article  CAS  PubMed  Google Scholar 

  • Hippius M, Uhlemann C, Smolenski U et al (1998) In vitro investigations of drug release and penetration enhancing effect of ULS on transmembrane transport of flufenamic acid. Int Clin Pharmacol Ther 36(2):107–111

    CAS  Google Scholar 

  • http://investing.businessweek.com/research/stocks/snapshot/snapshot.asp?ticker=DMSI. Accessed 27 Oct 2012

  • http://www.bme-electronics.com/documents/produits/sonoderm_en_LD.pdf Accessed 26 Oct 2012

  • http://www.bme-electronics.com/fr/pdf/sonoderm_4_gb.pdf. Accessed 25 Oct 2012

  • http://www.bme-electronics.com/site/en_product_sonoderm.html. Accessed 26 Oct 2012

  • http://www.echotx.com/Accessed. 4 Nov 2012

  • http://www.prnewswire.com/news-releases/dermisonics-inc-prepares-u-striptm-ultrasonic-transducer-device-for-mass-production-56759392.html. Accessed 30 Oct 2012

  • http://www.reportlinker.com/p0894213-summary/Dermisonics-Inc-DMSI-Strategic-SWOT-Analysis-Review.html. Accessed 24 Oct 2012

  • http://www.sonoworld.com/Client/ModuleContent/ModuleContent.aspx?ModuleId=5&ContentId=1795. Accessed 26 Oct 2012

  • http://www.sonoworld.com/Client/ModuleContent/ModuleContent.aspx?ModuleId=5&ContentId=1947. Accessed 25 Oct 2012

  • Huang B, Dong WJ, Yang GY et al (2015) Dendrimer-coupled sonophoresis-mediated transdermal drug-delivery system for diclofenac. Drug Des Devel Ther 23(9):3867–3876

    Google Scholar 

  • Husseini GA, Pitt WG (2008) Micelles and nanoparticles for ultrasonic drug and gene delivery. Adv Drug Deliv Res 60(10):1137–1152

    Article  CAS  Google Scholar 

  • Ita K (2015) Recent progress in transdermal sonophoresis. Pharm Dev Technol 25:1–9

    Google Scholar 

  • Ita KB, Popova IE (2015) Influence of sonophoresis and chemical penetration enhancers on percutaneous transport of penbutolol sulfate. Pharm Dev Technol 18:1–6

    Google Scholar 

  • Juffermans LJM, Kamp O, Dijkmans PA et al (2008) Low-intensity ULS-exposed microbubbles provoke local hyperpolarization of the cell membrane via activation of BK(Ca) channels. ULS Med Biol 34(3):502–508

    Article  Google Scholar 

  • Karshafian R, Bevan PD, Williams R et al (2009) Sonoporation by ULS-activated microbubble contrast agents: Effect of acoustic exposure parameters on cell membrane permeability and cell viability. ULS Med Biol 35(5):847–860

    Article  Google Scholar 

  • Kassan DG, Lynch AM, Stiller MJ (1996) Physical enhancement of dermatologic drug delivery: iontophoresis and phonophoresis. J Am Acad Dermatol 34(4):657–666

    Article  CAS  PubMed  Google Scholar 

  • Katz N, Shapiro D, Herrmann T et al (2004) Rapid onset of cutaneous anesthesia with EMLA cream after pretreatment with a new ULS emitting device. Anesth Analg 98(2):371

    Article  CAS  PubMed  Google Scholar 

  • Kellogg SC, Chuang H, Barman S et al (2005) Echo Therapeutics Inc. Assignee. System and method for continuous non-invasive glucose monitoring. United States patent application USSN 11/275,038

    Google Scholar 

  • Khaibullina A, Jang BS, Sun H et al (2008) Pulsed high intensity focused ULS enhances uptake of radiolabeled monoclonal antibody to human epidermoid tumor in nude mice. J Nucl Med 49(2):295–302

    Article  PubMed  Google Scholar 

  • Kim TY, Jung DI, Kim YI et al (2007) Anesthetic effects of lidocaine hydrochloride gel using low frequency ULS of 0.5MHz. J Pharm Pharm Sci 10(1):1–8

    CAS  PubMed  Google Scholar 

  • Kost J, Mitragotri S, Gabbay RA et al (2000) Transdermal monitoring of glucose and other analytes using ULS. Nat Med 6:327–350

    Article  CAS  Google Scholar 

  • Kushner J IV, Blankschtein D, Langer R (2004) Experimental demonstration of the existence of highly permeable localized transport regions in low-frequency sonophoresis. J Pharm Sci 93:2733–2745

    Article  CAS  PubMed  Google Scholar 

  • Kushner J, Kim D, So P et al (2007) Dual-channel two-photon microscopy study of transdermal transport in skin treated with low frequency ULS and chemical enhancer. J Invest Dermatol 127(12):2832–2846

    Article  CAS  PubMed  Google Scholar 

  • Kushner J IV, Blankschtein D, Langer R (2008) Heterogeneity in skin treated with low-frequency ULS. J Pharm Sci 97:4119–4128

    Article  CAS  PubMed  Google Scholar 

  • Larkin JO, Casey GD, Tangney M et al (2008) Effective tumor treatment using optimized ULS mediated delivery of bleomycin. ULS Med Biol 34(3):406–413

    Article  Google Scholar 

  • Lavon I, Kost J (2004) ULS and transdermal drug delivery. DDT 9(15):670–676

    Article  CAS  PubMed  Google Scholar 

  • Lawrie A, Brisken A, Francis S et al (2000) Microbubble-enhanced ULS for vascular gene delivery. Gene Ther 7(23):2023–2027

    Article  CAS  PubMed  Google Scholar 

  • Le L, Kost J, Mitragotri S (2000) Combined effect of low-frequency ULS and iontophoresis: applications for transdermal heparin delivery. Pharm Res 17(9):1151–1154

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Newnham RE, Smith NB et al (2004a) Short ULS exposure times for noninvasive insulin delivery in rats using the lightweight cymbal array. IEEE Trans Ultrason Ferroelectr Freq Control 51(2):176–180

    Article  PubMed  Google Scholar 

  • Lee S, Snyder B, Newnham RE, Smith NB (2004b) Noninvasive ultrasonic transdermal insulin delivery in rabbits using the light weight cymbal array. Diabetes Techno Ther 6(6):808–815

    Article  CAS  Google Scholar 

  • Lee S, Choi K, Menon G et al (2010) Penetration pathways induced by low frequency sonophoresis with physical and chemical enhancers: Iron oxide nanoparticles versus Lanthanum nitrates. J Invest Dermatol 130(4):1063–1072

    Article  CAS  PubMed  Google Scholar 

  • Levenets AA, Shuvalov SM, Poliakov AV (1989) The effect of the disodium salt of ethylenediaminetetraacetate on the healing of experimental suppurative wounds. Stomatologiia (Mosk) 68:14–16

    CAS  Google Scholar 

  • Liu H, Li S, Pan W et al (2006) Investigation into the potential of low-frequency ULS facilitated topical delivery of Cyclosporin A. Int J Pharm 326:32–38

    Article  CAS  PubMed  Google Scholar 

  • Luis J, Park EJ, Meyer RJ, Smith NB (2007) Rectangular cymbal arrays for improved ultrasonic transdermal insulin delivery. J Acoust Soc Am 122(4):2022–2030

    Article  CAS  PubMed  Google Scholar 

  • Machet L, Boucaud B (2002) Phonophoresis: efficiency, mechanisms and skin tolerance. Int J Pharm 243:1–15

    Article  CAS  PubMed  Google Scholar 

  • Machet L, Pinton J, Patat F et al (1996) In vitro phonophoresis of digoxin across hairless mice and human skin: thermal effect of ULS. Int J Pharm 133:39–45

    Article  CAS  Google Scholar 

  • Maione E, Shung KK, Meyer RJ et al (2002) Transducer design for a portable ULS enhanced transdermal drug delivery system. IEEE Trans Ultrason Ferroelectr Freq Control 49(10):1439–1446

    Article  Google Scholar 

  • Maloney M, Bezzant JL, Stephen RL (1992) Iontophoreric administration of lidocaine anesthesia in office practice. J Dermatol Surg Oncol 18:937–940

    Article  CAS  PubMed  Google Scholar 

  • Matinian AL, Nagapetian KH, Amirian SS et al (1990) Papain phonophoresis in the treatment of suppurative wounds and inflammatory processes. Khirurgiia (Mosk) 9:74–76

    Google Scholar 

  • McElnay JC, Mathews MP, Harland R et al (1985) The effect of ULS on percutaneous absorption of lignocaine. Br J Clin Pharmacol 20:421–424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McElnay JC, Benson HA, Harland R, Hadgraft J (1993) Phonophoresis of methyl nicotinate. A preliminary study to elucidate the mechanism of action. Pharm Res 10(12):1726–1731

    Article  CAS  PubMed  Google Scholar 

  • Meidan V, Docker M, Walmsley A et al (1998) Phonophoresis of hydrocortisone with enhancers: an acoustically defined model. Int J Pharm 170(2):157–168

    Article  CAS  Google Scholar 

  • Meidan VM, Walmsley AD, Docker MF, Irwin WJ (1999) ULS enhanced diffusion into coupling gel during phonophoresis of 5-fluorouracil. Int J Pharm 185(2):205–213

    Article  CAS  PubMed  Google Scholar 

  • Meidan VM, Docker M, Walmsley A et al (2000) Low intensity ULS as a probe to elucidate the relative follicular contribution to total transdermal absorption. Pharm Res 15(1):85–92

    Article  Google Scholar 

  • Menon GK, Price LF, Bommannan B et al (1994) Selective obliteration of the epidermal calcium gradient leads to enhanced lamellar body secretion. J Invest Dermatol 102(5):789–795

    Article  CAS  PubMed  Google Scholar 

  • Merino G, Kalia YN, Guy RH (2003) ULS-enhanced transdermal transport. J Pharm Sci 92:1125–1137

    Article  CAS  PubMed  Google Scholar 

  • Meshali MM, Abdel-Aleem HM, Sakr FM et al (2008) In vitro phonophoresis: effect of ULS intensity and mode at high frequency on NSAIDs transport across cellulose and rabbit skin membranes. Pharmazie 63(1):49–53

    CAS  PubMed  Google Scholar 

  • Meshali M, Abdel-Aleem H, Sakr F et al (2011) Effect of gel composition and phonophoresis on the transdermal delivery of ibuprofen: in vitro and in vivo evaluation. Pharm Dev Technol 16(2):93–101

    Article  CAS  PubMed  Google Scholar 

  • Mitagroti S, Blankschtein D, Langer R (1995) ULS-mediated transdermal protein delivery. Science 269(5255):850–853

    Google Scholar 

  • Mitagroti S, Blankschtein D, Langer R (1996) Transdermal drug delivery using low-frequency sonophoresis. Pharm Res 13(3):411–420

    Article  Google Scholar 

  • Mitagroti S, Ray D, Farrell J et al (2000) Synergistic effect of low-frequency ULS and sodium lauryl sulfate on transdermal transport. J Pharm Sci 89(7):892–900

    Article  Google Scholar 

  • Miyazaki S, Mizuoka H, Kohata Y, Takada M (1992) External control of drug release and penetration. Enhancing effect of ULS on the transdermal absorption of indomethacin from an ointment in rats. Chem Pharm Bull (Tokyo) 40(10):2826–2830

    Article  CAS  Google Scholar 

  • Modi SB, Pokiya AB, Dhandhalya MC (2012) A review on sonophoresis mediated transdermal drug delivery system. Am J Pharm Tech Res 2(3):257–277

    Google Scholar 

  • Morimoto Y, Mutoh TM, Ueda H et al (2005) Elucidation of the transport pathway in hairless rat skin enhanced by low-frequency sonophoresis based on the solute–water transport relationship and confocal microscopy. J Control Release 103:587–597

    Article  CAS  PubMed  Google Scholar 

  • Mutalik S, Parekh H, Davies N et al (2009) Combined approach of chemical enhancers and sonophoresis for the transdermal delivery of tizanidine hydrochloride. Drug Deliv 16(2):82–91

    Article  CAS  PubMed  Google Scholar 

  • Nayak A, Babla H, Han T et al (2016) Lidocaine carboxymethyl cellulose with gelatine co-polymer hydrogel delivery by combined microneedle and ultrasound. Drug Deliv 23(2):668–679

    Article  CAS  Google Scholar 

  • Newman CM, Lawrie A, Brisken AF et al (2003) ULS gene therapy: on the road from concept to reality. Echocardiography 18(4):339–347

    Article  Google Scholar 

  • Ng GY, Wong RY (2008) ULS phonophoresis of panax notoginseng improves the strength of repairing ligament: a rat model. ULS Med Biol 34(12):1919–1923

    Article  Google Scholar 

  • Niidome T, Huang L (2002) Gene therapy progress and prospects: nonviral vectors. Gene Ther 9(24):1647–1652

    Article  CAS  PubMed  Google Scholar 

  • Novak FJ (1964) Experimental transmission of lidocaine through intact skin by ultrasound. Arch Phys Med Rehabil 64:231–232

    Google Scholar 

  • Paliwal S, Menon GK, Mitragotri S (2006) Low-frequency sonophoresis: ultrastructural basis for stratum corneum permeability assessed using quantum dots. J Invest Dermatol 126:1095–1101

    Article  CAS  PubMed  Google Scholar 

  • Park SR, Jang KW, Park S-H et al (2005) The effect of sonication on simulated osteoarthritis part I: effect of 1 MHz ULS on uptake of hyaluronan into the rabbit synovium. ULS Med Biol 31(11):1551–1558

    Article  Google Scholar 

  • Park EJ, Werner J, Smith NB (2007) ULS mediated transdermal insulin delivery in pigs using a lightweight transducer. Pharm Res 24(7):1396–1401

    Article  CAS  PubMed  Google Scholar 

  • Park JM, Jeong KH, Bae MI et al (2016) Fractional radiofrequency combined with sonophoresis to facilitate skin penetration of 5-aminolevulinic acid. Lasers Med Sci 31(1):113–118

    Article  PubMed  Google Scholar 

  • Polat B, Figueroa P, Blankschtein D, Langer R (2011a) Transport pathways enhancement mechanisms within localized and non-localized transport regions in skin treated with low frequency sonophoresis and sodium lauryl sulfate. J Pharm Sci 100(2):512–529

    Article  CAS  PubMed  Google Scholar 

  • Polat BE, Hart D, Langer R et al (2011b) ULS-mediated transdermal drug delivery: mechanisms, scope, and emerging trends. J Control Release 152(3):330–348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pouton CW, Seymour LW (1998) Key issues in non-viral gene delivery. Adv Drug Deliv Rev 34(1):3–19

    Article  CAS  PubMed  Google Scholar 

  • Ragelis S (1981) Tetracycline penetration into tissue by modified electro and phonophoretic methods. Antibiotiki 26(9):699–703

    CAS  PubMed  Google Scholar 

  • Rao R, Nanda S (2009) Sonophoresis: recent advancements and future trends. J Pharm Pharmacol 61:689–705

    Article  CAS  PubMed  Google Scholar 

  • Redding J, Bruce K (2005) Substance delivery device. 2005; US Patent 6,908,448, 21 June 2005, Dermisonics, Inc

    Google Scholar 

  • Rornanenko IM, Araviiskii RA (1991) Comparative levels of amphotericin B in the skin and subcutaneous fatty tissue after cutaneous application of amphotericin ointment by phonophoresis and with preliminary treatment by dimethyl sulfoxide. Antibiot Khimioter 36:29–31

    Google Scholar 

  • Rosim GC, Barbieri CH, Lanças FM, Mazzer N (2005) Diclofenac phonophoresis in human volunteers. ULS Med Biol 31(3):337–343

    Article  Google Scholar 

  • Saliba S, Mistry DJ, Perrin DH et al (2007) Phonophoresis and the absorption of dexamethasone in the presence of an occlusive dressing. J Athl Train 42(3):349–354

    PubMed  PubMed Central  Google Scholar 

  • Santoianni P, Nino M, Calabro G (2004) Intradermal drug delivery by low frequency sonophoresis (25KHz). Dermatol Online J 10(2):24–33

    PubMed  Google Scholar 

  • Sarah K, Sharma B, Yadav B (2011) Sonophoresis: an advanced tool in transdermal drug delivery system. Int J Current Pharm Res 3(3):89–97

    Google Scholar 

  • Sarheed O, Abdul Rasool BK (2011) Development of an optimized application protocol for sonophoretic transdermal delivery of a model hydrophilic drug. Open Biomed Eng J 5:14–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Serikov NP (2007) Efficacy of ibuprofen (nurofen gel) ultraphonophoresis for pain in osteoarthritis. Ter Arkh 79(5):79–81

    CAS  PubMed  Google Scholar 

  • Seto J, Polat B, Lopez R et al (2010) Effects of ULS and sodium lauryl sulfate on the transdermal delivery of hydrophilic permeants: Comparative in vitro studies with full thickness and split thickness and human skin. J Control Release 145(1):26–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shetty PK, Suthar NA, Menon J et al (2013) Transdermal delivery of lercanidipine hydrochloride: effect of chemical enhancers and ultrasound. Curr Drug Deliv 10(4):427–434

    Article  CAS  PubMed  Google Scholar 

  • Skauen DM, Zentner GM (1984) Phonophoresis. Int J Pharm 20:235–245

    Article  CAS  Google Scholar 

  • Skyba DM, Price RJ, Linka AZ et al (1998) Direct in vivo visualization of intravascular destruction of microbubbles by ULS and its local effects on tissue. Circulation 98(4):290–293

    Article  CAS  PubMed  Google Scholar 

  • Smith NB, Lee S, Maione E et al (2003a) ULS mediated transdermal transport of insulin through in-vitro human skin using novel transducer designs. ULS Med Biol 29(2):311–317

    Article  Google Scholar 

  • Smith NB, Lee S, Shung KK (2003b) ULS-mediated transdermal in vivo transport of insulin with low profile cymbal arrays. ULS Med Boil 29(8):1205–1210

    Article  Google Scholar 

  • Spierings E, Brevard J, Katz N (2008) Two minute skin anesthesia through ULS pretreatment and iontophoretic delivery of a topical anesthetic: a feasibility study. Pain Med 9(1):55–59

    Article  PubMed  Google Scholar 

  • Tachibana K, Tachibana S (1993) Use of ULS to enhance the local anesthetic effect of topically applied aqueous Lidocaine. Anesthesiology 78:1091–1096

    Article  CAS  PubMed  Google Scholar 

  • Talish RJ, Winder AA (2007) ULS bandages. 2007; US Patent 7,211,060

    Google Scholar 

  • Tang H, Mitagroti S, Blanksschtein D et al (2001) Theoretical description of transdermal transport of hydrophilic permeants: application to low frequency sonophoresis. J Pharm Sci 90(5):545–568

    Article  CAS  PubMed  Google Scholar 

  • Tang H, Blankschtein D, Langer R (2002a) Prediction of steady state skin permeabilities of polar and non polar permeants across excised pig skin based on measurements of transient diffusion: characterization of hydration effects on the skin porous pathway. J Pharm Sci 91(8):1891–1907

    Article  CAS  PubMed  Google Scholar 

  • Tang H, Wang C, Blankschtein D, Langer R (2002b) An investigation of the role of cavitation in low frequency ULS mediated transdermal drug transport. Pharm Res 19(8):1160–1169

    Article  CAS  PubMed  Google Scholar 

  • Taniyama Y, Tachibana K, Hiraoka K et al (2002) Development of safe and efficient novel nonviral gene transfer using ULS: enhancement of transfection efficiency of naked plasmid DNA in skeletal muscle. Gene Ther 9(6):372

    Article  CAS  PubMed  Google Scholar 

  • Ter Haar G (2007) Therapeutic applications of ULS. Prog Biophys Mol Biol 93:111–129

    Article  PubMed  Google Scholar 

  • Terahara T, Mitragotri S, Kost J, Langer R (2002) Dependence of low frequency sonophoresis on ULS parameters; distance of the horn and intensity. Int J Pharm 235(1-2):35–42

    Article  CAS  PubMed  Google Scholar 

  • Tezel A, Sens A, Mitragotri S (2002) Investigations of the role of cavitation in low-frequency sonophoresis using acoustic spectroscopy. J Pharm Sci 91(2):444–453

    Article  CAS  PubMed  Google Scholar 

  • Tezel H, Dokka S, Kelly S et al (2004) Topical delivery of anti-sense oligonucleotides using low-frequency sonophoresis. Pharm Res 21(12):2219–2225

    Article  CAS  PubMed  Google Scholar 

  • Tiwari SB, Pai RM, Udupa N (2004) Influence of ULS on the percutaneous absorption of ketorolac tromethamine in vitro across rat skin. Drug Deliv 11(1):47–51

    Article  CAS  PubMed  Google Scholar 

  • Ueda H, Sugibayashi K, Morimoto Y (1995) Skin penetration enhancing effects of drugs by phonophoresis. J Control Release 37:291–297

    Article  CAS  Google Scholar 

  • Unger, EC, Matsunaga TO, Yellowhair D (1998) Gas and gaseous precursor filled microspheres as topical and subcutaneous delivery vehicles. US Patent 5,733,572, 31 March, ImaRx Pharmaceutical Corp

    Google Scholar 

  • Walker JJ (1983) ULS therapy for keloids. S Afr Med J 64(8):270

    CAS  PubMed  Google Scholar 

  • Watanabe S, Takagi S, Ga K et al (2009) Enhanced transdermal drug penetration by the simultaneous application of iontophoresis and sonophoresis. J Drug Del Sci Tech 19(3):185–189

    Article  CAS  Google Scholar 

  • Wells PN (1997) Biomedical ultrasonics. Academic Press, New York

    Google Scholar 

  • Weyman AE (1991) Physical principles of ULS. In: Weyman AE (ed) Principles and practice of echocardiography. Lea and Febiger, Philadelphia, pp 3–28

    Google Scholar 

  • Williams AR (1990) Phonophoresis: an in vivo evaluation using three topical anaesthetic preparations. Ultrasonics 28:137–141

    Article  CAS  PubMed  Google Scholar 

  • Wood RW, Loomis AL (1927) The physical and biological effects of high frequency sound waves of great intensity. Phil Mag 4:417–436

    Article  CAS  Google Scholar 

  • Xu X, Zhu Q, Sun C (2008) Combined effect of ULS-SLS on skin optical clearing. IEEE Photonics Technol Lett 20(24):2117–2119

    Article  Google Scholar 

  • Xu X, Zhu Q, Sun C (2009) Assessment of the effects of ULS-mediated alcohols on skin optical clearing. J Biomed Opt 14(3):034042

    Article  PubMed  CAS  Google Scholar 

  • Yang JH, Kim DK, Yun MY et al (2006) Transdermal delivery system of triamcinolone acetonide from a gel using phonophoresis. Arch Pharm Res 29(5):412–427

    Article  CAS  PubMed  Google Scholar 

  • Yang JH, Kim TY, Lee JH et al (2008) Anti-hyperalgesic and anti-inflammatory effects of ketorolac tromethamine gel using pulsed ULS in inflamed rats. Arch Pharm Res 31(4):511–517

    Article  CAS  PubMed  Google Scholar 

  • Yeo SH, Zhang HY (2003) Development of a novel sonophoresis micro-device. Biomed Microdev 5:201–206

    Article  CAS  Google Scholar 

  • Yu ZW, Liang Y, Liang WQ (2015) Low-frequency sonophoresis enhances rivastigmine permeation in vitro and in vivo. Pharmazie 70(6):379–380

    CAS  PubMed  Google Scholar 

  • Zagzebski JA (1996) Physics of diagnostic ULS. In: Lading DE, Potts L (eds) Essentials of ULS physics. Mosby-Year Book, St. Louis, pp 1–19

    Google Scholar 

  • Zderic V, Clark JI, Martin RW, Vaezy S (2004a) ULS-enhanced transcorneal drug delivery. Cornea 23(8):804–811

    Article  PubMed  Google Scholar 

  • Zderic V, Clark JI, Vaezy S (2004b) Drug delivery into the eye with the use of ULS. J ULS Med 23:1349–1359

    Google Scholar 

  • Zhong H, Guo Z, Wei H et al (2010a) In vitro study of ULS and different-concentration glycerol-induced changes in human skin optical attenuation assessed with optical coherence tomography. J Biomed Opt 15(3):036012

    Article  PubMed  CAS  Google Scholar 

  • Zhong H, Guo Z, Wei H et al (2010b) Synergistic effect of ULS and thiazone-PEG 400 on human skin optical clearing in vivo. Photochem Photobiol 86(3):732–737

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

José Juan Escobar-Chávez wishes to acknowledge PAPIIT IT 200115, Cátedra PIAPI 1619, and PAPIME PE 200414. The authors report no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Juan Escobar-Chávez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Escobar-Chávez, J.J., Díaz-Torres, R., Domínguez-Delgado, C.L., Rodríguez-Cruz, I.M., López-Arellano, R., Hipólito, E.A.M. (2017). Therapeutic Applications of Sonophoresis and Sonophoretic Devices. In: Dragicevic, N., I. Maibach, H. (eds) Percutaneous Penetration Enhancers Physical Methods in Penetration Enhancement. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53273-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-53273-7_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-53271-3

  • Online ISBN: 978-3-662-53273-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics