Skip to main content

Electroporation for Dermal and Transdermal Drug Delivery

  • Chapter
  • First Online:
Percutaneous Penetration Enhancers Physical Methods in Penetration Enhancement

Abstract

Transdermal drug delivery can offer potential advantages over conventional oral and parenteral drug administration. However, the protective function of skin imposes a physicochemical barrier to the penetration of hydrophilic and large molecules. The skin is permeable to only small lipophilic drugs. Electroporation utilizes high-voltage electric pulses for very short duration (microsecond–millisecond) to permeabilize the skin and enable the transport of various molecules, including large and hydrophilic substances into and across the skin. The efficiency of molecular transport depends on both the electrical parameters of the pulses and the physicochemical characteristics of the permeant. The in vivo electroporation is generally well tolerated, but may sometimes cause itching, pricking, muscle contractions, and pain. These unwanted side effects could be avoided by the selection of proper electrodes and optimization of the electroporation parameters. This chapter presents the mechanism of percutaneous penetration enhancement induced by electroporation, discusses factors influencing percutaneous penetration of drug molecules, addresses effects of electroporation on the skin when used in vivo, and describes the potential use of electroporation for transdermal drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Allenby AC, Fletcher J, Schock C, Tees TFS (1969) The effect of heat, pH and organic solvents on the electrical impedance and permeability of excised human skin. Br J Dermatol 81(Suppl 4):31–39

    Article  CAS  Google Scholar 

  • Al-Sakere B, Andre F, Bernat C, Connault E, Opolon P, Davalos RV et al (2007) Tumor ablation with irreversible electroporation. PLoS One 2(11):e1135

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Auer D, Brandner G, Bodemer W (1976) Dielectric breakdown of the red blood cell membrane and uptake of SV 40 DNA and mammalian cell RNA. Naturwissenschaften 63:391

    Article  CAS  PubMed  Google Scholar 

  • Babiuk S, Baca-Estrada ME, Foldvari M, Storms M, Rabussay D, Widera G et al (2002) Electroporation improves the efficacy of DNA vaccines in large animals. Vaccine 20:3399–3408

    Article  CAS  PubMed  Google Scholar 

  • Babiuk S, Baca-Estrada ME, Foldvari M, Baizer L, Stout R, Storms M et al (2003) Needle-free topical electroporation improves gene expression from plasmids administered in porcine skin. Mol Ther 8:992–998

    Article  CAS  PubMed  Google Scholar 

  • Barry BW (2001) Novel mechanisms and devices to enable successful transdermal drug delivery. Eur J Pharm Sci 14:101–114

    Article  CAS  PubMed  Google Scholar 

  • Barry BW (2002) Drug delivery routes in skin: a novel approach. Adv Drug Deliv Rev 54(Suppl 1):S31–S40

    Article  CAS  PubMed  Google Scholar 

  • Becker S (2012) Transport modeling of skin electroporation and the thermal behavior of the stratum corneum. Int J Therm Sci 54:48–61

    Article  CAS  Google Scholar 

  • Bommannan DB, Tamada J, Leung L, Potts RO (1994) Effect of electroporation on transdermal iontophoretic delivery of luteinizing hormone releasing hormone (LHRH) in vitro. Pharm Res 11:1809–1814

    Article  CAS  PubMed  Google Scholar 

  • Bose S, Ravis WR, Lin YJ, Zhang L, Hofmann GA, Banga AK (2001) Electrically-assisted transdermal delivery of buprenorphine. J Control Release 73:197–203

    Article  CAS  PubMed  Google Scholar 

  • Broderick KE, Chan A, Lin F, Shen X, Kichaev G, Khan AS et al (2012) Optimized in vivo transfer of small interfering RNA targeting dermal tissue using in vivo surface electroporation. Mol Ther Nucleic Acids 1:e11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cao T, Wang XJ, Roop DR (2000) Regulated cutaneous gene delivery: the skin as a bioreactor. Hum Gene Ther 11:2297–2300

    Article  CAS  PubMed  Google Scholar 

  • Cao T, Tsai SY, O’Malley BW, Wang XJ, Roop DR (2002) The epidermis as a bioreactor: topically regulated cutaneous delivery into the circulation. Hum Gene Ther 13:1075–1080

    Article  CAS  PubMed  Google Scholar 

  • Chabot S, TeissiĂ© J, Golzio M (2015) Targeted electro-delivery of oligonucleotides for RNA interference: siRNA and antimiR. Adv Drug Deliv Rev 81:161–168

    Article  CAS  PubMed  Google Scholar 

  • Chang SL, Hofmann GA, Zhang L, Deftos LJ, Banga AK (2000) The effect of electroporation on iontophoretic transdermal delivery of calcium regulating hormones. J Control Release 66:127–133

    Article  CAS  PubMed  Google Scholar 

  • Charoo NA, Rahman Z, Repka MA, Murthy SN (2010) Electroporation: an avenue for transdermal drug delivery. Curr Drug Deliv 7(2):125–136

    Article  CAS  PubMed  Google Scholar 

  • Chen T, Segall EM, Langer R, Weaver JC (1998) Skin electroporation: rapid measurements of the transdermal voltage and flux of four fluorescent molecules show a transition to large fluxes near 50 V. J Pharm Sci 87:1368–1374

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Smye SW, Robinson MP, Evans JA (2006) Membrane electroporation theories: a review. Med Biol Eng Comput 44:5–14

    Article  CAS  PubMed  Google Scholar 

  • Chizmadzhev YA, Indenbom AV, Kuzmin PI, Galichenko SV, Weaver JC, Potts RO (1998) Electrical properties of skin at moderate voltages: contribution of appendageal macropores. Biophys J 74:843–856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi MJ, Maibach HI (2003) Topical vaccination of DNA antigens: topical delivery of DNA antigens. Skin Pharmacol Appl Skin Physiol 16:271–282

    Article  CAS  PubMed  Google Scholar 

  • Cornwell PA, Barry BW, Bouwstra JA, Gooris GS (1996) Modes of action of terpene penetration enhancers in human skin; differential scanning calorimetry, small angle diffraction and enhancer uptake studies. Int J Pharm 127:9–26

    Article  CAS  Google Scholar 

  • Daugimont L, Baron N, Vandermeulen G, Pavselj N, Miklavcic D, Jullien MC et al (2010) Hollow microneedle arrays for intradermal drug delivery and DNA electroporation. J Membr Biol 236:117–125

    Article  CAS  PubMed  Google Scholar 

  • Dean DA, Machado-Aranda D, Blair-Parks K, Yeldandi AV, Young JL (2003) Electroporation as a method for high-level nonviral gene transfer to the lung. Gene Ther 10(18):1608–1615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Denet AR, PrĂ©at V (2003) Transdermal delivery of timolol by electroporation through human skin. J Control Release 88:253–262

    Article  CAS  PubMed  Google Scholar 

  • Denet AR, Ucakar B, PrĂ©at V (2003) Transdermal delivery of timolol and atenolol using electroporation and iontophoresis in combination: a mechanistic approach. Pharm Res 20:1946–1951

    Article  CAS  PubMed  Google Scholar 

  • Denet AR, Vanbever R, PrĂ©at V (2004) Skin electroporation for transdermal and topical delivery. Adv Drug Deliv Rev 56:659–674

    Article  CAS  PubMed  Google Scholar 

  • Drabick JJ, Glasspool-Malone J, King A, Malone RW (2001) Cutaneous transfection and immune responses to intradermal nucleic acid vaccination are significantly enhanced by in vivo electropermeabilization. Mol Ther 3:249–255

    Article  CAS  PubMed  Google Scholar 

  • Draize JH, Woodward G, Cavlery HO (1944) Methods for the study of irritation and toxicity of substances applied topically to the skin and mucous membranes. J Pharmacol Exp Ther 82:377–390

    CAS  Google Scholar 

  • Dujardin N, Staes E, Kalia Y, Clarys P, Guy R, PrĂ©at V (2002) In vivo assessment of skin electroporation using square wave pulses. J Control Release 79:219–227

    Article  CAS  PubMed  Google Scholar 

  • Dujardin N, Preat V (2004) Delivery of DNA to skin by electroporation. Methods Mol Biol 245:215–226

    CAS  PubMed  Google Scholar 

  • Escobar-Chavez JJ, Bonilla-Martinez D, Villegas-Gonzalez MA, Revilla-Vázquez AL (2009) Electroporation as an efficient physical enhancer for skin drug delivery. J Clin Pharmacol 49:1262–1283

    Article  CAS  PubMed  Google Scholar 

  • Espinos E, Liu JH, Bader CR, Bernheim L (2001) Efficient nonviral DNA-mediated gene transfer to human primary myoblasts using electroporation. Neuromuscul Disord 11:341–349

    Article  CAS  PubMed  Google Scholar 

  • Esser AT, Smith KC, Gowrishankar TR, Weaver JC (2009) Towards solid tumor treatment by nanosecond pulsed electric fields. Technol Cancer Res Treat 8:289–306

    Article  PubMed  Google Scholar 

  • Fang JY, Hung CF, Fang YP, Chan TF (2004) Transdermal iontophoresis of 5-fluorouracil combined with electroporation and laser treatment. Int J Pharm 270:241–249

    Article  CAS  PubMed  Google Scholar 

  • Flynn GL (1989) Mechanism of percutaneous absorption from physicochemical evidence. In: Bronaugh RL, Maibach HI (eds) Percutaneous absorption, mechanisms-methodology-drug delivery. Marcel Dekker, New York, pp 27–51

    Google Scholar 

  • Gallo SA, Oseroff AR, Johnson PG, Hui SW (1997) Characterization of electric-pulse-induced permeabilization of porcine skin using surface electrodes. Biophys J 72:2805–2811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gallo SA, Sen A, Hensen ML, Hui SW (1999) Time-dependent ultrastructural changes to porcine stratum corneum following an electric pulse. Biophys J 76:2824–2832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Golzio M, Mora MP, Raynaud C, Delteil C, Teissie J, Rols MP (1998) Control by osmotic pressure of voltage induced permeabilization and gene transfer in mammalian cells. Biophys J 74:3015–3022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Golzio M, Teissie J, Rols MP (2002) Direct visualization at the single-cell level of electrically mediated gene delivery. Proc Natl Acad Sci U S A 99:1292–1297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gothelf A, Mir LM, Gehl J (2003) Electrochemotherapy: results of cancer treatment using enhanced delivery of bleomycin by electroporation. Cancer Treat Rev 29:371–387

    Article  CAS  PubMed  Google Scholar 

  • Guo S, Donate A, Basu G, Lundberg C, Heller L, Heller R (2011) Electro-gene transfer to skin using a noninvasive multielectrode array. J Control Release 151:256–262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heller R, Schultz J, Lucas ML, Jaroszeski MJ, Heller LC, Gilbert RA et al (2001) Intradermal delivery of interleukin-12 plasmid DNA by in vivo electroporation. DNA Cell Biol 20:21–26

    Article  CAS  PubMed  Google Scholar 

  • Heller LC, Jaroszeski MJ, Coppola D, McCray AN, Hickey J, Heller R (2007) Optimization of cutaneous electrically mediated plasmid DNA delivery using novel electrode. Gene Ther 14:275–280

    Article  CAS  PubMed  Google Scholar 

  • Heller LC, Jaroszeski MJ, Coppola D, Heller R (2008) Comparison of electrically mediated and liposome-complexed plasmid DNA delivery to the skin. Genet Vaccines Ther 6:16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Heller R, Cruz Y, Heller LC, Gilbert RA, Jaroszeski MJ (2010) Electrically mediated delivery of plasmid DNA to the skin using a multi electrode array. Hum Gene Ther 21:357–362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirao LA, Wu L, Khan AS, Satishchandran A, Draghia-Akli R, Weiner DB (2008) Intradermal/subcutaneous immunization by electroporation improves plasmid vaccine delivery and potency in pigs and rhesus macaques. Vaccine 26:440–448

    Article  CAS  PubMed  Google Scholar 

  • Hooper JW, Golden JW, Ferro AM, King AD (2007) Smallpox DNA vaccine delivered by novel skin electroporation device protects mice against intranasal poxvirus challenge. Vaccine 25:1814–1823

    Article  CAS  PubMed  Google Scholar 

  • Hristova NI, Tsoneva I, Neumann E (1997) Sphingosine-mediated electroporative DNA transfer through lipid bilayers. FEBS Lett 415:81–86

    Article  CAS  PubMed  Google Scholar 

  • Hu Q, Liang W, Bao J, Ping Q (2000) Enhanced transdermal delivery of tetracaine by electroporation. Int J Pharm 202:121–124

    Article  CAS  PubMed  Google Scholar 

  • Jadoul A, Regnier V, Doucet J, Durand D, PrĂ©at V (1997) X-ray scattering analysis of human stratum corneum treated by high voltage pulses. Pharm Res 14:1275–1277

    Article  CAS  PubMed  Google Scholar 

  • Jadoul A, Lecouturier N, Mesens J, Caers W, PrĂ©at V (1998a) Transdermal alniditan delivery by skin electroporation. J Control Release 54:265–272

    Article  CAS  PubMed  Google Scholar 

  • Jadoul A, Tanojo H, PrĂ©at V, Bouwstra JA, Spies F, BoddĂ© HE (1998b) Electroperturbation of human stratum corneum fine structure by high voltage pulses: a freeze-fracture electron microscopy and differential thermal analysis study. J Investig Dermatol Symp Proc 3:153–158

    Article  CAS  PubMed  Google Scholar 

  • Jadoul A, Bouwstra J, Preat V (1999) Effects of iontophoresis and electroporation on the stratum corneum. Review of the biophysical studies. Adv Drug Deliv Rev 35:89–105

    Article  CAS  PubMed  Google Scholar 

  • Jordan ET, Collins M, Terefe J, Ugozzoli L, Rubio T (2008) Optimizing electroporation conditions in primary and other difficult-to-transfect cells. J Biomol Tech 19:328–334

    PubMed  PubMed Central  Google Scholar 

  • Kanduser M, Miklavcic D (2008) Electroporation in biological cell and tissue: an overview. In: Vorobiev E, Lebovka N (eds) Electrotechnologies for extraction from food plants and biomaterials. Springer, New York, pp 1–37

    Google Scholar 

  • Kang TH, Monie A, Wu LS, Pang X, Hung CF, Wu TC (2011) Enhancement of protein vaccine potency by in vivo electroporation mediated intramuscular injection. Vaccine 29:1082–1089

    Article  CAS  PubMed  Google Scholar 

  • Khavari PA (1997) Therapeutic gene delivery to the skin. Mol Med Today 3:533–538

    Article  CAS  PubMed  Google Scholar 

  • Kinosita K Jr, Tsong TY (1977a) Formation and resealing of pores of controlled sizes in human erythrocyte membrane. Nature 268:438–441

    Article  PubMed  Google Scholar 

  • Kinosita K Jr, Tsong TY (1977b) Voltage-induced pore formation and hemolysis of human erythrocytes. Biochim Biophys Acta 471:227–242

    Article  CAS  PubMed  Google Scholar 

  • Kotnik T, Bobanovic F, Miklavcic D (1997) Sensitivity of transmembrane voltage induced by applied electric fields–a theoretical analysis. Bioelectrochem Bioenerg 43:285–291

    Article  CAS  Google Scholar 

  • Kotnik T, Miklavcic D, Slivnik T (1998) Time course of transmembrane voltage induced by time-varying electric fields–a method for theoretical analysis and its application. Bioelectrochem Bioenerg 45:3–16

    Article  CAS  Google Scholar 

  • Lakshmanan S, Gupta GK, Avci P, Chandran R, Sadasivam M, Jorge AE et al (2014) Physical energy for drug delivery; poration, concentration and activation. Adv Drug Deliv Rev 71:98–114

    Article  CAS  PubMed  Google Scholar 

  • LeDuc S (1908) Electric ions and their use in medicine. Rebman, London

    Google Scholar 

  • Lee EW, Thai S, Kee ST (2010) Irreversible electroporation: a novel image-guided cancer therapy. Gut Liver 4(Suppl 1):S99–S104

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Bergan R (2001) Improved intracellular delivery of oligonucleotides by square wave electroporation. Antisense Nucleic Acid Drug Dev 11:7–14

    Article  CAS  PubMed  Google Scholar 

  • Lombry C, Dujardin N, PrĂ©at V (2000) Transdermal delivery of macromolecules using skin electroporation. Pharm Res 17:32–37

    Article  CAS  PubMed  Google Scholar 

  • Luckay A, Sidhu MK, Kjeken R, Megati S, Chong SY, Roopchand V et al (2007) Effect of plasmid DNA vaccine design and in vivo electroporation on the resulting vaccine-specific immune responses in rhesus macaques. J Virol 81:5257–5269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lurquin PF (1997) Gene transfer by electroporation. Mol Biotechnol 7:5–35

    Article  CAS  PubMed  Google Scholar 

  • Martin GT, Pliquett UF, Weaver JC (2002) Theoretical analysis of localized heating in human skin subjected to high voltage pulses. Bioelectrochemistry 57:55–64

    Article  CAS  PubMed  Google Scholar 

  • Maruyama H, Ataka K, Higuchi N, Sakamoto F, Gejyo F, Miyazaki J (2001) Skin-targeted gene transfer using in vivo electroporation. Gene Ther 8:1808–1812

    Article  CAS  PubMed  Google Scholar 

  • Matoltsy AG, Downes AM, Sweeney TM (1968) Studies of the epidermal water barrier. II. Investigation of the chemical nature of the water barrier. J Invest Dermatol 50:19–26

    Article  CAS  PubMed  Google Scholar 

  • Mazères S, Sel D, Golzio M, Pucihar G, Tamzali Y, Miklavcic D et al (2009) Non invasive contact electrodes for in vivo localized cutaneous electropulsation and associated drug and nucleic acid delivery. J Control Release 134:125–131

    Article  PubMed  CAS  Google Scholar 

  • McConville J (2016) Special focus issue: transdermal, topical and folicular drug delivery systems. Drug Dev Ind Pharm 42(6):845

    Article  CAS  PubMed  Google Scholar 

  • McCoy JR, Mendoza JM, Spik KW, Badger C, Gomez AF, Schmaljohn CS et al (2014) A multi-head intradermal electroporation device allows for tailored and increased dose DNA vaccine delivery to the skin. Hum Vaccin Immunother 10(10):3039–3047

    Article  PubMed  PubMed Central  Google Scholar 

  • Medi BM, Singh J (2003) Electronically facilitated transdermal delivery of human parathyroid hormone (1–34). Int J Pharm 263:25–33

    Article  CAS  PubMed  Google Scholar 

  • Medi BM, Hoselton S, Marepalli R, Singh J (2005) Skin targeted DNA vaccine delivery using electroporation in rabbits. I: efficacy. Int J Pharm 294:53–63

    Article  CAS  PubMed  Google Scholar 

  • Medi BM, Singh J (2006) Skin targeted DNA vaccine delivery using electroporation in rabbits II. Safety. Int J Pharm 308:61–68

    Article  CAS  PubMed  Google Scholar 

  • Mir LM, Orlowski S (1999) Mechanisms of electrochemotherapy. Adv Drug Deliv Rev 35:107–118

    Article  CAS  PubMed  Google Scholar 

  • Murthy SN, Sen A, Zhao YL, Hui SW (2003) pH influences the postpulse permeability state of skin after electroporation. J Control Release 93:49–57

    Article  CAS  PubMed  Google Scholar 

  • Murthy SN, Sen A, Zhao YL, Hui SW (2004) Temperature influences the postelectroporation permeability state of the skin. J Pharm Sci 93:908–915

    Article  CAS  PubMed  Google Scholar 

  • Neumann E, Rosenheck K (1972) Permeability changes induced by electric impulses in vesicular membranes. J Membr Biol 10:279–290

    Article  CAS  PubMed  Google Scholar 

  • Neumann E, Kakorin S, Toensing K (2000) Principles of membrane electroporation and transport of macromolecules. In: Jaroszeski MJ, Heller R, Gilbert R (eds) Electrochemotherapy, electrogenetherapy and transdermal drug delivery. Humana Press, Totowa, pp 1–35

    Google Scholar 

  • Oh SY, Leung L, Bommannan D, Guy RH, Potts RO (1993) Effect of current, ionic strength and temperature on the electrical properties of skin. J Control Release 27:115–125

    Article  CAS  Google Scholar 

  • Peck KD, Ghanem AH, Higuchi WI (1995) The effect of temperature upon the permeation of polar and ionic solutes through human epidermal membrane. J Pharm Sci 84:975–982

    Article  CAS  PubMed  Google Scholar 

  • Pedron-Mazoyer S, Plouet J, Hellaudais L, Teissie J, Golzio M (2007) New anti angiogenesis developments through electroimmunization: optimization by in vivo optical imaging of intradermal electro gene transfer. Biochim Biophys Acta 1770:137–142

    Article  CAS  PubMed  Google Scholar 

  • Pliquett U, Langer R, Weaver JC (1995) Changes in the passive electrical properties of human stratum corneum due to electroporation. Biochim Biophys Acta 1239:111–121

    Article  CAS  PubMed  Google Scholar 

  • Pliquett U (1999) Mechanistic studies of molecular transdermal transport due to skin electroporation. Adv Drug Deliv Rev 35:41–60

    Article  CAS  PubMed  Google Scholar 

  • Pliquett UF, Martin GT, Weaver JC (2002) Kinetics of the temperature rise within human stratum corneum during electroporation and pulsed high-voltage iontophoresis. Bioelectrochemistry 57:65–72

    Article  CAS  PubMed  Google Scholar 

  • Pliquett U, Elez R, Piiper A, Neumann E (2004) Electroporation of subcutaneous mouse tumors by rectangular and trapezium high voltage pulses. Bioelectrochemistry 62:83–93

    Article  CAS  PubMed  Google Scholar 

  • Pliquett U, Weaver JC (2007) Feasibility of an electrode-reservoir device for transdermal drug delivery by noninvasive skin electroporation. IEEE Trans Biomed Eng 54:536–538

    Article  PubMed  Google Scholar 

  • Potts RO (1993) Transdermal peptide delivery using electroporation. In: Proceedings of the third TDS technology symposium: polymers and peptides in transdermal delivery. Nichon Toshi Center, Tokyo, pp 47–67

    Google Scholar 

  • Prausnitz MR, Bose VG, Langer R, Weaver JC (1993a) Electroporation of mammalian skin: a mechanism to enhance transdermal drug delivery. Proc Natl Acad Sci U S A 90:10504–10508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prausnitz MR, Seddick DS, Kon AA, Bose VG, Frankenburg S, Klaus SN et al (1993b) Methods for in vivo tissue electroporation using surface electrodes. Drug Deliv 1:125–131

    Article  CAS  Google Scholar 

  • Prausnitz MR, Edelman ER, Gimm JA, Langer R, Weaver JC (1995) Transdermal delivery of heparin by skin electroporation. Biotechnol (NY) 13:1205–1209

    CAS  Google Scholar 

  • Prausnitz MR (1996) The effects of electric current applied to skin: a review for transdermal drug delivery. Adv Drug Deliv Rev 18:395–425

    Article  CAS  Google Scholar 

  • Prausnitz MR, Mitragotri S, Langer R (2004) Current status and future potential of transdermal drug delivery. Nat Rev Drug Discov 3:115–124

    Article  CAS  PubMed  Google Scholar 

  • Regnier V, Le Doan T, PrĂ©at V (1998) Parameters controlling topical delivery of oligonucleotides by electroporation. J Drug Target 5:275–289

    Article  CAS  PubMed  Google Scholar 

  • Regnier V, De Morre N, Jadoul A, Preat V (1999) Mechanisms of a phosphorothioate oligonucleotide delivery by skin electroporation. Int J Pharm 184:147–156

    Article  CAS  PubMed  Google Scholar 

  • Riviere JE, Monteiro-Riviere NA, Rogers RA, Bommannan D, Tamada JA, Potts RO (1995) Pulsatile transdermal delivery of LHRH using electroporation: drug delivery and skin toxicology. J Control Release 36:229–233

    Article  CAS  Google Scholar 

  • Riviere JE, Heit MC (1997) Electrically-assisted transdermal drug delivery. Pharm Res 14:687–697

    Article  CAS  PubMed  Google Scholar 

  • Roberts MS, Walters KA (1998) The relationship between structure and barrier function of skin. In: Roberts MS, Walters KA (eds) Dermal absorption and toxicity assessment. Marcel Dekker, New York, pp 1–42

    Google Scholar 

  • Roos AK, Moreno S, Leder C, Pavlenko M, King A, Pisa P (2006) Enhancement of cellular immune response to a prostate cancer DNA vaccine by intradermal electroporation. Mol Ther 13:320–327

    Article  CAS  PubMed  Google Scholar 

  • Roos AK, Eriksson F, Timmons JA, Gerhardt J, Nyman U, Gudmundsdotter L et al (2009) Skin electroporation: effects on transgene expression. DNA persistence and local tissue environment. PLoS One 4(9):e7226

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Roy SD, Gutierrez M, Flynn GL, Cleary GW (1996) Controlled transdermal delivery of fentanyl: characterizations of pressure-sensitive adhesives for matrix patch design. J Pharm Sci 85:491–495

    Article  CAS  PubMed  Google Scholar 

  • Sammeta SM, Vaka SR, Murthy SN (2009) Transdermal drug delivery enhanced by low voltage electropulsation (LVE). Pharm Dev Technol 14:159–164

    Article  CAS  PubMed  Google Scholar 

  • Sammeta SM, Vaka SR, Murthy SN (2010) Transcutaneous electroporation mediated delivery of doxepin– HPCD complex: A sustained release approach for treatment of postherpetic neuralgia. J Control Release 142:361–367

    Article  CAS  PubMed  Google Scholar 

  • Sen A, Daly ME, Hui SW (2002a) Transdermal insulin delivery using lipid enhanced electroporation. Biochim Biophys Acta 1564:5–8

    Article  CAS  PubMed  Google Scholar 

  • Sen A, Zhao YL, Hui SW (2002b) Saturated anionic phospholipids enhance transdermal transport by electroporation. Biophys J 83:2064–2073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma A, Kara M, Smith FR, Krishnan TR (2000) Transdermal drug delivery using electroporation. I. Factors influencing in vitro delivery of terazosin hydrochloride in hairless rats. J Pharm Sci 89:528–535

    Article  CAS  PubMed  Google Scholar 

  • Silva CL, Nunes SC, EusĂ©bio ME, Sousa JJ, Pais AA (2006) Study of human stratum corneum and extracted lipids by thermomicroscopy and DSC. Chem Phys Lipids 140:36–47

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Singh J (1993) Transdermal drug delivery by passive diffusion and iontophoresis: a review. Med Res Rev 13:569–621

    Article  CAS  PubMed  Google Scholar 

  • Singh J, Maibach HI (2002) Transdermal delivery and cutaneous reactions. In: Walters KA (ed) Dermatological and transdermal formulations. Marcel Dekker, New York, pp 529–547

    Google Scholar 

  • Spirito F, Meneguzzi G, Danos O, Mezzina M (2001) Cutaneous gene transfer and therapy: the present and the future. J Gene Med 3:21–31

    Article  CAS  PubMed  Google Scholar 

  • Sugino M, Todo H, Sugibayashi K (2009) Skin permeation and transdermal delivery systems of drugs: history to overcome barrier function in the stratum corneum. Yakugaku Zasshi 129(12):1453–1458

    Article  CAS  PubMed  Google Scholar 

  • Sung KC, Fang JY, Wang JJ, Hu OY (2003) Transdermal delivery of nalbuphine and its prodrugs by electroporation. Eur J Pharm Sci 18:63–70

    Article  CAS  PubMed  Google Scholar 

  • Takahashi M, Furukawa T, Saitoh H, Aoki A, Koike T, Moriyama Y et al (1991) Gene transfer into human leukemia cell lines by electroporation: experience with exponentially decaying and square wave pulse. Leuk Res 15:507–513

    Article  CAS  PubMed  Google Scholar 

  • Teissie J, Rols MP (1993) An experimental evaluation of the critical potential difference inducing cell membrane electropermeabilization. Biophys J 65:409–413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tekle E, Astumian RD, Chock PB (1994) Selective and asymmetric molecular transport across electroporated cell membranes. Proc Natl Acad Sci U S A 91:11512–11516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tien HT, Ottova A (2003) The bilayer lipid membrane (BLM) under electrical fields. IEEE Trans Dielectr Electr Insul 10:717–727

    Article  CAS  Google Scholar 

  • Tobin DJ (2006) Biochemistry of human skin – our brain on the outside. Chem Soc Rev 35:52–67

    Article  CAS  PubMed  Google Scholar 

  • Tokudome Y, Sugibayashi K (2003) The synergic effects of various electrolytes and electroporation on the in vitro skin permeation of calcein. J Control Release 92:93–101

    Article  CAS  PubMed  Google Scholar 

  • Tokudome Y, Sugibayashi K (2004) Mechanism of the synergic effects of calcium chloride and electroporation on the in vitro enhanced skin permeation of drugs. J Control Release 95:267–274

    Article  CAS  PubMed  Google Scholar 

  • Tokumoto S, Higo N, Sugibayashi K (2006) Effect of electroporation and pH on the iontophoretic transdermal delivery of human insulin. Int J Pharm 326:13–19

    Article  CAS  PubMed  Google Scholar 

  • Tyle P (1986) Iontophoretic devices for drug delivery. Pharm Res 3:318–326

    Article  CAS  PubMed  Google Scholar 

  • Vanbever R, Lecouturier N, PrĂ©at V (1994) Transdermal delivery of metoprolol by electroporation. Pharm Res 11:1657–1662

    Article  CAS  PubMed  Google Scholar 

  • Vanbever R, LeBoulengĂ© E, PrĂ©at V (1996) Transdermal delivery of fentanyl by electroporation I. Influence of electrical factors. Pharm Res 13:559–565

    Article  CAS  PubMed  Google Scholar 

  • Vanbever R, Prausnitz MR, PrĂ©at V (1997) Macromolecules as novel transdermal transport enhancers for skin electroporation. Pharm Res 14:638–644

    Article  CAS  PubMed  Google Scholar 

  • Vanbever R, Fouchard D, Jadoul A, De Morre N, PrĂ©at V, Marty JP (1998a) In vivo noinvasive evaluation of hairless rat skin after high-voltage pulse exposure. Skin Pharmacol Appl Skin Physiol 11:23–34

    Article  CAS  PubMed  Google Scholar 

  • Vanbever R, Leroy MA, PrĂ©at V (1998b) Transdermal permeation of neutral molecules by skin electroporation. J Control Release 54:243–250

    Article  CAS  PubMed  Google Scholar 

  • Vaughan TE, Weaver JC (2000) Mechanism of transdermal drug delivery by electroporation. In: Jaroszeski MJ, Heller R, Gilbert R (eds) Electrochemotherapy, electrogenetherapy and transdermal drug delivery. Humana Press, Totowa, pp 187–211

    Chapter  Google Scholar 

  • Wang S, Kara M, Krishnan TR (1998) Transdermal delivery of cyclosporin-A using electroporation. J Control Release 50:61–70

    Article  CAS  PubMed  Google Scholar 

  • Wang RJ, Huang YB, Wu PC, Fang JY, Tsai YH (2007) The effects of iontophoresis and electroporation on transdermal delivery of indomethacin evaluated in vitro and in vivo. J Food Drug Anal 15:126–132

    CAS  Google Scholar 

  • Weaver JC (1995) Electroporation theory. Concepts and mechanisms. Methods Mol Biol 47:1–26

    CAS  PubMed  Google Scholar 

  • Weaver JC, Vanbever R, Vaughan TE, Prausnitz MR (1997) Heparin alters transdermal transport associated with electroporation. Biochem Biophys Res Commun 234:637–640

    Article  CAS  PubMed  Google Scholar 

  • Weaver JC, Vaughan TE, Chizmadzhev Y (1998) Theory of skin electroporation: implications of straight-through aqueous pathway segments that connect adjacent corneocytes. J Investig Dermatol Symp Proc 3:143–147

    Article  CAS  PubMed  Google Scholar 

  • Weaver JC, Vaughan TE, Chizmadzhev Y (1999) Theory of electrical creation of aqueous pathways across skin transport barriers. Adv Drug Deliv Rev 35:21–39

    Article  CAS  PubMed  Google Scholar 

  • Wells JM, Li LH, Sen A, Jahreis GP, Hui SW (2000) Electroporation enhanced gene delivery in mammary tumors. Gene Ther 7:541–547

    Article  CAS  PubMed  Google Scholar 

  • Wong TW, Chen CH, Huang CC, Lin CD, Hui SW (2006) Painless electroporation with a new needle-free microelectrode array to enhance transdermal drug delivery. J Control Release 110:557–565

    Article  CAS  PubMed  Google Scholar 

  • Yarmush ML, Golberg A, Serša G, Kotnik T, MiklavÄŤiÄŤ D (2014) Electroporation-based technologies for medicine: principles, applications, and challenges. Annu Rev Biomed Eng 16:295–320

    Article  CAS  PubMed  Google Scholar 

  • Young JL, Dean DA (2015) Electroporation-mediated gene delivery. Adv Genet 89:49–88

    PubMed  Google Scholar 

  • Zhang L, Nolan E, Kreitschitz S, Rabussay DP (2002) Enhanced delivery of naked DNA to the skin by non-invasive in vivo electroporation. Biochim Biophys Acta 1572:1–9

    Article  CAS  PubMed  Google Scholar 

  • Zorec B, Becker S, Reberšek M, MiklavÄŤiÄŤ D, Pavšelj N (2013) Skin electroporation for transdermal drug delivery: the influence of the order of different square wave electric pulses. Int J Pharm 457(1):214–223

    Article  CAS  PubMed  Google Scholar 

  • Zorec B, Jelenc J, MiklavÄŤiÄŤ D, Pavšelj N (2015) Ultrasound and electric pulses for transdermal drug delivery enhancement: ex vivo assessment of methods with in vivo oriented experimental protocols. Int J Pharm 490(1–2):65–73

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge the financial support from Fraternal Order of Eagles and NSF EPSCoR (Grant No. EPS-0814442) doctoral fellowship to Buddhadev Layek.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jagdish Singh PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Medi, B.M., Layek, B., Singh, J. (2017). Electroporation for Dermal and Transdermal Drug Delivery. In: Dragicevic, N., I. Maibach, H. (eds) Percutaneous Penetration Enhancers Physical Methods in Penetration Enhancement. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53273-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-53273-7_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-53271-3

  • Online ISBN: 978-3-662-53273-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics