Skip to main content

Schmerz, Zyklus Belastung – Adaptation und Gesundheitstraining

  • Chapter
  • First Online:
Sensomotorik und Schmerz

Zusammenfassung

Der Zyklus Belastung – Beanspruchung – Ermüdung – Erholung – Adaptation ist eine biologische Wirkungskette. Aktivität generiert die anabole und Inaktivität die katabole Richtung. Bewegung und Schmerz interagieren entsprechend. Belastung ist die psychophysische Anforderung. Beanspruchung ist das biologische Äquivalent. Die Beanspruchung bis zur Ermüdung stimuliert die anabolen Systeme als Schlüssel aller Adaptationen in der Erholung.

Das Gesundheitstraining soll die Funktionen und Leistungsfähigkeiten der ADL-Anforderungen inklusive Reserven sichern. Es ist ein vielseitiges, nicht wettkampforientiertes Training aller Körperregionen mit allen Beanspruchungsformen. Der Energieverbrauch sollte optimal bei 2000–2500 kcal/Wo. liegen.

Das Gesundheitstraining ist auch das Therapietraining mit allen Komponenten und Zielstellungen. Die erreichbaren „Strukturstabilisationen“ und Funktionsverbesserungen sind die Äquivalente des verbesserten Gesundheitszustandes und der gelinderten oder sogar beseitigten Schmerzsituation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  • Adams GR (1998) The role of IGF-I in the regulation of skeletal muscle adaptation. In: Holloszy JR (Hrsg) Exercise and sport science reviews, Bd 26. Williams & Wilkins, Baltimore, S 31–60

    Google Scholar 

  • Adams GR, McCue SA (1998) Localized infusion of IGF-I results in skeletal muscle hypertrophy in rats. J Appl Physiol 84:1716–1722

    Article  CAS  PubMed  Google Scholar 

  • Arraiz GA, Wigle DT, Mao Y (1992) Risk assessment of physical activity and physical fitness in the Canada Health Survey mortality follow-up study. J Clin Epidemiol 45(4):419–428

    Article  CAS  PubMed  Google Scholar 

  • Baldwin KM, Haddad F (2002) Skeletal muscle plasticity: cellular and molecular responses tp altered physical activity paradigms. Am J Phys Med Rehabil 81:S40–S51

    Article  PubMed  Google Scholar 

  • Bengtson CP, Dick O, Bading H (2008) A quantitative method to assess extrasynaptic NMDA receptor function in the protective effect of synaptic activity against neurotoxicity. BMC Neurosci 24:9–11

    Google Scholar 

  • Bickel CS, Slade JM, Haddad F, Adams GR, Dudley GA (2003) Acute molecular responses of skeletal muscle to resistance exercise in able-bodied and spinal cord-injured subjects. J Appl Physiol 94:2255–2262

    Article  CAS  PubMed  Google Scholar 

  • Binder DK, Scharfman HE (2004) Brain-derived neurotrophic factor. Growth Factors 22:123–131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blair SN, Kohl HW 3rd, Barlow CE, Paffenbarger RS Jr, Gibbons LW, Macera CA (1995) Changes in physical fitness and all-cause mortality. A prospective study of healthy and unhealthy men. JAMA 273(14):1093–1098

    Article  CAS  PubMed  Google Scholar 

  • Bondy CA, Lee WH (1993) Patterns of insulin-like growth factor and IGF receptor gene expression in the brain. Functional implications. Ann NY Acad Sci 692:33–43

    Article  CAS  PubMed  Google Scholar 

  • Carro E, Spuch C, Trejo JL, Antequera D, Torres-Aleman I (2005) Choroid plexus megalin is involved in neuroprotection by serum insulin-like growth factor I. J Neurosci 25:10884–10893

    Google Scholar 

  • Carro E, Trejo JL, Gomez-Isla T, LeRoith D, Torres-Aleman I (2000) Serum insulin-like growth factor I regulates brain amyloid-beta levels. Nat Med 8:1390–1397

    Article  Google Scholar 

  • Chang HC, Yang YR, Wang PS, Kuo CH, Wang RY (2011) Insulin-like growth factor I signaling for brain recovery and exercise ability in brain ischemic rats. Med Sci Sports Exerc 43(12):2274–2280. https://doi.org/10.1249/mss.0b013e318223b5d9

    Article  CAS  PubMed  Google Scholar 

  • Coelho FM, Pereira DS, Lustosa LP, Silva JP, Dias JM, Dias RC, Queiroz BZ, Teixeira AL, Teixeira MM, Pereira LS (2012) Physical therapy intervention (PTI) increases plasma brain-derived neurotrophic factor (BDNF) levels in non-frail and pre-frail elderly women. Arch Gerontol Geriatr 54(3):415–420. https://doi.org/10.1016/j.archger.2011.05.014 (Epub 17 Jun 2011)

    Article  CAS  PubMed  Google Scholar 

  • Deutsche Rentenversicherung Bund (Hrsg) (2011) Sozialmedizinische Begutachtung für die gesetzliche Rentenversicherung. Springer, Berlin. https://doi.org/10.1007/978-3-642-10251-6

  • Dunn SE (2000) Insulin-like growth factor I stimulates angiogenesis and production of vascular endothelial growth factor. Growth Horm IGF Res 10(Suppl A):S4–S42

    Google Scholar 

  • Fernandez AM, Gonzales de la Vega AG, Planas B, Torres-Aleman I (1999) Neuroprotective actions of peripherally administered insulin-like growth factor I in the injured olivo-cerebellar pathway. Eur J Neurosci 11:2019–2030

    Article  CAS  PubMed  Google Scholar 

  • Frank F (2003) Das metabolische Syndrom, Arteriosklerose und degenerative Erkrankung des Stütz- und Bewegungsapparates. Arbeitsmed Sozialmed Umweltmed 38:31–37

    Google Scholar 

  • Fröhner G (2008) Belastbarkeit. In: Schnabel G, Harre D, Krug J (Hrsg) Trainingslehre –Trainingswissenschaft. Leistung – Training – Wettkampf. Meyer & Meyer, Aachen, S 243–269

    Google Scholar 

  • García-Mesa Y, López-Ramos JC, Giménez-Llort L, Revilla S, Guerra R, Gruart A, Laferla FM, Cristòfol R, Delgado-García JM, Sanfeliu C (2011) Physical exercise protects against Alzheimer’s disease in 3xTg-AD mice. J Alzheimers Dis 24:421–454

    Article  PubMed  Google Scholar 

  • Gielen S, Schuler G, Hambrecht R (2001) Exercise training in coronary artery disease and coronary vasomotion. Circulation 103(1):E1–E6

    Article  CAS  PubMed  Google Scholar 

  • Goldspink G (2003) Gene expression in muscle in response to exercise. J Muscle Res Cell Motil 24:121–126

    Article  CAS  PubMed  Google Scholar 

  • Haddad F, Adams GR (2002) Selected contribution: acute cellular and molecular responses to resistance exercise. J Appl Physiol 93:394–403

    Article  CAS  PubMed  Google Scholar 

  • Haddad F, Adams GR (2006) Aging-sensitive cellular and molecular mechanisms associated with skeletal muscle hypertrophy. J Appl Physiol 100:1188–1203

    Google Scholar 

  • Hameed M, Orrell RW, Cobbold M, Goldspink G, Harridge SD (2003) Expression of IGF-I splice variants in young and old human skeletal muscle after high resistance exercise. J Physiol 547:247–254

    Article  CAS  PubMed  Google Scholar 

  • Harre D (1986) Trainingslehre – Einführung in die Theorie und Methodik des sportlichen Trainings. Sportverlag, Berlin

    Google Scholar 

  • Heinemeier KM, Olesen JL, Schjerling P, Haddad F, Langberg H, Baldwin KM, Kjaer M (2007) Short-term strength training and the expression of myostatin and IGF-I isoforms in rat muscle and tendon: differential effects of specific contraction types. J Appl Physiol 102:573–581

    Article  CAS  PubMed  Google Scholar 

  • Hill M, Goldspink G (2003) Expression and splicing of the insulin-like growth factor gene in rodent muscle is associated with muscle satellite (stem) cell activation following local tissue damage. J Physiol 549:409–418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ide K, Secher NH (2000) Cerebral blood flow and metabolism during exercise. Prog Neurobiol 61:397–414

    Article  CAS  PubMed  Google Scholar 

  • Jones SW, Hill RJ, Krasney PA, O’conner B, Peirce N, Greenhaff PL (2004) Disuse atrophy and exercise rehabilitation in humans profoundly affects the expression of genes associated with the regulation of skeletal muscle mass. FASEB J 18:1025–1027

    Article  CAS  PubMed  Google Scholar 

  • Kanazawa I (2015) Osteocalcin as a hormone regulating glucose metabolism. World J Diabetes 6(18):1345–1354. https://doi.org/10.4239/wjd.v6.i18.1345

    Article  PubMed  PubMed Central  Google Scholar 

  • Karsenty G (2012) The mutual dependence between bone and gonads. J Endocrinol 213(2):107–114. https://doi.org/10.1530/joe-11-0452 (Epub 9 Mar 2012)

    Article  CAS  PubMed  Google Scholar 

  • Kinni H, Guo M, Ding JY, Konakondla S, Dornbos D 3rd, Tran R, Guthikonda M, Ding Y (2011) Cerebral metabolism after forced or voluntary physical exercise. Brain Res 4(1388):48–55 (Epub 31 Mar 2011)

    Article  CAS  Google Scholar 

  • Laube W (2009a) Diagnostik der Leistungen des Sensomotorischen Systems: Koordination – Ausdauer – Kraft. In: Laube W (Hrsg) Sensomotorisches System. Thieme, Stuttgart, S 228–274

    Google Scholar 

  • Laube W (2009b) Physiologie des Zyklus Belastung – Beanspruchung – Ermüdung – Erholung – Adapatation. In: Laube W (Hrsg) Sensomotorisches System. Thieme, Stuttgart, S 499–555

    Google Scholar 

  • Laube W (2009c) Training der Sensomotorischen Hauptbeanspruchungsformen Koordination, Ausdauer und Kraft. In: Laube W (Hrsg) Sensomotorisches System. Thieme, Stuttgart, S 556–600 und 617–637

    Google Scholar 

  • Laube W (2011) Trainingslehre. In: Hütter-Becker A, Dölken M (Hrsg) Biomechanik, Bewegungslehre, Leistungsphysiologie, Trainingslehre. Thieme, Stuttgart, S 309–332

    Google Scholar 

  • Lee IM, Hsieh CC, Paffenbarger RS Jr (1995) Exercise intensity and longevity in men. The Harvard Alumni Health Study. JAMA 273(15):1179–1184

    Article  CAS  PubMed  Google Scholar 

  • Lee IM, Paffenbarger RS Jr (2000) Associations of light, moderate, and vigorous intensity physical activity with longevity. The Harvard Alumni Health Study. Am J Epidemiol 151(3):293–299

    Article  CAS  PubMed  Google Scholar 

  • Leifke E, Gorenoi V, Wichers C, Von Zur Mühlen A, Von Büren E, Brabant G (2000) Age-related changes of serum sex hormones, insulin-like growth factor-1 and sex-hormone binding globulin levels in men: cross-sectional data from a healthy male cohort. Clin Endocrinol (Oxf) 53(6):689–695

    Google Scholar 

  • Lopez-Lopez C, LeRoith D, Torres-Aleman I (2004) Insulin-like growth factor I is required for vessel remodeling in the adult brain. Proc Natl Acad Sci USA 101:9833–9838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsakas A, Friedel A, Hertrampf T, Diel P (2005) Short-term endurance training results in a muscle-specific decrease of myostatin mRNA content in the rat. Acta Physiol Scand 183:299–307

    Article  CAS  PubMed  Google Scholar 

  • Matsakas A, Diel P (2005) The growth factor myostatin, a key regulator in skeletal muscle growth and homeostasis. Int J Sports Med 26:83–89

    Google Scholar 

  • Oury F, Sumara G, Sumara O, Ferron M, Chang H, Smith CE, Hermo L, Suarez S, Roth BL, Ducy P, Karsenty G (2011) Endocrine regulation of male fertility by the skeleton. Cell 144(5):796–809. https://doi.org/10.1016/j.cell.2011.02.004 (Epub 17 Feb 2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oury F, Ferron M, Huizhen W, Confavreux C, Xu L, Lacombe J, Srinivas P, Chamouni A, Lugani F, Lejeune H, Kumar TR, Plotton I, Karsenty G (2013) Osteocalcin regulates murine and human fertility through a pancreas-bone-testis axis. J Clin Investig 123(6):2421–2433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paffenbarger RS Jr, Hyde RT, Wing AL, Hsieh CC (1986) Physical activity, all-cause mortality, and longevity of college alumni. N Engl J Med 314(10):605–613

    Article  PubMed  Google Scholar 

  • Paffenbarger RS Jr, Lee IM (1997) Intensity of physical activity related to incidence of hypertension and all-cause mortality: an epidemiological view. Blood Press Monit 2(3):115–123

    PubMed  Google Scholar 

  • Pedersen BK (2009) The Diseasome of Physical Inactivity and the role of myokines in muscle-fat cross talk. J Physiol 587:5559–5568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peyron R, Garcìa-Larrea L, Grègoire M-C, Costes N, Convers P, Lavenne F, Mauguière F, Michel D, Laurent B (1999) Haemodynamic brain responses to acute pain in humans. Brain 122:1765–1779

    Article  PubMed  Google Scholar 

  • Poehlman ET, Copeland KC (1990) Influence of physical activity on insulin-like growth factor-1 in healthy younger and older men. J Clin Endocrinol Metab 71:1468–1473

    Article  CAS  PubMed  Google Scholar 

  • Radaka Z, Kanekob T, Taharab S, Nakamotoc H, Pucsokd J, Sasvarie M, Nyakase C, Gotoc S (2001) Regular exercise improves cognitive function and decreases oxidative damage in rat brain. Neurochem Int 38:17–23

    Google Scholar 

  • Raue U, Slivka D, Jemiolo B, Hollon C, Trappe SW (2006) Myogenic gene expression at rest and following a bout of resistance exercise in young (18–30 Yr) and old (80–89 Yr) women. J Appl Physiol 101:53–59

    Article  CAS  PubMed  Google Scholar 

  • Sabaté E (2003) Adherence to long term therapies project. Global Adherence Interdisciplinary Network & World Health Organization. Dept. of Management of Noncommunicable Diseases. Adherence to long-term therapies: evidence for action. World Health Organization, Geneva

    Google Scholar 

  • Sattelmair J, Pertman J, Ding EL, Kohl HW 3rd, Haskell W, Lee IM (2011) Dose response between physical activity and risk of coronary heart disease: a meta-analysis. Circulation 124(7):789–795. https://doi.org/10.1161/circulationaha.110.010710 (Epub 1 Aug 2011)

    Article  PubMed  PubMed Central  Google Scholar 

  • Schnabel G, Harre H-D, Krug J (Hrsg) (2008) Trainingslehre – Trainingswissenschaft. Leistung – Training – Wettkampf. Meyer & Meyer, Aachen

    Google Scholar 

  • Slattery ML, Jacobs DR Jr (1988) Physical fitness and cardiovascular disease mortality. The US Railroad Study. Am J Epidemiol 127(3):571–580

    Article  CAS  PubMed  Google Scholar 

  • Slattery ML, Jacobs DR Jr, Nichaman MZ (1989) Leisure time physical activity and coronary heart disease death. The US Railroad Study. Circulation 79(2):304–311

    Article  CAS  PubMed  Google Scholar 

  • Sonntag WE, Lynch CD, Cooney PT, Hutchins PM (1997) Decreases in cerebral microvasculature with age are associated with the decline in growth hormone and insulin-like growth factor-I. Endocrinology 138:3515–3520

    Google Scholar 

  • Torres-Aleman I (2001) Serum neurotrophic factors and neuroprotective surveillance: focus on IGF-I. Mol Neurobiol 21:153–160

    Article  Google Scholar 

  • Trejo JL, Carro E, Torres-Aleman I (2001) Circulating insulin like growth factor I mediates exercise-induced increases in the number of new neurons in the adult hippocampus. J Neurosci 21:1628–1634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Praag H, Kempermann G, Gage FH (1999a) Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat Neurosci 2:266–270

    Google Scholar 

  • van Praag H, Christie BR, Sejnowski TJ, Gage FH (1999b) Running enhances neurogenesis, learning, and long-term potentiation in mice. Proc Natl Acad Sci USA 96:13427–13431

    Article  PubMed  PubMed Central  Google Scholar 

  • Weineck J (2007) Optimales Training – Leistungsphysiologische Trainingslehre unter besonderer Berücksichtigung des Kinder- und Jugendtrainings. Spitta-Verlag, Balingen

    Google Scholar 

  • Weiss EP, Villareal DT, Ehsani AA, Fontana L, Holloszy JO (2012) Dehydroepiandrosterone replacement therapy in older adults improves indices of arterial stiffness. Aging Cell 11(5):876–84. https://doi.org/10.1111/j.1474-9726.2012.00852.x (Epub 1 Aug 2012)

  • World Health Organization (2011) Global recommendations on physical activity for health. 1.Exercise. 2. Life style. 3. Health promotion. 4. Chronic disease – prevention and control. 5. National health programs. I. WHO World Health Organization. WHO Press. Genf, Schweiz

    Google Scholar 

  • Zhang SJ, Buchthal B, Lau D, Hayer S, Dick O, Schwaninger M, Veltkamp R, Zou M, Weiss U, Bading H (2011) A signaling cascade of nuclear calcium-CREB-ATF3 activated by synaptic NMDA receptors defines a gene repression module that protects against extrasynaptic NMDA receptor-induced neuronal cell death and ischemic brain damage. J Neurosci 31:4978–4990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Laube .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Laube, W. (2020). Schmerz, Zyklus Belastung – Adaptation und Gesundheitstraining. In: Sensomotorik und Schmerz. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-60512-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-60512-7_15

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-60511-0

  • Online ISBN: 978-3-662-60512-7

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics