Skip to main content

Classical Signaling Pathways

  • Chapter
  • First Online:
Neuroprotection and Neuroregeneration for Retinal Diseases
  • 828 Accesses

Abstract

In this chapter, I introduce a number of important aspects of intracellular signaling pathways related to the protection and degeneration in cells, especially neurons, under physiological and pathological conditions. Extracellular stimuli activate intracellular signaling pathways by receptor- and/or channel-mediated manner or simple diffusion across the plasma membrane. A variety of intracellular signaling molecules responses to each extracellular stimulus and reflects the coordinated actions of the cells. While there are many signaling pathways contributing to cellular functions and survival, I will focus on the MAPK/ERK and the Akt pathways in this chapter. The roles of these pathways have been extensively studied in neurons and other cells. However, the contribution and/or the cross talk of these intracellular signaling pathways in the degeneration and protection of the retina remains unclear because each signaling molecule in these pathways has diverse roles under physiological and pathological conditions. I would be happy if this chapter would help the readers to understand the complex and the ingenious regulating mechanisms of the intracellular signaling pathways for the degeneration and protection in neurons of the retina.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ring AY, Sours KM, Lee T, Ahn NG (2011) Distinct patterns of activation-dependent changes in conformational mobility between ERK1 and ERK2. Int J Mass Spectrom 302(1–3):101–109. doi:10.1016/j.ijms.2010.08.020

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Steelman LS, Chappell WH, Abrams SL, Kempf RC, Long J, Laidler P, Mijatovic S, Maksimovic-Ivanic D, Stivala F, Mazzarino MC, Donia M, Fagone P, Malaponte G, Nicoletti F, Libra M, Milella M, Tafuri A, Bonati A, Basecke J, Cocco L, Evangelisti C, Martelli AM, Montalto G, Cervello M, McCubrey JA (2011) Roles of the Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR pathways in controlling growth and sensitivity to therapy-implications for cancer and aging. Aging 3(3):192–222

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Yoshii A, Constantine-Paton M (2010) Postsynaptic BDNF-TrkB signaling in synapse maturation, plasticity, and disease. Dev Neurobiol 70(5):304–322. doi:10.1002/dneu.20765

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Nakazawa T, Tamai M, Mori N (2002) Brain-derived neurotrophic factor prevents axotomized retinal ganglion cell death through MAPK and PI3K signaling pathways. Invest Ophthalmol Vis Sci 43(10):3319–3326

    PubMed  Google Scholar 

  5. Ghaffariyeh A, Honarpisheh N, Shakiba Y, Puyan S, Chamacham T, Zahedi F, Zarrineghbal M (2009) Brain-derived neurotrophic factor in patients with normal-tension glaucoma. Optometry 80(11):635–638. doi:10.1016/j.optm.2008.09.014

    Article  PubMed  Google Scholar 

  6. Jang SW, Liu X, Yepes M, Shepherd KR, Miller GW, Liu Y, Wilson WD, Xiao G, Blanchi B, Sun YE, Ye K (2010) A selective TrkB agonist with potent neurotrophic activities by 7,8-dihydroxyflavone. Proc Natl Acad Sci U S A 107(6):2687–2692. doi:10.1073/pnas.0913572107

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Gupta VK, You Y, Li JC, Klistorner A, Graham SL (2013) Protective effects of 7,8-dihydroxyflavone on retinal ganglion and RGC-5 cells against excitotoxic and oxidative stress. J Mol Neurosci 49(1):96–104. doi:10.1007/s12031-012-9899-x

    Article  CAS  PubMed  Google Scholar 

  8. Zhou Y, Pernet V, Hauswirth WW, Di Polo A (2005) Activation of the extracellular signal-regulated kinase 1/2 pathway by AAV gene transfer protects retinal ganglion cells in glaucoma. Mol Ther 12(3):402–412. doi:10.1016/j.ymthe.2005.04.004

    Article  CAS  PubMed  Google Scholar 

  9. Diem R, Hobom M, Maier K, Weissert R, Storch MK, Meyer R, Bahr M (2003) Methylprednisolone increases neuronal apoptosis during autoimmune CNS inflammation by inhibition of an endogenous neuroprotective pathway. J Neurosci 23(18):6993–7000

    CAS  PubMed  Google Scholar 

  10. Perron JC, Bixby JL (1999) Distinct neurite outgrowth signaling pathways converge on ERK activation. Mol Cell Neurosci 13(5):362–378. doi:10.1006/mcne.1999.0753

    Article  CAS  PubMed  Google Scholar 

  11. Webber CA, Chen YY, Hehr CL, Johnston J, McFarlane S (2005) Multiple signaling pathways regulate FGF-2-induced retinal ganglion cell neurite extension and growth cone guidance. Mol Cell Neurosci 30(1):37–47. doi:10.1016/j.mcn.2005.05.005

    Article  CAS  PubMed  Google Scholar 

  12. Thelen K, Maier B, Faber M, Albrecht C, Fischer P, Pollerberg GE (2012) Translation of the cell adhesion molecule ALCAM in axonal growth cones: regulation and functional importance. J Cell Sci 125(Pt 4):1003–1014. doi:10.1242/jcs.096149

    Article  CAS  PubMed  Google Scholar 

  13. Bogoyevitch MA (2006) The isoform-specific functions of the c-Jun N-terminal Kinases (JNKs): differences revealed by gene targeting. BioEssays 28(9):923–934. doi:10.1002/bies.20458

    Article  CAS  PubMed  Google Scholar 

  14. Martin JH, Mohit AA, Miller CA (1996) Developmental expression in the mouse nervous system of the p493F12 SAP kinase. Brain Res Mol Brain Res 35(1–2):47–57

    Article  CAS  PubMed  Google Scholar 

  15. Kuan CY, Yang DD, Samanta Roy DR, Davis RJ, Rakic P, Flavell RA (1999) The Jnk1 and Jnk2 protein kinases are required for regional specific apoptosis during early brain development. Neuron 22(4):667–676

    Article  CAS  PubMed  Google Scholar 

  16. Chang L, Jones Y, Ellisman MH, Goldstein LS, Karin M (2003) JNK1 is required for maintenance of neuronal microtubules and controls phosphorylation of microtubule-associated proteins. Dev Cell 4(4):521–533

    Article  CAS  PubMed  Google Scholar 

  17. Chen JT, Lu DH, Chia CP, Ruan DY, Sabapathy K, Xiao ZC (2005) Impaired long-term potentiation in c-Jun N-terminal kinase 2-deficient mice. J Neurochem 93(2):463–473. doi:10.1111/j.1471-4159.2005.03037.x

    Article  CAS  PubMed  Google Scholar 

  18. Pirianov G, Brywe KG, Mallard C, Edwards AD, Flavell RA, Hagberg H, Mehmet H (2007) Deletion of the c-Jun N-terminal kinase 3 gene protects neonatal mice against cerebral hypoxic-ischaemic injury. J Cereb Blood Flow Metab 27(5):1022–1032. doi:10.1038/sj.jcbfm.9600413

    CAS  PubMed  Google Scholar 

  19. Donovan M, Doonan F, Cotter TG (2011) Differential roles of ERK1/2 and JNK in retinal development and degeneration. J Neurochem 116(1):33–42. doi:10.1111/j.1471-4159.2010.07056.x

    Article  CAS  PubMed  Google Scholar 

  20. Fernandes KA, Harder JM, Fornarola LB, Freeman RS, Clark AF, Pang IH, John SW, Libby RT (2012) JNK2 and JNK3 are major regulators of axonal injury-induced retinal ganglion cell death. Neurobiol Dis 46(2):393–401. doi:10.1016/j.nbd.2012.02.003

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Welsbie DS, Yang Z, Ge Y, Mitchell KL, Zhou X, Martin SE, Berlinicke CA, Hackler L Jr, Fuller J, Fu J, Cao LH, Han B, Auld D, Xue T, Hirai S, Germain L, Simard-Bisson C, Blouin R, Nguyen JV, Davis CH, Enke RA, Boye SL, Merbs SL, Marsh-Armstrong N, Hauswirth WW, DiAntonio A, Nickells RW, Inglese J, Hanes J, Yau KW, Quigley HA, Zack DJ (2013) Functional genomic screening identifies dual leucine zipper kinase as a key mediator of retinal ganglion cell death. Proc Natl Acad Sci U S A 110(10):4045–4050. doi:10.1073/pnas.1211284110

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Yang X, Luo C, Cai J, Pierce WM, Tezel G (2008) Phosphorylation-dependent interaction with 14-3-3 in the regulation of bad trafficking in retinal ganglion cells. Invest Ophthalmol Vis Sci 49(6):2483–2494. doi:10.1167/iovs.07-1344

    Article  PubMed Central  PubMed  Google Scholar 

  23. Bessero AC, Chiodini F, Rungger-Brandle E, Bonny C, Clarke PG (2010) Role of the c-Jun N-terminal kinase pathway in retinal excitotoxicity, and neuroprotection by its inhibition. J Neurochem 113(5):1307–1318. doi:10.1111/j.1471-4159.2010.06705.x

    CAS  PubMed  Google Scholar 

  24. Hong S, Lee JE, Kim CY, Seong GJ (2007) Agmatine protects retinal ganglion cells from hypoxia-induced apoptosis in transformed rat retinal ganglion cell line. BMC Neurosci 8:81. doi:10.1186/1471-2202-8-81

    Article  PubMed Central  PubMed  Google Scholar 

  25. Xia Z, Dickens M, Raingeaud J, Davis RJ, Greenberg ME (1995) Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 270(5240):1326–1331

    Article  CAS  PubMed  Google Scholar 

  26. Llopis A, Salvador N, Ercilla A, Guaita-Esteruelas S, Barrantes Idel B, Gupta J, Gaestel M, Davis RJ, Nebreda AR, Agell N (2012) The stress-activated protein kinases p38alpha/beta and JNK1/2 cooperate with Chk1 to inhibit mitotic entry upon DNA replication arrest. Cell Cycle 11(19):3627–3637. doi:10.4161/cc.21917

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Al-Gayyar MM, Mysona BA, Matragoon S, Abdelsaid MA, El-Azab MF, Shanab AY, Ha Y, Smith SB, Bollinger KE, El-Remessy AB (2013) Diabetes and overexpression of proNGF cause retinal neurodegeneration via activation of RhoA pathway. PLoS One 8(1):e54692. doi:10.1371/journal.pone.0054692

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Zarubin T, Han J (2005) Activation and signaling of the p38 MAP kinase pathway. Cell Res 15(1):11–18. doi:10.1038/sj.cr.7290257

    Article  CAS  PubMed  Google Scholar 

  29. Stokoe D, Engel K, Campbell DG, Cohen P, Gaestel M (1992) Identification of MAPKAP kinase 2 as a major enzyme responsible for the phosphorylation of the small mammalian heat shock proteins. FEBS Lett 313(3):307–313

    Article  CAS  PubMed  Google Scholar 

  30. Thomas G, Haavik J, Cohen P (1997) Participation of a stress-activated protein kinase cascade in the activation of tyrosine hydroxylase in chromaffin cells. Eur J Biochem 247(3):1180–1189

    Article  CAS  PubMed  Google Scholar 

  31. Tan Y, Rouse J, Zhang A, Cariati S, Cohen P, Comb MJ (1996) FGF and stress regulate CREB and ATF-1 via a pathway involving p38 MAP kinase and MAPKAP kinase-2. EMBO J 15(17):4629–4642

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Deak M, Clifton AD, Lucocq LM, Alessi DR (1998) Mitogen- and stress-activated protein kinase-1 (MSK1) is directly activated by MAPK and SAPK2/p38, and may mediate activation of CREB. EMBO J 17(15):4426–4441. doi:10.1093/emboj/17.15.4426

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Wang XS, Diener K, Manthey CL, Wang S, Rosenzweig B, Bray J, Delaney J, Cole CN, Chan-Hui PY, Mantlo N, Lichenstein HS, Zukowski M, Yao Z (1997) Molecular cloning and characterization of a novel p38 mitogen-activated protein kinase. J Biol Chem 272(38):23668–23674

    Article  CAS  PubMed  Google Scholar 

  34. Mudgett JS, Ding J, Guh-Siesel L, Chartrain NA, Yang L, Gopal S, Shen MM (2000) Essential role for p38alpha mitogen-activated protein kinase in placental angiogenesis. Proc Natl Acad Sci U S A 97(19):10454–10459. doi:10.1073/pnas.180316397

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Xing B, Bachstetter AD, Van Eldik LJ (2011) Microglial p38alpha MAPK is critical for LPS-induced neuron degeneration, through a mechanism involving TNFalpha. Mol Neurodegener 6:84. doi:10.1186/1750-1326-6-84

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Beardmore VA, Hinton HJ, Eftychi C, Apostolaki M, Armaka M, Darragh J, McIlrath J, Carr JM, Armit LJ, Clacher C, Malone L, Kollias G, Arthur JS (2005) Generation and characterization of p38beta (MAPK11) gene-targeted mice. Mol Cell Biol 25(23):10454–10464. doi:10.1128/MCB.25.23.10454-10464.2005

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Sabio G, Arthur JS, Kuma Y, Peggie M, Carr J, Murray-Tait V, Centeno F, Goedert M, Morrice NA, Cuenda A (2005) p38gamma regulates the localisation of SAP97 in the cytoskeleton by modulating its interaction with GKAP. EMBO J 24(6):1134–1145. doi:10.1038/sj.emboj.7600578

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Kikuchi M, Tenneti L, Lipton SA (2000) Role of p38 mitogen-activated protein kinase in axotomy-induced apoptosis of rat retinal ganglion cells. J Neurosci 20(13):5037–5044

    CAS  PubMed  Google Scholar 

  39. Manabe S, Lipton SA (2003) Divergent NMDA signals leading to proapoptotic and antiapoptotic pathways in the rat retina. Invest Ophthalmol Vis Sci 44(1):385–392

    Article  PubMed  Google Scholar 

  40. Al-Gayyar MM, Abdelsaid MA, Matragoon S, Pillai BA, El-Remessy AB (2011) Thioredoxin interacting protein is a novel mediator of retinal inflammation and neurotoxicity. Br J Pharmacol 164(1):170–180. doi:10.1111/j.1476-5381.2011.01336.x

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Roth S, Shaikh AR, Hennelly MM, Li Q, Bindokas V, Graham CE (2003) Mitogen-activated protein kinases and retinal ischemia. Invest Ophthalmol Vis Sci 44(12):5383–5395

    Article  PubMed  Google Scholar 

  42. Nishimura M, Sugino T, Nozaki K, Takagi Y, Hattori I, Hayashi J, Hashimoto N, Moriguchi T, Nishida E (2003) Activation of p38 kinase in the gerbil hippocampus showing ischemic tolerance. J Cereb Blood Flow Metab 23(9):1052–1059. doi:10.1097/01.WCB.0000084251.20114.65

    Article  CAS  PubMed  Google Scholar 

  43. Fischer AJ, Scott MA, Ritchey ER, Sherwood P (2009) Mitogen-activated protein kinase-signaling regulates the ability of Muller glia to proliferate and protect retinal neurons against excitotoxicity. Glia 57(14):1538–1552. doi:10.1002/glia.20868

    Article  PubMed Central  PubMed  Google Scholar 

  44. Drew BA, Burow ME, Beckman BS (2012) MEK5/ERK5 pathway: the first fifteen years. Biochim Biophys Acta 1825(1):37–48. doi:10.1016/j.bbcan.2011.10.002

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Lee JD, Ulevitch RJ, Han J (1995) Primary structure of BMK1: a new mammalian map kinase. Biochem Biophys Res Commun 213(2):715–724

    Article  CAS  PubMed  Google Scholar 

  46. Plotnikov A, Zehorai E, Procaccia S, Seger R (2011) The MAPK cascades: signaling components, nuclear roles and mechanisms of nuclear translocation. Biochim Biophys Acta 1813(9):1619–1633. doi:10.1016/j.bbamcr.2010.12.012

    Article  CAS  PubMed  Google Scholar 

  47. Kamakura S, Moriguchi T, Nishida E (1999) Activation of the protein kinase ERK5/BMK1 by receptor tyrosine kinases. Identification and characterization of a signaling pathway to the nucleus. J Biol Chem 274(37):26563–26571

    Article  CAS  PubMed  Google Scholar 

  48. Regan CP, Li W, Boucher DM, Spatz S, Su MS, Kuida K (2002) Erk5 null mice display multiple extraembryonic vascular and embryonic cardiovascular defects. Proc Natl Acad Sci U S A 99(14):9248–9253. doi:10.1073/pnas.142293999

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Hayashi M, Lee JD (2004) Role of the BMK1/ERK5 signaling pathway: lessons from knockout mice. J Mol Med 82(12):800–808. doi:10.1007/s00109-004-0602-8

    Article  CAS  PubMed  Google Scholar 

  50. Liu L, Cavanaugh JE, Wang Y, Sakagami H, Mao Z, Xia Z (2003) ERK5 activation of MEF2-mediated gene expression plays a critical role in BDNF-promoted survival of developing but not mature cortical neurons. Proc Natl Acad Sci U S A 100(14):8532–8537. doi:10.1073/pnas.1332804100

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Katsura H, Obata K, Mizushima T, Sakurai J, Kobayashi K, Yamanaka H, Dai Y, Fukuoka T, Sakagami M, Noguchi K (2007) Activation of extracellular signal-regulated protein kinases 5 in primary afferent neurons contributes to heat and cold hyperalgesia after inflammation. J Neurochem 102(5):1614–1624. doi:10.1111/j.1471-4159.2007.04698.x

    Article  CAS  PubMed  Google Scholar 

  52. Watson FL, Heerssen HM, Bhattacharyya A, Klesse L, Lin MZ, Segal RA (2001) Neurotrophins use the Erk5 pathway to mediate a retrograde survival response. Nat Neurosci 4(10):981–988. doi:10.1038/nn720

    Article  CAS  PubMed  Google Scholar 

  53. Wu Y, Zuo Y, Chakrabarti R, Feng B, Chen S, Chakrabarti S (2010) ERK5 contributes to VEGF alteration in diabetic retinopathy. J Ophthalmol 2010:465824. doi:10.1155/2010/465824

    PubMed Central  PubMed  Google Scholar 

  54. Wu Y, Feng B, Chen S, Chakrabarti S (2012) ERK5 regulates glucose-induced increased fibronectin production in the endothelial cells and in the retina in diabetes. Invest Ophthalmol Vis Sci 53(13):8405–8413. doi:10.1167/iovs.12-10553

    Article  CAS  PubMed  Google Scholar 

  55. Guo Y, Johnson E, Cepurna W, Jia L, Dyck J, Morrison JC (2009) Does elevated intraocular pressure reduce retinal TRKB-mediated survival signaling in experimental glaucoma? Exp Eye Res 89(6):921–933. doi:10.1016/j.exer.2009.08.003

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Coffer PJ, Jin J, Woodgett JR (1998) Protein kinase B (c-Akt): a multifunctional mediator of phosphatidylinositol 3-kinase activation. Biochem J 335(Pt 1):1–13

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Marte BM, Downward J (1997) PKB/Akt: connecting phosphoinositide 3-kinase to cell survival and beyond. Trends Biochem Sci 22(9):355–358

    Article  CAS  PubMed  Google Scholar 

  58. Franke TF, Kaplan DR, Cantley LC, Toker A (1997) Direct regulation of the Akt proto-oncogene product by phosphatidylinositol-3,4-bisphosphate. Science 275(5300):665–668

    Article  CAS  PubMed  Google Scholar 

  59. Alessi DR, James SR, Downes CP, Holmes AB, Gaffney PR, Reese CB, Cohen P (1997) Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Balpha. Current Biol 7(4):261–269

    Article  CAS  Google Scholar 

  60. Sarbassov DD, Guertin DA, Ali SM, Sabatini DM (2005) Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307(5712):1098–1101. doi:10.1126/science.1106148

    Article  CAS  PubMed  Google Scholar 

  61. Hresko RC, Mueckler M (2005) mTOR.RICTOR is the Ser473 kinase for Akt/protein kinase B in 3T3-L1 adipocytes. J Biol Chem 280(49):40406–40416. doi:10.1074/jbc.M508361200

    Article  CAS  PubMed  Google Scholar 

  62. Cantley LC, Neel BG (1999) New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway. Proc Natl Acad Sci U S A 96(8):4240–4245

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. McCubrey JA, Steelman LS, Kempf CR, Chappell WH, Abrams SL, Stivala F, Malaponte G, Nicoletti F, Libra M, Basecke J, Maksimovic-Ivanic D, Mijatovic S, Montalto G, Cervello M, Cocco L, Martelli AM (2011) Therapeutic resistance resulting from mutations in Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR signaling pathways. J Cell Physiol 226(11):2762–2781. doi:10.1002/jcp.22647

    Article  CAS  PubMed  Google Scholar 

  64. Sable CL, Filippa N, Hemmings B, Van Obberghen E (1997) cAMP stimulates protein kinase B in a Wortmannin-insensitive manner. FEBS Lett 409(2):253–257

    Article  CAS  PubMed  Google Scholar 

  65. Konishi H, Matsuzaki H, Tanaka M, Ono Y, Tokunaga C, Kuroda S, Kikkawa U (1996) Activation of RAC-protein kinase by heat shock and hyperosmolarity stress through a pathway independent of phosphatidylinositol 3-kinase. Proc Natl Acad Sci U S A 93(15):7639–7643

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Cho H, Mu J, Kim JK, Thorvaldsen JL, Chu Q, Crenshaw EB 3rd, Kaestner KH, Bartolomei MS, Shulman GI, Birnbaum MJ (2001) Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKB beta). Science 292(5522):1728–1731. doi:10.1126/science.292.5522.1728

    Article  CAS  PubMed  Google Scholar 

  67. Cho H, Thorvaldsen JL, Chu Q, Feng F, Birnbaum MJ (2001) Akt1/PKBalpha is required for normal growth but dispensable for maintenance of glucose homeostasis in mice. J Biol Chem 276(42):38349–38352. doi:10.1074/jbc.C100462200

    Article  CAS  PubMed  Google Scholar 

  68. Chen WS, Xu PZ, Gottlob K, Chen ML, Sokol K, Shiyanova T, Roninson I, Weng W, Suzuki R, Tobe K, Kadowaki T, Hay N (2001) Growth retardation and increased apoptosis in mice with homozygous disruption of the Akt1 gene. Genes Dev 15(17):2203–2208. doi:10.1101/gad.913901

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Peng XD, Xu PZ, Chen ML, Hahn-Windgassen A, Skeen J, Jacobs J, Sundararajan D, Chen WS, Crawford SE, Coleman KG, Hay N (2003) Dwarfism, impaired skin development, skeletal muscle atrophy, delayed bone development, and impeded adipogenesis in mice lacking Akt1 and Akt2. Genes Dev 17(11):1352–1365. doi:10.1101/gad.1089403

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Tschopp O, Yang ZZ, Brodbeck D, Dummler BA, Hemmings-Mieszczak M, Watanabe T, Michaelis T, Frahm J, Hemmings BA (2005) Essential role of protein kinase B gamma (PKB gamma/Akt3) in postnatal brain development but not in glucose homeostasis. Development 132(13):2943–2954. doi:10.1242/dev.01864

    Article  CAS  PubMed  Google Scholar 

  71. Yang ZZ, Tschopp O, Di-Poi N, Bruder E, Baudry A, Dummler B, Wahli W, Hemmings BA (2005) Dosage-dependent effects of Akt1/protein kinase Balpha (PKBalpha) and Akt3/PKBgamma on thymus, skin, and cardiovascular and nervous system development in mice. Mol Cell Biol 25(23):10407–10418. doi:10.1128/MCB.25.23.10407-10418.2005

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Whiteman EL, Cho H, Birnbaum MJ (2002) Role of Akt/protein kinase B in metabolism. Trends Endocrinol Metab 13(10):444–451

    Article  CAS  PubMed  Google Scholar 

  73. Radisavljevic Z (2013) AKT as locus of cancer angiogenic robustness and fragility. J Cell Physiol 228(1):21–24. doi:10.1002/jcp.24115

    Article  CAS  PubMed  Google Scholar 

  74. Liang J, Slingerland JM (2003) Multiple roles of the PI3K/PKB (Akt) pathway in cell cycle progression. Cell Cycle 2(4):339–345

    Article  CAS  PubMed  Google Scholar 

  75. Plyte SE, Hughes K, Nikolakaki E, Pulverer BJ, Woodgett JR (1992) Glycogen synthase kinase-3: functions in oncogenesis and development. Biochim Biophys Acta 1114(2–3):147–162

    CAS  PubMed  Google Scholar 

  76. Wu D, Pan W (2010) GSK3: a multifaceted kinase in Wnt signaling. Trends Biochem Sci 35(3):161–168. doi:10.1016/j.tibs.2009.10.002

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Wada A (2009) Lithium and neuropsychiatric therapeutics: neuroplasticity via glycogen synthase kinase-3beta, beta-catenin, and neurotrophin cascades. J Pharmacol Sci 110(1):14–28

    Article  CAS  PubMed  Google Scholar 

  78. Endo H, Nito C, Kamada H, Nishi T, Chan PH (2006) Activation of the Akt/GSK3beta signaling pathway mediates survival of vulnerable hippocampal neurons after transient global cerebral ischemia in rats. J Cereb Blood Flow Metab 26(12):1479–1489. doi:10.1038/sj.jcbfm.9600303

    Article  CAS  PubMed  Google Scholar 

  79. Tang Z, Arjunan P, Lee C, Li Y, Kumar A, Hou X, Wang B, Wardega P, Zhang F, Dong L, Zhang Y, Zhang SZ, Ding H, Fariss RN, Becker KG, Lennartsson J, Nagai N, Cao Y, Li X (2010) Survival effect of PDGF-CC rescues neurons from apoptosis in both brain and retina by regulating GSK3beta phosphorylation. J Exp Med 207(4):867–880. doi:10.1084/jem.20091704

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Puckett MC, Goldman EH, Cockrell LM, Huang B, Kasinski AL, Du Y, Wang CY, Lin A, Ichijo H, Khuri F, Fu H (2013) Integration of apoptosis signal-regulating kinase 1-mediated stress signaling with the Akt/protein kinase B-IkappaB kinase cascade. Mol Cell Biol 33(11):2252–2259. doi:10.1128/MCB.00047-13

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Alikhani M, Roy S, Graves DT (2010) FOXO1 plays an essential role in apoptosis of retinal pericytes. Mol Vis 16:408–415

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Jomary C, Cullen J, Jones SE (2006) Inactivation of the Akt survival pathway during photoreceptor apoptosis in the retinal degeneration mouse. Invest Ophthalmol Vis Sci 47(4):1620–1629. doi:10.1167/iovs.05-1176

    Article  PubMed  Google Scholar 

  83. Datta SR, Dudek H, Tao X, Masters S, Fu H, Gotoh Y, Greenberg ME (1997) Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91(2):231–241

    Article  CAS  PubMed  Google Scholar 

  84. Koriyama Y, Homma K, Sugitani K, Higuchi Y, Matsukawa T, Murayama D, Kato S (2007) Upregulation of IGF-I in the goldfish retinal ganglion cells during the early stage of optic nerve regeneration. Neurochem Int 50(5):749–756. doi:10.1016/j.neuint.2007.01.012

    Article  CAS  PubMed  Google Scholar 

  85. Homma K, Koriyama Y, Mawatari K, Higuchi Y, Kosaka J, Kato S (2007) Early downregulation of IGF-I decides the fate of rat retinal ganglion cells after optic nerve injury. Neurochem Int 50(5):741–748. doi:10.1016/j.neuint.2007.01.011

    Article  CAS  PubMed  Google Scholar 

  86. Kim HS, Park CK (2005) Retinal ganglion cell death is delayed by activation of retinal intrinsic cell survival program. Brain Res 1057(1–2):17–28. doi:10.1016/j.brainres.2005.07.005

    Article  CAS  PubMed  Google Scholar 

  87. Shen J, Wu Y, Xu JY, Zhang J, Sinclair SH, Yanoff M, Xu G, Li W, Xu GT (2010) ERK- and Akt-dependent neuroprotection by erythropoietin (EPO) against glyoxal-AGEs via modulation of Bcl-xL, Bax, and BAD. Invest Ophthalmol Vis Sci 51(1):35–46. doi:10.1167/iovs.09-3544

    Article  PubMed  Google Scholar 

  88. Brown GC (2010) Nitric oxide and neuronal death. Nitric Oxide 23(3):153–165. doi:10.1016/j.niox.2010.06.001

    Article  CAS  PubMed  Google Scholar 

  89. Mejia-Garcia TA, Portugal CC, Encarnacao TG, Prado MA, Paes-de-Carvalho R (2013) Nitric oxide regulates AKT phosphorylation and nuclear translocation in cultured retinal cells. Cell Signal 25(12):2424–2439. doi:10.1016/j.cellsig.2013.08.001

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Grant-in-Aid for Scientific Research C 24500441 from Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideki Hayashi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Hayashi, H. (2014). Classical Signaling Pathways. In: Nakazawa, T., Kitaoka, Y., Harada, T. (eds) Neuroprotection and Neuroregeneration for Retinal Diseases. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54965-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-54965-9_3

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-54964-2

  • Online ISBN: 978-4-431-54965-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics