Skip to main content

Nitric Oxide Contributes to Retinal Ganglion Cell Survival Through Protein S-Nitrosylation After Optic Nerve Injury

  • Chapter
  • First Online:
Neuroprotection and Neuroregeneration for Retinal Diseases
  • 774 Accesses

Abstract

Neuroprotective strategies to attenuate retinal ganglion cell (RGC) death could lead to novel therapies for chronic optic neuropathies such as glaucoma. Nitric oxide (NO) signaling results in both neurotoxic and neuroprotective effects in CNS neurons after nerve lesion. However, the functional mechanisms of NO in the nervous system are not fully understood. Protein S-nitrosylation by NO is a posttranslational modification that regulates protein function through the reaction of NO with a cysteine thiol group on target proteins. NO/S-nitrosylation is now thought to be important in regulating cell death, survival, and gene expression. However, there are few reports on the role of protein S-nitrosylation in glaucoma. Therefore, we investigated the role of protein S-nitrosylation signaling in RGC survival after optic nerve injury.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. García-Campos J, Villena A, Díaz F et al (2007) Morphological and functional changes in experimental ocular hypertension and role of neuroprotective drugs. Histol Histopathol 22:1399–1411

    PubMed  Google Scholar 

  2. Berkelaar M, Clarke DB, Wang YC et al (1994) Axotomy results in delayed death and apoptosis of retinal ganglion cells in adult rats. J Neurosci 14:4368–4374

    CAS  PubMed  Google Scholar 

  3. Anderson B Jr, Saltzman HA (1964) Retinal oxygen utilization measured by hyperbaric blackout. Arch Ophthalmol 72:792–795

    Article  PubMed  Google Scholar 

  4. Maher P, Hanneken A (2005) Flavonoids protect retinal ganglion cells from oxidative stress-induced death. Invest Ophthalmol Vis Sci 46:4796–4803

    Article  PubMed  Google Scholar 

  5. Wang AL, Lukas TJ, Yuan M et al (2010) Age-related increase in mitochondrial DNA damage and loss of DNA repair capacity in the neural retina. Neurobiol Aging 31:2002–2010

    Article  CAS  PubMed  Google Scholar 

  6. Chierzi S, Strettoi E, Cenni MC et al (1999) Optic nerve crush: axonal responses in wild-type and bcl-2 transgenic mice. J Neurosci 19:8367–8376

    CAS  PubMed  Google Scholar 

  7. Levkovitch-Verbin H, Harris-Cerruti C, Groner Y et al (2000) RGC death in mice after optic nerve crush injury: oxidative stress and neuroprotection. Invest Ophthalmol Vis Sci 41:4169–4174

    CAS  PubMed  Google Scholar 

  8. Groppe M, Thanos S, Schuhmann W et al (2003) Measurement of nitric oxide production by the lesioned rat retina with a sensitive nitric oxide electrode. Anal Bioanal Chem 376:797–807

    Article  CAS  PubMed  Google Scholar 

  9. Calabrese V, Cornelius C, Rizzarelli E et al (2009) Nitric oxide in cell survival: a janus molecule. Antioxid Redox Signal 11:2717–2739

    Article  CAS  PubMed  Google Scholar 

  10. Sattler R, Xiong Z, Lu WY et al (1999) Specific coupling of NMDA receptor activation to nitric oxide neurotoxicity by PSD-95 protein. Science 284:1845–1848

    Article  CAS  PubMed  Google Scholar 

  11. Bredt DS, Hwang PM, Glatt CE et al (1991) Cloned and expressed nitric oxide synthase structurally resembles cytochrome P-450 reductase. Nature 351:714–718

    Article  CAS  PubMed  Google Scholar 

  12. Lipton SA, Choi YB, Pan ZH et al (1993) A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds. Nature 364:626–632

    Article  CAS  PubMed  Google Scholar 

  13. Lee EJ, Kim KY, Gu TH et al (2003) Neuronal nitric oxide synthase is expressed in the axotomized ganglion cells of the rat retina. Brain Res 986:174–180

    Article  CAS  PubMed  Google Scholar 

  14. Chiou GC (2001) Review: effects of nitric oxide on eye diseases and their treatment. J Ocul Pharmacol Ther 17:189–198

    Article  CAS  PubMed  Google Scholar 

  15. Neufeld AH, Sawada A, Becker B (1999) Inhibition of nitric-oxide synthase 2 by aminoguanidine provides neuroprotection of retinal ganglion cells in a rat model of chronic glaucoma. Proc Natl Acad Sci USA 96:9944–9948

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Dawson VL, Dawson TM (1995) Physiological and toxicological actions of nitric oxide in the central nervous system. Adv Pharmacol 34:323–342

    Article  CAS  PubMed  Google Scholar 

  17. Goureau O, Hicks D, Courtois Y et al (1994) Induction and regulation of nitric oxide synthase in retinal Müller glial cells. J Neurochem 63:310–317

    Article  CAS  PubMed  Google Scholar 

  18. Liversidge J, Grabowski P, Ralston S et al (1994) Rat retinal pigment epithelial cells express an inducible form of nitric oxide synthase and produce nitric oxide in response to inflammatory cytokines and activated T cells. Immunology 83:404–409

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Goureau O, Lepoivre M, Becquet F et al (1993) Differential regulation of inducible nitric oxide synthase by fibroblast growth factors and transforming growth factor beta in bovine retinal pigmented epithelial cells: inverse correlation with cellular proliferation. Proc Natl Acad Sci USA 90:4276–4280

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Becquet F, Courtois Y, Goureau O (1997) Nitric oxide in the eye: multifaceted roles and diverse outcomes. Surv Ophthalmol 42:71–82

    Article  CAS  PubMed  Google Scholar 

  21. Yuan L, Neufeld AH (2000) Tumor necrosis factor-alpha: a potentially neurodestructive cytokine produced by glia in the human glaucomatous optic nerve head. Glia 32:42–50

    Article  CAS  PubMed  Google Scholar 

  22. Roh M, Zhang Y, Murakami Y et al (2012) Etanercept, a widely used inhibitor of tumor necrosis factor-α (TNF-α), prevents retinal ganglion cell loss in a rat model of glaucoma. PLoS One 7:e40065

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Chakravarthy U, Stitt AW, McNally J et al (1995) Nitric oxide synthase activity and expression in retinal capillary endothelial cells and pericytes. Curr Eye Res 14:285–294

    Article  CAS  PubMed  Google Scholar 

  24. Neufeld AH (1999) Nitric oxide: a potential mediator of retinal ganglion cell damage in glaucoma. Surv Ophthalmol 43:129–135

    Article  Google Scholar 

  25. Beckman JS, Beckman TW, Chen J et al (1990) Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci USA 87:1620–1624

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Schmidt HH, Lohmann SM, Walter U (1993) The nitric oxide and cGMP signal transduction system: regulation and mechanism of action. Biochim Biophys Acta 1178:153–175

    Article  CAS  PubMed  Google Scholar 

  27. Jaffrey SR, Erdjument-Bromage H, Ferris CD et al (2001) Protein S-nitrosylation: a physiological signal for neuronal nitric oxide. Nat Cell Biol 3:193–197

    Article  CAS  PubMed  Google Scholar 

  28. Nakamura T, Lipton SA (2011) Redox modulation by S-nitrosylation contributes to protein misfolding, mitochondrial dynamics, and neuronal synaptic damage in neurodegenerative diseases. Cell Death Differ 18:1478–1486

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Melino G, Bernassola F, Knight RA et al (1997) S-nitrosylation regulates apoptosis. Nature 388:432–433

    Article  CAS  PubMed  Google Scholar 

  30. Tenneti L, D'Emilia DM, Lipton SA (1997) Suppression of neuronal apoptosis by S-nitrosylation of caspases. Neurosci Lett 236:139–142

    Article  CAS  PubMed  Google Scholar 

  31. Manderscheid M, Messmer UK, Franzen R et al (2001) Regulation of inhibitor of apoptosis expression by nitric oxide and cytokines: relation to apoptosis induction in rat mesangial cells and raw 264.7 macrophages. J Am Soc Nephrol 12:1151–1163

    CAS  PubMed  Google Scholar 

  32. Yang YL, Li XM (2000) The IAP family: endogenous caspase inhibitors with multiple biological activities. Cell Res 10:169–177

    Article  CAS  PubMed  Google Scholar 

  33. Nakamura T, Wang L, Wong CC et al (2010) Transnitrosylation of XIAP regulates caspase-dependent neuronal cell death. Mol Cell 39:184–195

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Hara MR, Agrawal N, Kim SF et al (2005) S-nitrosylated GAPDH initiates apoptotic cell death by nuclear translocation following Siah1 binding. Nat Cell Biol 7:665–674

    Article  CAS  PubMed  Google Scholar 

  35. Zhang J, Guenther MG, Carthew RW et al (1998) Proteasomal regulation of nuclear receptor corepressor-mediated repression. Genes Dev 12:1775–1780

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Sen N, Hara MR, Kornberg MD et al (2008) Nitric oxide-induced nuclear GAPDH activates p300/CBP and mediates apoptosis. Nat Cell Biol 10:866–873

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Sunico CR, Nakamura T, Rockenstein E et al (2013) S-nitrosylation of parkin as a novel regulator of p53-mediated neuronal cell death in sporadic Parkinson’s disease. Mol Neurodegener 8:29

    Article  PubMed Central  PubMed  Google Scholar 

  38. Walker AK, Farg MA, Bye CR et al (2010) Protein disulphide isomerase protects against protein aggregation and is S-nitrosylated in amyotrophic lateral sclerosis. Brain 133:105–116

    Article  PubMed  Google Scholar 

  39. Kwak YD, Ma T, Diao S et al (2010) NO signaling and S-nitrosylation regulate PTEN inhibition in neurodegeneration. Mol Neurodegener 5:49

    Article  PubMed Central  PubMed  Google Scholar 

  40. Numajiri N, Takasawa K, Nishiya T et al (2011) On-off system for PI3-kinase-Akt signaling through S-nitrosylation of phosphatase with sequence homology to tensin (PTEN). Proc Natl Acad Sci USA 108:10349–10354

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Kuncewicz T, Sheta EA, Goldknopf IL et al (2003) Proteomic analysis of S-nitrosylated proteins in mesangial cells. Mol Cell Proteomics 2:156–163

    Article  CAS  PubMed  Google Scholar 

  42. Sumbayev VV (2003) S-nitrosylation of thioredoxin mediates activation of apoptosis signal-regulating kinase 1. Arch Biochem Biophys 415:133–136

    Article  CAS  PubMed  Google Scholar 

  43. Azad N, Vallyathan V, Wang L et al (2006) S-nitrosylation of Bcl-2 inhibits its ubiquitin-proteasomal degradation. A novel antiapoptotic mechanism that suppresses apoptosis. J Biol Chem 281:34124–34134

    Article  CAS  PubMed  Google Scholar 

  44. Qu J, Nakamura T, Cao G et al (2011) S-nitrosylation activates Cdk5 and contributes to synaptic spine loss induced by beta-amyloid peptide. Proc Natl Acad Sci USA 108:14330–14335

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Tian J, Kim SF, Hester L et al (2008) S-nitrosylation/activation of COX-2 mediates NMDA neurotoxicity. Proc Natl Acad Sci USA 105:10537–10540

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Westermann B (2009) Nitric oxide links mitochondrial fission to Alzheimer’s disease. Sci Signal 2:pe29

    Article  PubMed  Google Scholar 

  47. Feng X, Sun T, Bei Y et al (2013) S-nitrosylation of ERK inhibits ERK phosphorylation and induces apoptosis. Sci Rep 3:1814

    PubMed Central  PubMed  Google Scholar 

  48. Yin XH, Yan JZ, Hou XY et al (2013) Neuroprotection of S-nitrosoglutathione against ischemic injury by down-regulating Fas S-nitrosylation and downstream signaling. Neuroscience 248C:290–298

    Article  PubMed  Google Scholar 

  49. Sen N, Hara MR, Ahmad AS et al (2009) GOSPEL: a neuroprotective protein that binds to GAPDH upon S-nitrosylation. Neuron 63:81–91

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Koriyama Y, Chiba K, Yamazaki M et al (2010) Long-acting genipin derivative protects retinal ganglion cells from oxidative stress models in vitro and in vivo through the Nrf2/antioxidant response element signaling pathway. J Neurochem 115:79–91

    Article  CAS  PubMed  Google Scholar 

  51. Koriyama Y, Kamiya M, Takadera T et al (2012) Protective action of nipradilol mediated through S-nitrosylation of Keap1 and HO-1 induction in retinal ganglion cells. Neurochem Int 61:1242–1253

    Article  CAS  PubMed  Google Scholar 

  52. Gu Z, Kaul M, Yan B et al (2002) S-nitrosylation of matrix metalloproteinases: signaling pathway to neuronal cell death. Science 297:1186–1190

    Article  CAS  PubMed  Google Scholar 

  53. Fang J, Nakamura T, Cho DH et al (2007) S-nitrosylation of peroxiredoxin 2 promotes oxidative stress-induced neuronal cell death in Parkinson’s disease. Proc Natl Acad Sci USA 104(47):18742–18747

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Kim J, Won JS, Singh AK et al (2014) STAT3 regulation by S-nitrosylation: implication for inflammatory disease. Antioxid Redox Signal 20:2514–2527

    Google Scholar 

  55. Dawson TM, Chung KK (2009) S-nitrosylation of XIAP compromises neuronal survival in Parkinson’s disease. Proc Natl Acad Sci USA 106:4900–4905

    Article  PubMed Central  PubMed  Google Scholar 

  56. Koriyama Y (2013) Role of protein S-nitrosylation in central nervous system survival and regeneration. Yakugaku Zasshi 133:843–848

    Article  CAS  PubMed  Google Scholar 

  57. Koriyama Y, Takagi Y, Chiba K (2011) Neuritogenic activity of a genipin derivative in retinal ganglion cells is mediated by retinoic acid receptor β expression through nitric oxide/S-nitrosylation signaling. J Neurochem 119:1232–1242

    Article  CAS  PubMed  Google Scholar 

  58. Koriyama Y, Takagi Y, Chiba K (2013) Requirement of retinoic acid receptor β for genipin derivative-induced optic nerve regeneration in adult rat retina. PLoS One 8:e71252

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Miller MR, Megson IL (2007) Recent developments in nitric oxide donor drugs. Br J Pharmacol 151:305–321

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Adachi T, Hori S, Miyazaki K et al (1995) Rapid increase in plasma nitrite concentration following intravenous administration of nipradilol. Eur J Pharmacol 286:201–204

    Article  CAS  PubMed  Google Scholar 

  61. Taguchi R, Shirakawa H, Yamaguchi T et al (2006) Nitric oxide-mediated effect of nipradilol, an alpha- and beta-adrenergic blocker, on glutamate neurotoxicity in rat cortical cultures. Eur J Pharmacol 535:86–94

    Article  CAS  PubMed  Google Scholar 

  62. Nakazawa T, Tomita H, Yamaguchi K et al (2002) Neuroprotective effect of nipradilol on axotomized rat retinal ganglion cells. Curr Eye Res 24:114–122

    Article  PubMed  Google Scholar 

  63. Mizuno K, Koide T, Yoshimura M et al (2001) Neuroprotective effect and intraocular penetration of nipradilol, a beta-blocker with nitric oxide donative action. Invest Ophthalmol Vis Sci 42:688–694

    CAS  PubMed  Google Scholar 

  64. Imai N, Tsuyama Y, Murayama K et al (1997) Protective effect of nitric oxide on ischemic retina. Nihon Ganka Gakkai Zasshi 101:639–643

    CAS  PubMed  Google Scholar 

  65. Ando A, Yamazaki Y, Kaneko S et al (2005) Cytoprotection by nipradilol, an anti-glaucomatous agent, via down-regulation of apoptosis related gene expression and activation of NF-kappaB. Exp Eye Res 80:501–507

    Article  CAS  PubMed  Google Scholar 

  66. Tomita H, Nakazawa T, Sugano E et al (2002) Nipradilol inhibits apoptosis by preventing the activation of caspase-3 via S-nitrosylation and the cGMP-dependent pathway. Eur J Pharmacol 452:263–268

    Article  CAS  PubMed  Google Scholar 

  67. Naito A, Aniya Y, Sakanashi M (1994) Antioxidative action of the nitrovasodilator nicorandil: inhibition of oxidative activation of liver microsomal glutathione S-transferase and lipid peroxidation. Jpn J Pharmacol 65:209–213

    Article  CAS  PubMed  Google Scholar 

  68. Baird L, Dinkova-Kostova AT (2011) The cytoprotective role of the Keap1-Nrf2 pathway. Arch Toxicol 85:241–272

    Article  CAS  PubMed  Google Scholar 

  69. Himori N, Yamamoto K, Maruyama K et al (2013) Critical role of Nrf2 in oxidative stress-induced retinal ganglion cell death. J Neurochem 127:669–680

    Google Scholar 

  70. Eggler AL, Liu G, Pezzuto JM et al (2005) Modifying specific cysteines of the electrophile-sensing human Keap1 protein is insufficient to disrupt binding to the Nrf2 domain Neh2. Proc Natl Acad Sci USA 102:10070–10075

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Kansanen E, Bonacci G, Schopfer FJ et al (2011) Electrophilic nitro-fatty acids activate NRF2 by a KEAP1 cysteine 151-independent mechanism. J Biol Chem 286:14019–14027

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Li CQ, Kim MY, Godoy LC et al (2009) Nitric oxide activation of Keap1/Nrf2 signaling in human colon carcinoma cells. Proc Natl Acad Sci USA 106:14547–14551

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Buckley BJ, Li S, Whorton AR (2008) Keap1 modification and nuclear accumulation in response to S-nitrosocysteine. Free Radic Biol Med 44:692–698

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Charles I, Khalyfa A, Kumar DM et al (2005) Serum deprivation induces apoptotic cell death of transformed rat retinal ganglion cells via mitochondrial signaling pathways. Invest Ophthalmol Vis Sci 46:1330–1338

    Article  PubMed  Google Scholar 

  75. Nakajima Y, Shimazawa M, Otsubo K et al (2009) Zeaxanthin, a retinal carotenoid, protects retinal cells against oxidative stress. Curr Eye Res 34:311–318

    Article  CAS  PubMed  Google Scholar 

  76. Maines MD (1988) Heme oxygenase: function, multiplicity, regulatory mechanisms, and clinical applications. FASEB J 2:2557–2568

    CAS  PubMed  Google Scholar 

  77. Watanabe M, Tokita Y, Yata T (2006) Axonal regeneration of cat retinal ganglion cells is promoted by nipradilol, an anti-glaucoma drug. Neuroscience 140:517–528

    Article  CAS  PubMed  Google Scholar 

  78. Park KK, Liu K, Hu Y et al (2008) Promoting axon regeneration in the adult CNS by modulation of the PTEN/mTOR pathway. Science 322:963–966

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. de Lima S, Koriyama Y, Kurimoto T et al (2012) Full-length axon regeneration in the adult mouse optic nerve and partial recovery of simple visual behaviors. Proc Natl Acad Sci USA 109:9149–9154

    Article  PubMed Central  PubMed  Google Scholar 

  80. Koriyama Y, Kamiya M, Arai K et al (2014) Nipradilol promotes axon regeneration through S-nitrosylation of PTEN in retinal ganglion cells Adv Exp Med Biol 801:751–757

    Google Scholar 

  81. Liu K, Lu Y, Lee JK et al (2010) PTEN deletion enhances the regenerative ability of adult corticospinal neurons. Nat Neurosci 13:1075–1081

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshiki Koriyama .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Koriyama, Y., Kato, S. (2014). Nitric Oxide Contributes to Retinal Ganglion Cell Survival Through Protein S-Nitrosylation After Optic Nerve Injury. In: Nakazawa, T., Kitaoka, Y., Harada, T. (eds) Neuroprotection and Neuroregeneration for Retinal Diseases. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54965-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-54965-9_6

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-54964-2

  • Online ISBN: 978-4-431-54965-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics