Skip to main content

Introduction and Technical Survey: Protein Aggregation and Fibrillogenesis

  • Chapter
  • First Online:
Protein Aggregation and Fibrillogenesis in Cerebral and Systemic Amyloid Disease

Part of the book series: Subcellular Biochemistry ((SCBI,volume 65))

Abstract

In this chapter we provided the overall background to the subject of protein aggregation and fibrillogenesis in amyloidogenesis, with introduction and brief discussion of the various topics that are included with the coming chapters. The division of the book into basic science and clinical science sections enables correlation of the topics to be made. The many proteins and peptides that have currently been found to undergo fibrillogenesis are tabulated. A broad technical survey is made, to indicate the vast array of techniques currently available to study aspects of protein oligomerization, aggregation and fibrillogenesis. These are split into three groups and tabulated, as the microscopical techniques, the analytical and biophysical methods, and the biochemical and cellular techniques. A few techniques are discussed, but in most cases only a link to relevant recent literature is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad A, Muzaffar M, Ingram VM (2009) Ca2+, Within the physiological concentrations, selectively accelerates Aβ42 fibril formation and not Aβ40 in vitro. Biochim Biophy Acta 1794:1537–1548

    Article  CAS  Google Scholar 

  • Ahmad B, Winkelmann J, Bruno T, Chiti F (2010) Searching for conditions to form stable protein oligomers with amyloid-like characteristics: The unexplored basic pH. Biochim Biophys Acta 1804:223–234

    Article  PubMed  CAS  Google Scholar 

  • Ahmed M, Davis J, Aucoin D, Sato T, Shuja S, Aimoto S, Elliot JI, van Nostrand WE, Smith SO (2010) Structural conversion of neurotoxic amyloid-β1–42 oligomers to fibrils. Nature Struct Mol Biol 17:561–567

    Article  CAS  Google Scholar 

  • Alavez S, Vantipalli MC, Zucker DJS, Klang IM, Lithgow GJ (2011) Amyloid-binding compounds maintain protein homeostasis during ageing and extend lifespan. Nature 472:226–229

    Article  PubMed  CAS  Google Scholar 

  • Anderson M, Bocharova OV, Makarava N, Breydo L, Salnikov VV, Baskakov IV (2006) Polymorphism and ultrastructural organization of prion protein amyloid fibrils: An insight from high resolution atomic force microscopy. J Mol Biol 358:580–596

    Article  PubMed  CAS  Google Scholar 

  • Andersson BV, Skoglund C, Uvdal K, Solin N (2012) Preparation of amyloid-like fibrils containing magnetic iron oxide nanoparticles: effect of protein aggregation on proton relaxiivity. Biochem Biophys Res Commun 419:682–686

    Article  PubMed  CAS  Google Scholar 

  • Andreasen M, Nielsen SB, Mittag T, Bjerring M, Nielsen JT Zhang S, Nielsen EH, Jeppesen M, Christiansen G, Besenbacher F, Dong M, Nielsen NC, Skrydstrup T, Otzen DE (2011) Modulation of fibrillation of hIAPP core fragments by chemical modification of the peptide backbone. Biochim Biophys Acta 1824:274–285

    PubMed  Google Scholar 

  • Askanas V, Engel WK (2011) Sporadic inclusion-body myositis: Conformational multifactorial ageing-related degenerative muscle disease associated with proteasomal and lysosomal inhibition, endoplasmic reticulum stress, and accumulation of amyloid- β42 oligomers and phosphorylated tau. Presse Med 40:219–235

    Article  Google Scholar 

  • Bartolini M, Naldi M, Fiori J, Valle F, Biscarini F, Nicolau DV, Andrisano V (2011) Kinetic characterization of amyloid-β 1–42 aggregation with a multimethodological approach. Anal Biochem 414:215–225

    Article  PubMed  CAS  Google Scholar 

  • Bellesia G, Shea JE (2009) Effect of beta-sheet propensity on peptide aggregation. J Chem Phys 130:145103. doi:10.1063/1.3108461

    Article  PubMed  CAS  Google Scholar 

  • Benseny-Cases N, Cócera M, Cladera J (2007) Conversion of non-fibrillar β-sheet oligomers into amyloid fibrils in Alzheimer’s disease amyloid peptide aggregation. Biochem Biophys Res Commun 361:916–923

    Article  PubMed  CAS  Google Scholar 

  • Bolognin S, Messon L, Drago D, Gabbiani C, Cendron L, Zatta P (2011) Aluminium, copper, iron and zinc differentially alter amyloid-Aβ1–42 aggregation. Int J Biochem Cell Biol 43:877–885

    Article  PubMed  CAS  Google Scholar 

  • Bongiovanni MN, Puri D, Goldie KN, Gras SL (2011) Noncore residues influence the kinetics of funtional TTR105–115-based amyloid fibril assembly. J Mol Biol 421:256–269

    Google Scholar 

  • Brorsson A-C, Bolognesi B, Tartaglia GG, Shammas SL, Favrin G, Watson I, Lomas DA, Chiti F, Vendruscolo M, Dobson CM, Crowther DC, Luheshi LM (2010) Intrinsic determinants of neurotoxic aggregate formation by the amyloid β peptide. Biophys J 98:1677–1684

    Article  PubMed  CAS  Google Scholar 

  • Bose PP, Chatterjee U, Hubatsch I, Artursson P, Govender T, Kruger HG, Bergh M, Johansson J, Arvidsson PI (2010) In vitro ADAMET and physical-chemical investigations of poly-N-methylated peptides designed to inhibit Aβ aggregation. Bioorg Medic Chem 18:5896–5902

    Article  CAS  Google Scholar 

  • Brenner S, Horne RW (1959) A negative staining method for high resolution electron microscopy of viruses. Biochim Biophys Acta 34:60–71

    Article  Google Scholar 

  • Caine JM, Bharadwaj PR, Sankovich SE, Ciccotosto GD, Streltso VA, Varghese J (2011) Oligomerization and toxicity of Aβ fusion proteins. Biochem Biophys Res Commun 409:477–482

    Article  PubMed  CAS  Google Scholar 

  • Canovi M, Markoutsa E, Lazar AN, Pampalakis G, Clemente C, Re F, Sesana S, Masserini M, Salmona M, Duyckaerts C, Flores O, Gobbi M, Antimisiaris SG (2011) The binding affinity of anti-Aβ1–42/Mav-decorated nanoliposomes to Aβ1–42 peptides in vitro and to amyloid deposits in post-mortem tissue. Biomaterials 32:5489–5497

    Article  PubMed  CAS  Google Scholar 

  • Capetillo-Zarate E, Gracia L, Yu F, Banfelder JR, Lin MT, Tampellini D, Gouras GK (2011) High resolution 3D reconstruction reveals early intra-synaptic amyloid fibrils in Alzheimer’s transgenic mice. Amer J Pathol 179:2551–2558

    Google Scholar 

  • Chang E, Kuret J (2008) Detection and quantification of tau aggregation using a membrane filter assay. Anal Biochem 373:330–336

    Article  PubMed  CAS  Google Scholar 

  • Chang WE, Takeda T, Raman EP, Klimov DK (2010) Molecular dynamics simulations of anti-aggregation effect of ibuprofen. Biophys J 98:2662–2670

    Article  PubMed  CAS  Google Scholar 

  • Chaudhary N, Singh S, Nagaraj R (2009) Morphoplogy of self-assembled structures formed by short peptides from the amyloidogenic protein tau depends on the solvent in which the peptides are dissolved. J Peptide Sci 15:675–684

    Article  CAS  Google Scholar 

  • Chaudhary N, Singh S, Nagaraj R (2011) Aggregation properties of a short peptide that mediates amyloid fibril formation in model proteins unrelated to disease. J Biosci 36:679–689

    Article  PubMed  CAS  Google Scholar 

  • Chen B, Thurber KR, Shewmaker F, Wickner RB, Tycko R (2009) Measurement of amyloid fibril mass-per-length by tilted-beam transmission electron microscopy. Proc Natl Acad Sci USA 106:14339–14344

    Article  PubMed  CAS  Google Scholar 

  • Chen W-T, Liao Y-H, Yu H-M, Cheng IH, Chen Y-R (2011) Distinct effects of Zn2+, Cu2+, Fe3+, and Al3+ on amyloid-β stability, oligomerization and aggregation. Amyloid-β destabilization promotes annular protofibril formation. J Biol Chem 286:9646–9656

    Article  PubMed  CAS  Google Scholar 

  • Cheng B, Gong H, Li X, Sun Y, Zhang X, Chen H, Liu X, Zheng L, Huang K (2012) Silibinin inhibits the toxic aggregation of human islet amyloid polypeptide. Biochem Biophys Res Commun 419:495–499

    Google Scholar 

  • Chi EY, Frey SL, Winans A, Lam KLH, Kjaer K, Majewski J, Lee KYC (2010) Amyloid-β fibrillogenesis seeded by interface-induced peptide misfolding and self-assembly. Biophys J 98:2299–2308

    Article  PubMed  CAS  Google Scholar 

  • Cohen AD, Comenzo RL (2010) Systemic light-chain amyloidosis: advances in diagnosis, prognosis and therapy. Hematology Am Soc Hematol Educ Program 2010:287–294

    Article  PubMed  Google Scholar 

  • Colletier J-P, Laganowsky A, Landau M, Zhao M, Soriaga AB, Goldschmidt L, Flot D, Cascio D, Sawaya MR, Eisenberg D (2011) Molecular basis for amyloid-beta polymorphism. Proc Natl Acad Sci USA 108:16938–16943

    Article  PubMed  CAS  Google Scholar 

  • Comenzo RL (2007) Current and emerging views and treatments of systemic immunoglobulin light-chain (Al) amyloidosis. Contrib Nephrol 153:195–210

    Article  PubMed  CAS  Google Scholar 

  • Corlin DB, Johnsen CK, Nissen MH, Heegaard NH,(2009) A beta2-microglobulin cleavage variant fibrillates at near-physiological pH. Biochem Biophys Res Commun 381:187–191

    Article  PubMed  CAS  Google Scholar 

  • Dahlgren PR, Karymov MA, Bankston J, Holden T, Thumfort P, Ingram VM, Lyubchenko YL (2005) Atomic force microscopy analysis of the Huntington protein nanofibril formation. Nanomedicine 1:52–57

    Article  PubMed  CAS  Google Scholar 

  • Dahse K, Garvey M, Kovermann M, Vogel A (2010) DHPC strongly affects the structure and oligomerization propensity of Alzheimer’s Aβ(1–40) peptide. J Mol Biol 403:643–659

    Article  PubMed  CAS  Google Scholar 

  • Das U, Hariprasad G, Ethayathulla P, Manral P, Das TK, et al (2007) Inhibition of protein aggregation: Supramolecular assemblies of arginine hold the key. PLoS ONE doi:10.1371/journal.pone.0001176

    Google Scholar 

  • De Carlo S, Harris JR (2011) Negative staining amd cryo-negative staining of macromolecules and viruses for TEM. Micron 42:117–131

    Article  PubMed  CAS  Google Scholar 

  • De Paula VJR, Guimarães FM, Diniz BS, Forlenza OV (2009) Neurobiological pathways to Alzheimer's disease: Amyloid-beta TAU or both? Dementia e Neuropsychologia 3:188–194

    Google Scholar 

  • Ding B, Yuan L, Yu H, Li L, Ma W, Bi Y, Feng J, Xiao R (2011) Genistein and folic acid prevent oxidation injury induced by β-amyloid peptide. Basic Clin Pharmacol Toxicol 198:333–340

    Article  CAS  Google Scholar 

  • Dong J, Apkarian RP, Lynn DG (2005) Imaging amyloid β peptide oligomeric particles in solution. Bioorg Medic Chem 13:5213–5217

    Article  CAS  Google Scholar 

  • Dong M, Hovgaard MB, Mamdouh W, Xu S, Otzen DE, Besenbacher F (2008) AFM-based force spectroscopy measurements of mature amyloid fibrils of the peptide glucagon. Nanotechnology 19(38). p. 384013 doi:10.1088/0957-4484/19/38/384013

    Google Scholar 

  • Doran TM, Anderson EA, Latcchney SE, Opanashuk LA, Niklsson BL (2012) Turn nucleation perturbs amyloid β self-assembly and cytotoxicity. J Mol Biol. doi:10.1016.jmb.2012.01.055

    Google Scholar 

  • Drochioiu G, Manea M, Dragusanu M, Murariu M, Dragan ES, Petre BA, Mezo G, Przybylski M (2009) Interaction of β-amyloid (1–40) peptide with pairs of metal ions: An electrospray ion trap mass spectrometry model study. Biophys Chem 144:9–20

    Article  PubMed  CAS  Google Scholar 

  • Eichner T, Kalverda AP, Thompson GS, Homans SW, Radford SE (2011) Confromational conversion during amyloid formation at atomic resolution. Mol Cell 41:161–172

    Article  PubMed  CAS  Google Scholar 

  • Fang C-L, Wu W-H, Liu Q, Sun X, Ma Y, Zhao Y-F, Li Y-M (2010) Dual functions of β-amyloid oligomer and fibril in Cu(II)-induced H2O2 production. Reg Pept 163:1–3

    Article  CAS  Google Scholar 

  • Ferreira ST, Klein WLKlein WL (2011) The Aβ oligmer hypothesis for synapse failure and memory loss in Alzheimer’s disease. Neurobiol Learn Mem 96:529–543

    Article  PubMed  CAS  Google Scholar 

  • Fogolari F, Corazza A, Varini N, Rotter M, Gumaari D, Codutti L, Renella E, Viglino P, Bellotti V, Esposito G (2011) Molecular dynamics simulation of β2-microglobulin in denaturing and stabilizing conditions. Proteins 79:986–1001

    Article  PubMed  CAS  Google Scholar 

  • Ford MJ, Cantone JL, Polson C, Toyn JH, Meredith JE, Drexler DM (2008) Qualitative and quantitative characterization of the amyloid beta peptide (Abeta) population in biological matrices using and immunoprecipitation-LC/MS assay. J Neurosci Meth 168:465–474

    Article  CAS  Google Scholar 

  • Forlenza OV, Diniz BS, Gattaz WF (2010) Diagnosis and biomarkers of predementia in Alzheimer’s disease. BMC Biomed. doi:10.1186/1741-7015-8-89

    Google Scholar 

  • Garvey M, Tepper K, Haupt C, Knüpfer U, Klement K, Meinhardt J, Horn U, Balbach J, Fändrich M (2011) Phosphate and HEPES buffers potently affect the fibrillation and oligomerization mechanism of Alzheimer’s Aβ peptide. Biochem Biophys Res Commun 409:385–388

    Article  PubMed  CAS  Google Scholar 

  • Gasperini RJ, Hou X, Parkington H, Coleman H, Klaver DW, Vincent AJ, Foa LC, Small DH (2011) TRPM8 and Nav1.8 sodium channels are required for transthyretin-induced calcium influx in growth cones of small-diameter TrkA-positive sensory neurons. Molec Neurodegen 6:19. doi:10.1186/1750-1326-6-19

    Article  CAS  Google Scholar 

  • Göransson A-L, Nilsson PR, Kägedal K, Brorsson A-C (2012) Identification of distinct physiochemical properties of toxic prefibrillar species formed by Aβ peptide variants. Biochem Biophys Res Commun. doi:10.1016/j.bbrc.2012.03.097

    Google Scholar 

  • Grasso G, Mineo P, Rizzarelli E, Spoto G (2009) MALDI, AP/MALDI and ESI techniques for the MS detection of amyloid β-peptides. Int J Mass Spect 282:50–55

    Article  CAS  Google Scholar 

  • Greenwald J, Riek R (2010) Biology of amyloid: Structure, function and regulation. Structure 18:1244–1260

    Article  PubMed  CAS  Google Scholar 

  • Guo J, Ren H, Ning L, Liu H, Yao X (2012) Exploring structural and thermodynamic stabilities of human prion protein pathogenic mutants D202N, E211Q and Q217R. J Struct Biol In press. doi:10.1016/j.jsb.2012.03.009

    Google Scholar 

  • Habib LK, Lee MTC, Yang J (2010) Inhibitors of catalase-amyloid interactions protect cells from beta-amyloid-induced oxidative stress and toxicity. J Biol Chem 285:38933–38943

    CAS  Google Scholar 

  • Hall D, Huang L (2012) On the use of size-exclusion chromatography for the resolution of mixed amyloid-aggregate distributions (I) Equilibrium partition models. Anal Biochem. In press. doi:10.1016/j.ab.2012.04.001

    Google Scholar 

  • Hammarström P, Ali MM, Mishra R, Svensson S, Tengvall P, Lundström I (2008) A catalytic surface for amyloid fibril formation. J Phys Conf Ser 100:052039

    Article  CAS  Google Scholar 

  • Harada T, Kuroda R (2011) CD measurements of β-amyloid (1–40) and (1–42) in the condensed phase. Biopolymers 95:127–134

    Article  PubMed  CAS  Google Scholar 

  • Harris JR (1997) Negative Staining and Cryoelectron Microscopy; the Thin Film Techniques. RMS Microscopy Handbooks 35. BIOS Scientific Publishers Ltd, Oxford

    Google Scholar 

  • Harris JR (2002) In vitro fibrillogenesis of the amyloid beta 1–42 peptide: cholesterol potentiation and aspirin inhibition. Micron 33:609–626

    Article  PubMed  CAS  Google Scholar 

  • Harris JR (2005) The contribution of microscopy to the study of amyloid plaques and to amyloid-β fibrillogenesis. In: Harris R, Fahrenholtz F (Eds) Alzheimer’s Disease, Cellular and Molecular Aspects of Amyloid-β, Subcellular Biochemistry, Vol. 38. Springer Science + Business Media, Inc., Germany, pp 1–44

    Google Scholar 

  • Harris JR (2006) Amyloid-β fibril formation in vitro. In: Harris JR, Graham JG, Rickwood DR (eds) Cell Biology Protocols. John Wiley and Sons Ltd., UK, pp 345–347

    Chapter  Google Scholar 

  • Harris JR (2008) Cholesterol binding to amyloid-β fibrils: A TEM study. Micron 39:1192–1196

    Article  PubMed  CAS  Google Scholar 

  • Harris JR (2010) Cholesterol in Alzheimer’s disease and other amyloidogenic disorders. In: Harris JR (ed) Cholesterol Binding and Cholesterol Transport Proteins, Subcellular Biochemistry, 51. Springer, Germany, pp 47–75

    Chapter  Google Scholar 

  • Harris JR, Milton NGN (2009) Cholesterol in Alzheimer’s disease and other amyloidogenic disorders. In: Harris JR (ed) Cholesterol Binding and Cholesterol Transport Proteins, Subcellular Biochemistry, Vol. 51. Springer, Germany, pp 47–75

    Google Scholar 

  • Heegaard NH (2008) Beta(2)-microglobulin: from physiology to amyloidosis. Amyloid 16:151–173

    Article  Google Scholar 

  • Herrera F, Tenreiro S, Miller-Fleming L, Outeiro TF (2011) Visualization of cell-to-cell transmission of mutant huntingtin oligomers. PloS Curr. doi:10.137/currents.RRN1210

    Google Scholar 

  • Hirohata M, Ono K, Takasaki J, Takahashi R, Ikeda T, Morinaga A, Yamada M (2012) Anti-amyloidogenic effects of soybean isoflavones in vitro: Fluorescence spectroscopy demonstrating direct binding of Aβ monomers, oligomers and fibrils. Biochim Biophys Acta. doi:10.1016/j.bbadis.2012.05.006

    Google Scholar 

  • Hou X, Mechler A, Martin LL, Aguilar M-I, Small DH (2008) Cholesterol and anionic phospholipids increase the binding of amyloidogenic transthyretin to lipid membranes. Biochim Biophys Acta 1778:198–205

    Article  PubMed  CAS  Google Scholar 

  • Howie AJ, Brewer DB (2009) Optical properties of amyloid stained by congo red: history and mechanisms. Micron 40:285–301

    Article  PubMed  CAS  Google Scholar 

  • Huang H-C, Chang P, Dai X-L, Jiang Z-F (2012) Protective Effects of Curcumin on Amyloid-β-Induced Neuronal Oxidative Damage. Neurochem Res. doi:1007/s11064-012-0754-9

    Google Scholar 

  • Jain S, Udgaonkar JB (2010) Salt-induced modulation of the pathway of amyloid fibril formation by the mouse prion protein. Biochemistry 49:7615–7624

    Article  PubMed  CAS  Google Scholar 

  • Jayaraman M, Thakur AK, Kar K, Kodali R, Wetzel R (2011) Assays for studying nucleated aggregation of polyamine proteins. Methods 53:246–254

    Article  PubMed  CAS  Google Scholar 

  • Kingsbury JS, Laue TM, Chase SF, Connors LH (2012) Detection of high molecular weight amyloid serum protein complexes using biological on-line tracer-sedimentation (BOLTS). Anal Biochem 425:151‒156

    Google Scholar 

  • Kloniecki M, Jablonowska A, PoznaÅ„ski J, Langridge J, Hughes C, Campuzano I, Giles K, Dadlez M (2011) Ion mobility separation coupled with MS detects two structural states of Alzheimer’s disease Aβ1–40 peptide oligomers. J Molec Biol 407:110–124

    Article  PubMed  CAS  Google Scholar 

  • Klunk WE (2011) Amyloid imaging as a biomarker for cerebral β-amyloidosis and risk prediction for Alzheimer dementia. Neurobiol Aging 32:S20–S36

    Article  PubMed  CAS  Google Scholar 

  • Kodali R, Williams AD, Chemuru S, Wetzel R (2010) Aβ(1–40) forms five distinct amyloid structures whose β-sheet contents and fibril stabilities are correlated. J Mol Biol 101:503–517

    Article  CAS  Google Scholar 

  • Kumar S, Seal CJ, Howes MJR, Kite GC, Okello EJ (2010) In vitro protective effects of Withania somnifera (L.) dunal root extract agains hydrogen peroxide and β-amyloid1–42-induced cytotoxicity in differentiated PC12 cells. Phytotherapy Res 24:1567–1574

    Article  CAS  Google Scholar 

  • Kumar S, Harris JR, Harris JR, Seal CJ, Seal CJ, Okello EJ (2012) An aqueous extract of Withania somnifera root inhibits amyloid β fibril formation in vitro. Phytotherapy Res 26:113–117

    Google Scholar 

  • Lachmann HJ, Goodman HJ, Gilbertson JA, Gallimore JR, Sabin CA, Gillmore JD, Hawkins PN (2007) Natural history and outcome in systemic AA amyloidosis. New Engl J Med 356:2361–2371

    Google Scholar 

  • Larson JL, Ko E, Miranker AD (2000) Direct measurment of islet amyloid polypeptide fibrillogenesis by mass spectrometry. Protein Sci 9:427–431

    Article  PubMed  CAS  Google Scholar 

  • Lasagna-Reeves CA, Kayed R (2011) Astrocytes contain amyloid-β annular protofibrils in Alzyeimer’s disease brains. FEBS Let 585:3052–3057

    Article  CAS  Google Scholar 

  • Lee CF (2009) Self-assembly of protein amyloids: A competition between amorphous and ordered aggregation. Phys Rev E 80:031922

    Article  CAS  Google Scholar 

  • Lee H-J, Bae E-J, Jang A, Ho, D-H, Cho E-D, Suk J-E, Yun Y-M, Lee S-J (2011a) Enzyme-linked immunosorbent assays for alpha-synuclein with species and multimeric state specificities. J Neurosci Meth 199:249–257

    Article  CAS  Google Scholar 

  • Lee J, Culyba EK, Powers ET, Kelly JW (2011b) Amyloid-β forms fibrils by nucleated conformational conversion of oligomers. Nature Chem Biol 7:602–609

    Article  CAS  Google Scholar 

  • LeVine H (1999) Quantification of β-sheet amyloid fibril structures with thioflavin T. Meth Enzymol 309:274–284

    Article  CAS  Google Scholar 

  • Li H, Luo Y, Derrteumaux P, Wei G (2011) Carbon nanotube inhibits the formation of β-sheet-rich oligomers of the Alzheimer’s amyloid-β(16–22) peptide. Biophys J 101:2267–2276

    Article  PubMed  CAS  Google Scholar 

  • Lifshitz V, Weiss R, Benromano T, Kfir E, Blumenfeld-Katzir T, Tempel-Brami C, Assaf Y, Xia W, Wyss-Coray T, Weiner HL, Frenkel D (2012) Immunotherapy of cerebrovascular amyloidosis in a transgenic mouse model. Neurobiol Aging 33:432.e1–432.e13

    Article  CAS  Google Scholar 

  • Lim KH, Le YTH, Collver HH, Putnam-Evans C, Kenney JM (2010) Characterization of amyloidogenic intermediate states through a combined use of CD and NMR spectroscopy. Biophys Chem 151:155–159

    Article  PubMed  CAS  Google Scholar 

  • Liu L, Komatsu H, Murray IVJ, Axelsen PH (2008) Promotion of amyloid β protein misfolding and fibrillogenesis by a lipid oxidation product. J Mol Biol 377:1236–1250

    Article  PubMed  CAS  Google Scholar 

  • Lopes DHJ, Smirnovas V, Winter R (2008) Islet amyloid polypeptide and high hydrostatic pressure: Towards an understanding of the fibrillation process. J Physics Conf Ser doi:10.1008/1742-6596/121/1/112002

    Google Scholar 

  • Losie D, Martin LL, Mechler A, Aguilar M-I, Small DH (2006) High resolution scanning tunnelling microscopy of the β-amyloid protein (Aβ1–40) of Alzheimer’s disease suggests a novel mechanism of oligmer assembly. J Struct Biol 155:104–110

    Article  CAS  Google Scholar 

  • Lu J, Wu D, Zheng Y, Sun D, Shan Q, Zhang Z, Fan S (2009) Trace amount of copper exacerbate beta amyloid-induced neurotoxicity in the cholesterol-fed mice through TNF-mediated inflammatory pathway. Brain Behav Immun 23:193–203

    Article  PubMed  CAS  Google Scholar 

  • Luers L, Panza G, Henke F, Agyenim T, Weiss J, Willbold D, Birkmann E (2010) Amyloid formation; age-related mechanism in Creutzfeld-Jacob disease. Rejuvinat Res 13:214–216

    Article  CAS  Google Scholar 

  • Maezawa I, Zimin PI, Wulff H, Jin L-W (2011) Amyloid-beta protein oligomer at low nanomolar concentrations activates microglia and induces microglial neurotoxicity. J Biol Chem 286:3693–3706

    Article  PubMed  CAS  Google Scholar 

  • Maguire-Zeiss KA, Federoff HJ (2010) Future directions for immune modulation in neurodegenerative disorders: focus on Parkinson's disease. J Neural Transm 117:1019‒1025

    Google Scholar 

  • Marchesi VT (2012) Alzheimer’s disease 2012: The great amyloid gamble. Amer J Pathol 180:1–6

    Article  CAS  Google Scholar 

  • Marshall KE, Morris KL, Charlton D, O’Reilly N, Lewis L, Walden H, Serpell LC (2011) Hydrophobic, aromatic, and electrostatic interactions play a central role in amyloid fibril formation and stability. Biochemistry 50:2061–2071

    Article  PubMed  CAS  Google Scholar 

  • Maurer-Stroh S, Debulpaep M, Kuemmerer N, Lopez de al Paz M, Martins IC, Reumers J, Morris KL, Copland A, Serpell L, Serrano L, Schymkowitz JW, Rousseau F (2010) Exploring the sequence determinants of amyloid structure using position-specific scoring matrices. Nat Methods 7:237–242

    Article  PubMed  CAS  Google Scholar 

  • Middleton CT, Marek P, Cao P, Chiu C, Singh S, Woys AM, de Pablo JJ, Raleigh DP, Zanni MT (2012) Two-dimensional infrared spectroscopy reveals the complex behaviour of an amyloid inhibitor. Nature Chemistry. doi:10.1038/NCHEM.1239

    Google Scholar 

  • Miller DL, Petempska A, Wegiel J, Mehta PD (2011) High-affinity rabbit monoclonal antibodies specific for amyloid peptides amyloid β40 and amyloid β42. J Alzheimers Dis 23:293–305

    PubMed  CAS  Google Scholar 

  • Milton NGN, Harris JR (2009) Polymorphism of amyloid-β fibrils and its effects on human erythrocyte catalase binding. Micron 40:800–810

    Article  PubMed  CAS  Google Scholar 

  • Milton NGN, Harris JR (2010) Human islet amyloid polypeptide fibril binding to catalase: A transmission electron microscopy and microplate study. ScientificWorldJournal 10:879–893

    Article  CAS  Google Scholar 

  • Moh CF, Siedlak SL, Tabaton M, Perry G, Castellani RJ, Smith MA (2010) Paraffin-embedded tissue (PET) blot method: application to Alzheimer disease. J Neurosci Meth 190:244–247

    Article  Google Scholar 

  • Mok Y-F, Howlett GJ (2006) Sedimentation velocity ananlysis of amyloid oligomers and fibrils. Meth Enzymol 413:199–217

    Article  PubMed  CAS  Google Scholar 

  • Mok Y-F, Ryan TM, Yang S, Hatters DM, Howlett GJ, Griffin MD W (2010) Sedimentation velocity analysis of amyloid oligomers and fibrils using fluorescent detection. Methods 54:67–75

    Article  PubMed  CAS  Google Scholar 

  • Morel B, Varela L, Conejero-Lara F (2010) The thermal stability of amyloid fibrils studied by differential scanning calorimetry. J Phys Chem B 114:4010–4019

    Article  PubMed  CAS  Google Scholar 

  • Morinaga A, Ono K, Takasaki J, Ikeda T, Hirohata M, Yamada M (2011) Effects of sex hormones on Alzhemier disease-associated β-amyloid oligomer formation in vitro. Exp Neurol 228:298–302

    Google Scholar 

  • Mothes E, Shoeman RL, Schröder RR Traub, P (1990) Polymerizing properties of pepstatin A. J Struct Biol 105:80–91

    Article  PubMed  CAS  Google Scholar 

  • Mu Y, Gao YQ (2009) Self-assembly of polypeptides into left-handedly twisted fibril-like structures. Phys Rev E Stat Nonlin Soft Matter Phys 80(4Pt 1):041927

    Article  PubMed  CAS  Google Scholar 

  • Munoz V (2008) Protein folding, misfolding and aggregation: Classical themes and novel approaches. Royal Society of Chemistry, London

    Book  Google Scholar 

  • Murciano-Calles J, Cobos ES, Mateo PL, Cmara-Artigas A, Martinez JC (2011) A comparative analysis of the folding and misfolding pathways of the third PDS domain of PSD95 investigated under different pH conditions. Biophys Chem 158:1104–111

    Article  CAS  Google Scholar 

  • Nagasaka T, Togashi S, Watanabe H, Iida H, Nagasaka K, Nakamura Y, Miwa M, Kobayashi K, Shindo K, Shiozawa Z (2009) Clinical and histopathological features of progressive-type familial amyloidotic polyneuropathy with TTR lys54. J Neurol Sci 276:88–94

    Article  PubMed  CAS  Google Scholar 

  • Nelson R, Sawaya MR, Balbirnie M, Madsen OA, Riekel C, Grothe R et al (2005) Structure of the cross-(β) spine of amyloid-like fibrils. Nature 435:773–778

    Article  PubMed  CAS  Google Scholar 

  • Nuntagij P, Oddo S, LaFerla FM, Kotchabhjakdi N, Ottersen OP, Torp R (2009) Amyloid deposits show complexity and intimate spatial relationship with dendrosomatic plasma membranes: an electron microscopic 3D reconstruction analysis in 3xTg-AD mice and aged canines. J Alzheimers Dis 16:316–323

    Google Scholar 

  • O’Doherty CB, Byrne AC (Eds.) (2009) Protein Misfolding, Nova biomedical

    Google Scholar 

  • Oh K-I, Lee J-H, Joo C, Han H, Cho M (2008) Beta-azidoalanine as an IR probe: Application to amyloid Abeta(16–22) aggregation. J Phys Chem B 112:10352–10357

    Article  PubMed  CAS  Google Scholar 

  • Olofsson A, Sauer-Eriksson AE, Öhman A (2009) Amyloid fibril dynamics revealed by combined hydrogen/deuterium exchange and nuclear magnetic resonance. Anal Biochem 385:374–376

    Article  PubMed  CAS  Google Scholar 

  • Ono K, Mochizuki H, Ikeda T, Nihira T, Takahashi J, Teplow DB, Yamada M (2011) Effect of melatonin on α-synuclein self-assembly and cytotoxicity. Neurobiol Aging doi:10.1016/j.neurobiolaging.2011.10.015

    Google Scholar 

  • Ortore MG, Spinozzi F, Vilasi S, Sirangelo T, Irace G, Shukla A, Narayanan T, Sinibaldi R, Mariani P (2011) Time-resolved small-angle X-ray scattering study of the early formation of amyloid protofibrils on a apomyoglobin mutant. Phys Rev Lett E 84:061904

    Google Scholar 

  • Ovchinnikova OY, Finder VH, Vodopivec I, Nitsch RM, Glochshuber R (2011) The Osaka FAD mutation E22Δ leads to the formation of a previously unknown type of amyloid β fibrils and modulates Aβ neurotoxicity. J Mol Biol 408:780–791

    Article  PubMed  CAS  Google Scholar 

  • Pearce FG, Mackintosh SH, Gerrard JA (2007) Formation of amyloid-like fibrils by ovalbumin and related proteins under conditions relevant to food processing. J Agric Food Chem 55:318–322

    Article  PubMed  CAS  Google Scholar 

  • Pearce FG, Griffin MDW, Gerrard JA (2009) Does domain swapping improve the stability of Rnase A? Biochem Biophys Res Commun 382:114–118

    Article  PubMed  CAS  Google Scholar 

  • Pedersen JS, Andersen CB, Otzen DF (2010a) Amyloid structure—one but not the same: the many levels of fibrillar polymorphism. FEBS J 277:4591–4601

    Article  CAS  Google Scholar 

  • Pedersed MO, Mikkelsen K, Behrens MA, Pedersen JS, Enghild JJ, Skrydstrup T, Malmendal A, Nielsen NC (2010b) NMR reveals two-step association of congo red to amyloid β in low-molecular—weight aggregates. J Phys Chem B 114:16003–16010

    Article  CAS  Google Scholar 

  • Philipson O, Lord A, Lalowski M, Soliymani R, Baumann M, Thyberg J, Bogdanovic N, Olofsson T, Tjernberg LO, Ingelsson M, Lannfelt L, Kalimo H, Nilsson LNG (2012) The Arctic amyloid-β precursor protein A (AβPP) mumtation results in distinct plaques and accumulation of N- and C-truncated Aβ. Neurobiol Aging 33:1010.e1–1010.e13

    Article  CAS  Google Scholar 

  • Picou RA, Kheterpal I, Wellman AD, Minnamreddy M, Ku G, Gilman SD (2011) Analysis of Aβ (1–40) and Aβ (1–42) monomer and fibrils by capillary electrophoresis. J Chromatog B 879:627–632

    Article  CAS  Google Scholar 

  • Picou RA, Schrum DP, Ku G, Cerqua RA, Kheterpal I, Gilman, SD (2012) Separation and detection of individual Aβ aggregates by capillary electrophoresis with laser-induced fluorescence detection. Anal Biochem 425:104–112

    Article  PubMed  CAS  Google Scholar 

  • Qiang W, Yau WM, Tycko R (2011) Structural evolution of Iowa mutant β-amyloid fibrils from polymorphic to homogeneous states under repeated seeded growth. J Am Chem Soc 133:4018–4029

    Article  PubMed  CAS  Google Scholar 

  • Rahimi F, Shanmugam A, Bitan G (2008) Structure-functon relationships of pre-fibrillar protein assemblies in Alzheimer’s disease and related disorders. Curr Alzheimer Res 5:319–341

    Article  PubMed  CAS  Google Scholar 

  • Rambaldi DC, Zattoni A, Reschiglian P, Colombo R, de Lorenzi E (2009) In vitro amyloid Abeta(1-42) peptide aggregation monitoring by asymmetrical flow field-flow fractionation with multi-angle light scattering detection. Anal Bioanal Chem 394:2145–2149

    Article  PubMed  CAS  Google Scholar 

  • Ramirez-Alvarado M, Kelly JW, Dobson CM (2010) Protein misfolding diseases: Current and emerging principles and therapies (Series in protein and peptide scienc), Wiley

    Google Scholar 

  • Reddy AS, Chopra M, de Pablo JJ (2010) GNNQQNY-investigation of early steps during amyloid formation. Biophys J 98:1038–1045

    Article  PubMed  CAS  Google Scholar 

  • Regazzoni L, Colombo R, Bertoletti L, Vistoli G, Aldini G et al (2011) Screening of fibrillogenesis inhibitors of β2-microglobulin: Integrated strategies by mass spectrometry capillary electrophoresis and in silico simulations. Anal Chim Acta 685:153–161

    Article  PubMed  CAS  Google Scholar 

  • Rennella E, Corazza A, Giorgetti S, Fogolari F, Viglino P, Porcari R, Verga L, Stoppini M, Bellotti V, Esposito G (2010) Folding and fibrillogenesis: Clues from β2-microglobulin. J Mol Biol 401:286–297

    Article  PubMed  CAS  Google Scholar 

  • Ricchelli F, Buggio R, Drago D, Salmona M, Forloni G, Negro A, Togon G, Zatta P (2006) Aggregation/fibrillogenesis of recombinant human prion protein and Gerstmann-Sträussler-Scheinker disease peptides in the presence of metal ions. Biochemistry 45:6724–6732

    Article  PubMed  CAS  Google Scholar 

  • Roberti MJ, Fölling J, Celej MS, Bossi M, Jovin TM, Jares-Erijman EA (2012) Imaging nanometer-sized α-synuclein aggregates bu superresolution fluorescence location microscopy. Biophys J 102:1598–1607

    Article  PubMed  CAS  Google Scholar 

  • Roberts BR, Ryan TM, Bush AI, Masters CL, Duce JA (2012) The role of metallobiology and amyloid-β peptides in Alzheimer's disease. J Neurochem 120 Suppl 1:149–166

    Google Scholar 

  • Rousseau F, Schymkowitz, J, Serrano L (2006) Protein aggregation and amyloidosis: confusion of the kinds? Curr Opin Struct Biol 16:118–126

    Article  PubMed  CAS  Google Scholar 

  • Sabaté R, Saupe SJ (2007) Thioflavin T fluorescence anisotropy: An alternative technique for the study of amyloid aggregation. Biochem Biophys Res Commun 360:135–138

    Article  PubMed  CAS  Google Scholar 

  • Saborio GP, Permanne B, Soto C (2001) Sensitive detection of pathological prion protein by cyclic amplification of protein misfolding. Nature 411:810–813

    Article  PubMed  CAS  Google Scholar 

  • Salem SA, Allsop D, Mann DMA, Tokuda T, El-Agnaf OMA (2007) An investigation into the lipid-binding properties of α-, β-, and γ-synucleins in human brain and cerebrospinal fluid. Brain Res 1170:103–111

    Article  PubMed  CAS  Google Scholar 

  • Sani M-A, Gehman JD, Separovic F (2011) Lipid matrix plays a role in Abeta kinetics and morphology. FEBS Lett 585:749–754

    Article  PubMed  CAS  Google Scholar 

  • Saunders GC, Griffiths PC, Cawthraw S, Tout AC, Wiener P, Woolliams JA, Williams JL, Windl O (2007) Polymorphisms of the prion protein gene coding region in born-after-the-reinforced-ban (BARB) bovine spongiform encephalopathy cattle in Great Britain. J Gen Virol 88:1374–1378

    Article  PubMed  CAS  Google Scholar 

  • Scheidt HA, Morgado I, Rothemund S, Huster D, Fändrich M (2011) Solid-state NMR spectroscopic investigation of Aβ protofibrils: implication for a β-sheet remodelling upon maturation into terminal amyloid fibrils. Ange Chim 50:2837–2840

    Article  CAS  Google Scholar 

  • Sellin D, Yan LM, Lapurniotu A, Winter R (2010) Suppression of IAPP fibrillation at anionic membranes via IAPP-derived amyloid inhibitors and insulin. Biophys Chem 150:73–79

    Google Scholar 

  • Sen A, Baxa U, Simon MN, Wall JS, Sebate R, Saupe SJ, Steven AC (2007) Mass analysis by scanning transmission electron microscopy and electron diffraction validate predictions of stacked β-solenoid model of HET-s prion fibrils. J Biol Chem 282:554–5550

    Google Scholar 

  • Shammas SL, Waudby CA, Wang S, Buell AK, Knowles TP J, Ecroyd H, Welland ME, Carfver JA, Dobson CM, Meehan S (2011) Binding of the molecular chaperone αB-crystallin to Aβ amyloid fibrils inhibits fibril elongation. Biophys J 101:1681–1689

    Google Scholar 

  • Shearman MS, Ragan CI, Iversen LL (1994) Inhibition of PC12 cell redox activity is a specific, early indicator of the mechanism of beta-amyloid-mediated cell death. Proc Natl Acad Sci USA 91:1470–1474

    Article  PubMed  CAS  Google Scholar 

  • Shimanouchi T, Tasaki M, Vu, HT, Ishii H, Yoshimoto N, Umakoshi H, Kuboi R (2010) Aβ/Cu-catalysed oxidation of cholesterol in 1,2-dipalmitoyl phosphatidylcholine liposome membrane. J Biosci Bioeng 109:145–148

    Article  PubMed  CAS  Google Scholar 

  • Shan W-J, Huang L, Zhou Q, Meng F-C, Li X-S (2011) Synthesis, biological evaluation of 9-N-substituted berberine derivatives as multi-functional agents of antioxidant, inhibitors of acetylcholinesterase, butyrylcholinesterase and amyloid-β aggregation. Eur J Medic Chem 46:5885–5893

    Article  CAS  Google Scholar 

  • Sikorska B, Liberski PP, Sobów T, Budka H, Isonside JW (2009) Ultrastructural study of florid plaques in variant Creutzfeld-Jakob disease: a comparison with amyloid plaques in kuru, sporadic Creutzfeld-Jakob disease and Gerstmann-Sträusler-Scheinker disease. Neuropathol Appl Neurobiol 35:46–59

    Article  PubMed  CAS  Google Scholar 

  • Sipe JD, Benson MD, Buxbaum JN, Ikeda S, Merlini G, Saraiva MJ, Wetermark P (2010) Amyloid fibril protein nomenclature: 2010 recommendations from the nomenclature committee of the International Society of Amyloidosis. Amyloid 17:101–104

    Article  PubMed  CAS  Google Scholar 

  • Smith AM, Williams RJ, Tang C, Coppo P, Collins RF, Turner ML, Saiani A, Ulijn RV (2008) Fmoc-Diphenylalanine self assembles to a hydrogel via a novel architecture based on pi-pi interlocked beta-sheets. Advanced Materials 20:37–41

    Article  CAS  Google Scholar 

  • So M, Yagi H, Sakurai K, Ogi H, Naiki H, Goto Y (2011) Ultrasonication-dependent acceleration of amyloid fibril formation. J Mol Biol 412:568–577

    Article  PubMed  CAS  Google Scholar 

  • Song H, Ritz S, Knoll W, Sinner E-K (2009) Conformation and topology of amyloid β-protein adsorbed on a tethered artificial membrane probed by surface plasmon field-enhanced fluorescence spectroscopy. J Struct Biol 168:117–124

    Article  PubMed  CAS  Google Scholar 

  • Song SM, Wang YX, Xiong LM, Qu LB, Xu MT (2012) AFM and fluorescence spectroscopy investigation for disaggregation of exisiting Aβ fibrils by baicalaein. Chinese Chem Lett. In press. doi:10.1016/j.cclet.2012.03.001

    Google Scholar 

  • Spires-Jones TL, de Calignon A, Meyer-Luehmann M, Bacskai BJ, Hyman BT (2011) Monitoring protein aggregation and toxicity in Alzheimer’s disease mouse models using in vivo imaging. Methods 53:201–207

    Article  PubMed  CAS  Google Scholar 

  • Stefani M (2010) Protein aggregation diseases: toxicity of soluble prefibrillar aggregates and their clinical significance. Meth Mol Biol 648:25–41

    Article  CAS  Google Scholar 

  • Steinmetz MO, Gattin Z, Verel R, Ciani B, Stomer T, Green JM, Tittmann P, Schulze-Briese C, Gross H, van Gunsteren WF, Meler BH, Serpell LC, Müller SA, Kammerer RA (2008) Atomic models of de novo designed ccβ-Met amyloid-like fibrils. J Mol Biol 376:898–912

    Article  PubMed  CAS  Google Scholar 

  • Stöhr J, Elfrink K, Weinmann N, Wille H, Birkmann E, Riesner D (2011) In vitro conversion and seeded fibrillization of posttranslationally modified prion protein. Biol Chem 392:415–421

    Article  PubMed  Google Scholar 

  • Strasfeld DB, Ling YL, Gupta R, Raleight DP, Zanni MT (2009) Strategies for extracting structural information from 2D IR spectroscopy of amyloid: application to islet amyloid polypeptide. J Phys Chem B 113:15679–15691

    Article  PubMed  CAS  Google Scholar 

  • Sugaya K, Matsubara S (2009) Nucleation of protein aggregation kinetics as a basis for genotype-phenotype correlations in polyglutamine diseases. Molec Neurodegen 4:29. doi:10.1186/1750-1326-4-29

    Article  CAS  Google Scholar 

  • Teoh CL, Pham CLL, Todorova N, Hung A, Lincoln CN, Lees E, Lam YH, Binger KJ, Thompson NH, Radford SE, Smith TA, Müller SA, Engel A, Griffin MDW, Yarovsky I, Gooley PR, Howlett GJ (2011) A structural model for apolipoprotein C-II amyloid fibrils: Experimental characterization and molecular dynamics simulations. J Mol Biol 405:1246–1266

    Article  PubMed  CAS  Google Scholar 

  • Tiggelaar SM, Mossou E, Callow P, Callow S, Teixeira SCM, Mitchell EP, Mitraki A, Forsyth VT (2011) Neutron fibre diffraction studies of amyloid using H2O/D2O isotopic replacement. Acta Crystallog Sect F Struct Biol Cryst Commun 67:332–335

    Article  CAS  Google Scholar 

  • Vlassenko AG, Benzinger TLS, Morris JC (2011) PET Amyloid-beta imaging in preclinical Alzheimer’s disease. Biochim Biophys Acta 1822:370–379

    PubMed  Google Scholar 

  • Wang W, Sandeep N, Teagarden D (2010) Protein aggregation—Pathways and influencing factors. Int J Pharmaceut 309:89–99

    Article  CAS  Google Scholar 

  • Wang Y-Q, Bongiovanni M, Gras SL, Perrett S (2011) The fibrils of Ure2p homologs from Saccharomyces cerevisiae and Saccharomyces paradoxus have similar cross-β structure in both dried and hydrated forms. J Struct Biol 174:505–511

    Article  PubMed  CAS  Google Scholar 

  • Ward B, Walker K, Exley C (2008) Copper(II) inhibits the formation of amylin amyloid in vitro. J Inorg Biochem 102:371–375

    Article  PubMed  CAS  Google Scholar 

  • White HE, Hodgkinson JL, Jahn TR, Cohen-Krausz S, Gosal WS, Müller S, Orlova EV, Radford SE, Saibil HR (2009) Globular tetramers of β2-microglobulin assemble into elaborate amyloid fibrils. J Mol Biol 389:48–57

    Article  PubMed  CAS  Google Scholar 

  • Wu JW, Breydo L, Isas JM, Lee J, Kuznetson YG, Langem R, Glabe C (2010) Fibrillar oligomers nucleate the oligomerization of monomeric amyloid β but do not seed fibril formation. J Biol Chem 285:6071–6079

    Article  PubMed  CAS  Google Scholar 

  • Xue WF, Homans SW, Radford SE (2009) Amyloid fibril length distribution quantified by atomic force microscopy single-particle image anlysis. Protein Eng Des Sel 8:489–496

    Article  CAS  Google Scholar 

  • Yamaguchi K, Matsumoto T, Kuwata K (2012) Proper calibration of ultrasonic power enabled the quantitative analysis of the ultrasonication-induced amyjhloid formation process. Protein Sci 21:38–49

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi T, Matsuzaki K, Hoshino M (2011) Transient formation of intermediate conformational states of amyloid β peptide revealed by heteronuclear magnetic resonance. FEBS Lett 585:1097–1102

    Article  PubMed  CAS  Google Scholar 

  • Yan J-W, Li Y-P, Ye W-J, Chen S-B, Hou J-Q, Tan J-H, Ou T-M, Li D, Gu L-Q, Huang Z-S (2012) Design, synthesis and evaluation of isaindigotone derivatives as dual inhibitors for acetylcholinesterase and amyloid beta aggregation. Bioorg Med Chem 20:2527–2534

    Article  PubMed  CAS  Google Scholar 

  • Yanagisawa D, Amatsubo T, Morikawa S, Taguchi H, Urushitani M, Shirai N, Hirao, K, Shiino A, Inubushi T, Tooyama I (2011) In vivo detection of amyloid β deposition using 19F magnetic resonance imaging with a 19F-containing curcumin derivative in a mouse model of Aldheimer’s disease. Neuroscience 184:120–127

    Article  PubMed  CAS  Google Scholar 

  • Zhang R, Hu X, Khant SJ, Chiu W, Schmid MF, Frieden C, Lee JM (2009) Interprotofilament interactions between Alzheimer’s Abeta1–42 peptides in amyloid fibrils revealed by cryoEM. Proc Natl Acad Sci USA 105:4653–4658

    Article  Google Scholar 

  • Zhang X, Sun X, Xue D, Liu D, Hu X, Zhao M, Yang S, Yang Y, Xia Y, Liu R (2011) Conformation-dependent scFv antibodies specifically recognize the oligomers assembled from various amyloids and show colocalization of amyloid fibrils with oligomers in patients with amyloidoses. Biochim Biophys Acta 1814:1703–1712

    Article  PubMed  CAS  Google Scholar 

  • Zhao J, Yu X, Liang G, Zheng J (2011) Heterogenous triangular structures of human islet amyjloid polypeptide (Amylin) with internal hydrophobic cavity and external wrapping morphology reveal the polymorphic nature of amyloid fibrils. Biomacromolecules 12:1781–1794

    Article  PubMed  CAS  Google Scholar 

  • Zheng J, Jang H, Ma B, Nussinov R (2008) Annular structures as intermediates in fibril formation of Alzheimer Aβ17–42. J Phys Chem 112:6856–6865

    Article  CAS  Google Scholar 

  • Zhou M, Smith AM, Das AK, Hodson NW, Collins RF, Ulijn RV, Gough JE (2009) Self-assembled peptide-based hydrogels as scaffolds for anchorage-dependent cells. Biomaterials 30:2523–2530

    Article  PubMed  CAS  Google Scholar 

  • Zhou Z, Yan X, Pan J, Zheng-Sheng X, Xiao G-F, Yang F-Q, Liang Y (2011) Fibril formation of the rabbit/human/bovine prion proteins. Biophys J 101:1483–1492

    Article  PubMed  CAS  Google Scholar 

  • Zhu X, Bora RP, Barman A, Singh, R, Prabhakar R (2012) Dimerization of the full-length Alzheimer amyloid β-peptide (Aβ42) in explicit aqueous solution: A molecular dynamics study. J Phys Chem B. doi:10.1021/jp210019h

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Robin Harris .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Harris, J.R., Milton, N.G.N. (2012). Introduction and Technical Survey: Protein Aggregation and Fibrillogenesis. In: Harris, J. (eds) Protein Aggregation and Fibrillogenesis in Cerebral and Systemic Amyloid Disease. Subcellular Biochemistry, vol 65. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5416-4_1

Download citation

Publish with us

Policies and ethics