Skip to main content

Experimental Inhibition of Fibrillogenesis and Neurotoxicity by amyloid-beta (Aβ) and Other Disease-Related Peptides/Proteins by Plant Extracts and Herbal Compounds

  • Chapter
  • First Online:
Protein Aggregation and Fibrillogenesis in Cerebral and Systemic Amyloid Disease

Part of the book series: Subcellular Biochemistry ((SCBI,volume 65))

Abstract

Amyloid-β (Aβ) fibrillogenesis and associated cyto/neurotoxicity are major pathological events and hallmarks in diseases such as Alzheimer’s disease (AD). The understanding of Aβ molecular pathogenesis is currently a pharmacological target for rational drug design and discovery based on reduction of Aβ generation, inhibition of Aβ fibrillogenesis and aggregation, enhancement of Aβ clearance and amelioration of associated cytotoxicity. Molecular mechanisms for other amyloidoses, such as transthyretin amyloidosis, AL-amyloidosis, as well as α-synuclein and prion protein are also pharmacological targets for current drug therapy, design and discovery. We report on natural herbal compounds and extracts that are capable binding to and inhibiting different targets associated with AD and other amyloid-associated diseases, providing a basis for future therapeutic strategies. Many herbal compounds, including curcumin, galantamine, quercetin and other polyphenols, are under active investigation and hold considerable potential for future prophylactic and therapeutic treatment against AD and other neurodegenerative diseases, as well as systemic amyloid diseases. A common emerging theme throughout many studies is the anti-oxidant and anti-inflammatory properties of the compounds or herbal extracts under investigation, within the context of the inhibition of cyto/neurotoxicity and anti-amyloid activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Akiyama H, Akiyama H, Fujii K, Yamasaki O, Oono T, Iwatsuki K (2001) Antibacterial action of several tannins against Staphylococcus aureus. J Antimicrob Chemother 48:487–491

    PubMed  CAS  Google Scholar 

  • Amri A, Chaumeil JC, Sfar S, Charrueau C (2012) Administration of resveratrol: What formulation solutions to bioavailability limitations? J Control Release 158:182–193

    PubMed  CAS  Google Scholar 

  • Arai H, Terajima M, Miura M, Higuchi S, Muramatsu T, Machida N, Seiki H, Takase S, Clark CM, Lee VMY, Trojanowski JQ, Sasaki H (1995) Tau in cerebrospinal fluid: A potential diagnostic marker in Alzheimer’s disease. Ann Neurol 38:649–652

    PubMed  CAS  Google Scholar 

  • Balaraman Y, Limaye AR, Levey AI, Srinivasan S (2006) Glycogen synthase kinase 3beta and Alzheimer’s disease: pathophysiological and therapeutic significance. Cell Mol Life Sci 63:1226–1235

    PubMed  CAS  Google Scholar 

  • Ban JY, Cho SO, Koh SB, Song KS, Bae K, Seong YH (2006) Protection of amyloid beta protein (25–35)-induced neurotoxicity by methanol extract of Smilacis chinae rhizome in cultured rat cortical neurons. J Ethnophamacol 106:230–237

    Google Scholar 

  • Ban JY, Jeon SY, Bae K, Song KS, Seong YH (2006) Catechin and epicatechin from Smilacis chinae rhizome protect cultured rat cortical neurons against amyloid beta protein (25–35)-induced neurotoxicity through inhibition of cytosolic calcium elevation. Life Sci 79:2251–2259

    CAS  Google Scholar 

  • Barzegar A, Moosavi-Movahedi AA (2011) Intracellular ROS protection efficiency and free radical-scavenging activity of curcumin. PLoS One 6:26012

    Google Scholar 

  • Bastianetto S, Yao ZX, Papadopoulos V, Quirion R (2006) Neuroprotective effects of green and black teas and their catechin gallate esters against beta-amyloid-induced toxicity. Eur J Neurosci 23:55–64

    PubMed  Google Scholar 

  • Behl C, Davis J, Cole GM, Schubert D (1992) Vitamin E protects nerve cells from amyloid β protein toxicity. Biochem Biophys Res Commun 186:944–950

    PubMed  CAS  Google Scholar 

  • Bomhoff G, Sloan K, McLain C, Gogol EP, Fisher MT (2006) The effects of the flavonoid baicalein and osmolytes on the Mg2+ accelerated aggregation/fibrillation of carboxymethylated bovine 1SS-alpha-lactalbumin. Arch Biochem Biophys 453:75–86

    PubMed  CAS  Google Scholar 

  • Bourgault S, Choi S, Buxbaum JN, Kelly JW, Price JL, Reixach N (2011) Mechanisms of transthyretin cardiomyocyte toxicity inhibition by resveratrol analogs. Biochem Biophys Res Commun 410:707–713

    PubMed  CAS  Google Scholar 

  • Burnett BP, Jia Q, Zhao Y, Levy RM (2007) A medicinal extract of Scutellaria baicalensis and Acacia catechu acts as a dual inhibitor of cyclooxygenase and 5-lipoxygenase to reduce inflammation. J Med Food 10:442–451

    PubMed  CAS  Google Scholar 

  • Buzzin P, Arapitsas P, Goretti M, Branda E, Turchetti B, Pinelli P, Ieri F, Romani A (2008) Antimicrobial and antiviral activity of hydrolysable tannins. Min Rev Med Chem 8:1179–1187

    Google Scholar 

  • Canevari L, Abramov AY, Duchen MR (2004) Toxicity of Amyloid β Peptide: Tales of Calcium, Mitochondria, and Oxidative Stress. Neurochem Res 29:637–650

    PubMed  CAS  Google Scholar 

  • Cardoso I, Almeida MR, Ferreira N, Arsequell G, Valencia G, Saraiva MJ (2007) Comparative in vitro and ex vivo activities of selected inhibitors of transthyretin aggregation: relevance in drug design. Biochem J 408:131–138

    PubMed  CAS  Google Scholar 

  • Castellani RJ, Nunomura A, Rolston RK, Moreira PI, Takeda A, Perry G, Smith MA (2008) Sublethal RNA oxidation as a mechanism for neurodegenerative disease. Int J Mol Sci 9:789–806

    PubMed  CAS  Google Scholar 

  • Caughey B, Raymond LD, Raymond GJ, Maxson L, Silveira J, Baron GS (2003) Inhibition of protease-resistant prion protein accumulation in vitro by curcumin. J Virol 277:5499–5502

    Google Scholar 

  • Chauhan N, Wang KC, Wegiel J, Malik MN (2004) Walnut extract inhibits the fibrillization of amyloid beta-protein, and also defibrillizes its preformed fibrils. Curr Alzheimer Res 1:183–188

    PubMed  CAS  Google Scholar 

  • Chen CY, Jang JH, Park MH, Hwang SJ, Surh YJ, Park OJ (2007) Attenuation of Abeta-induced apoptosis of plant extract (Saengshik) mediated by the inhibition of mitochondrial dysfunction and antioxidative effect. Ann NY Acad Sci 1095:399–411

    PubMed  Google Scholar 

  • Chiou WF, Lee WS, Yeh PH (2006) Tetrandrine selectively protects against amyloid-beta protein—but not against MPTP-induced cytotoxicity in SK-N-SH neuroblastoma cells. Planta med 72:1300–1304

    PubMed  CAS  Google Scholar 

  • Cho SO, Ban JY, Kim JY, Jeong HY, Lee IS, Song KS, Bae K, Seong YH (2009) Aralia cordata protects against amyloid beta protein (25–35)—induced neurotoxicity in cultured neurons and has antidementia activities in mice. J Pharm Sci 111:22–32

    CAS  Google Scholar 

  • Choi YH, Hong SS, Shin YS, Hwang BY, Park SY, Lee SY, Lee D (2010) Phenolic compounds from Pueraria lobata protect PC 12 cells against Aβ- induced toxicity. Arch Pharm Res 33:1651–1654

    PubMed  CAS  Google Scholar 

  • Citron M (2004) Strategies for disease modification in Alzheimer’s disease. Nat Rev Neurosci 5:677–685

    PubMed  CAS  Google Scholar 

  • Colon W, Kelly JW (1992) Partial denaturation of transthyretin is sufficient for amyloid fibril formation in vitro. Biochemistry 31:8654–8660

    PubMed  CAS  Google Scholar 

  • Comery TA, Martone RL, Aschmies S, Atchison KP, Diamantidis G, Gong X, Zhou H, Kreft AF, Pangalos MN, Sonnenberg-Reines J, Jacobsen JS, Marquis KL (2005) Acute γ-secretase inhibition improves contextual fear conditioning in the Tg2576 mouse model of Alzheimer’s disease. J Neurosci 25:8898–8902

    PubMed  CAS  Google Scholar 

  • Cordy JM, Hooper NM, Turner AJ (2006) The involvement of lipid rafts in Alzheimer’s disease. Mol Membr Biol 23:111–122

    PubMed  CAS  Google Scholar 

  • D’Archivio M, Filesi C, Varì R, Scazzocchio B, Masella R (2010) Bioavailability of the polyphenols: status and controversies. Int J Mol Sci 11:1321–1342

    PubMed  Google Scholar 

  • Datki Z, Juhasz A, Galfi M, Soos K, Papp R, Zadori D, Penke B (2003) Method for measuring neurotoxicity of aggregating polypeptides with the MTT assay on differentiated neuroblastoma cells. Brain Res Bull 62:223–229

    PubMed  CAS  Google Scholar 

  • Davies P, Koppel J (2009) Mechanism-based treatments for Alzheimer’s disease. Dialogues Clin Neurosci 11:159–169

    PubMed  Google Scholar 

  • Del Rio D, Stewart AJ, Mullen W, Burns J, Lean ME, Brighenti F, Crozier A (2004) HPLC-MSn analysis of phenolic compounds and purine alkaloids in green and black tea. J Agric Food Chem 52:2807–2815

    PubMed  Google Scholar 

  • Dickey CA, Kamal A, Lundgren K, Klosak N, Bailey RM, Dunmore J, Ash P, Shoraka S, Zlatkovic J, Eckman CB, Patterson C, Dickson DW, Nahman NS Jr, Hutton M, Burrows F, Petrucelli L (2007) The high-affinity HSP90-CHIP complex recognizes and selectively degrades phosphorylated tau client proteins. J Clin Invest 117:648–658

    PubMed  CAS  Google Scholar 

  • Dolphin GT, Chierici S, Ouberai M, Dumy P, Garcia J (2008) A multimeric quinacrine conjugate as a potential inhibitor of alzheimer’s β-amyloid fibril formation. ChembioChem 9:952–963

    PubMed  CAS  Google Scholar 

  • Drever BJ, Anderson WG, Riedel G, Kim DH, Rys JH, Choi DY, Platt B (2008) The seed extract of Cassia obtusifolia offer neuroprotection to mouse hippocampal cultures. J Pharmacol Sci 107:380–392

    PubMed  CAS  Google Scholar 

  • Durairajan SS, Yuan Q, Xie L, Chan WS, Kum WF, Koo I, Liu C, Song Y, Huang JD, Klein WL, Li M (2008) Salvianolic acid B inhibits Abeta fibril formation and disaggregates preformed fibrils and protects against Abeta-induced cytotoxicty. Neurochem Int 52:741–750

    PubMed  CAS  Google Scholar 

  • Ekinci FJ, Shea TB (2000) Phosphorylation of tau alters its association with the plasma membrane. Cell Mol Neurobiol 20:497–508

    PubMed  CAS  Google Scholar 

  • El-Sayed IH, Lotfy M, El-Khawaga OA, Nasif WA, El-Shahat M (2006) Prominent free radicals scavenging activity of tannic acid in lead-induced oxidative stress in experimental mice. Toxicol Ind Health 22:157–163

    PubMed  CAS  Google Scholar 

  • Fagarasan MO, Efthimiopoulos S (1996) Mechanism of amyloid β-peptide (1–42) toxicity in PC12 cells. Mol Psychiatry 1:398–403

    PubMed  CAS  Google Scholar 

  • Feng Y, Wang XP, Yang SG, Wang YJ, Zhang X, Du XT, Sun XX, Zhao M, Huang L, Liu RT (2009a) Resveratrol inhibits beta-amyloid oligomeric cytotoxicity but does not prevent oligomer formation. Neurotoxicology 30:986–995

    CAS  Google Scholar 

  • Feng Y, Yang SG, Du XT, Zhang X, Sun XX, Zhao M, Sun GY, Liu RT (2009b) Ellagic acid promotes Abeta42 fibrillization and inhibits Abeta42-induced neurotoxicity. Biochem Biophys Res Commun 390:1250–1254

    CAS  Google Scholar 

  • Ferreira N, Cardoso I, Domingues MR, Vitorino R, Bastos M, Bai G, Saraiva MJ, Almeida MR (2009) Binding of epigallocatechin-3-gallate to transthyretin modulates its amyloidogenicity. FEBS Lett 583:3569–3576

    PubMed  CAS  Google Scholar 

  • Ferreira N, Saraiva MJ, Almeida MR (2011) Natural polyphenols inhibit different steps of the process of transthyretin (TTR) amyloid fibril formation. FEBS Lett. 585:2424–2430

    PubMed  CAS  Google Scholar 

  • Fujiwara H, Iwasaki K, Furukawa K, Seki T, He M, Maruyama M, Tomita N, Kudo Y, Higuchi M, Saido TC, Maeda S, Takashima A, Hara M, Ohizumi Y, Arai H (2006) Uncaria rhynchophylla, a Chinese medicinal herb, has potent antiaggregation effects on Alzheimer’s β-amyloid proteins. J Neurosci Res 84:427–433

    PubMed  CAS  Google Scholar 

  • Fujiwara H, Tabuchi M, Yamaguchi T, Iwasaki K, Furukawa K, Sekiguchi K, Ikarashi Y, Kudo Y, Higuchi M, Saido TC, Maeda S, Takashima A, Hara M, Yaegashi N, Kase Y, Arai H (2009) A traditional medicinal herb Paeonia suffruticosa and its active constituent 1, 2, 3, 4, 6-penta-O-galloyl-beta-D-glucopyranose have potent anti-aggregation effects on Alzheimer’s amyloid beta proteins in vitro and in vivo. J Neurochem 109:1648–1657

    PubMed  CAS  Google Scholar 

  • Fukuyama R, Wadhwani KC, Galdzicki Z, Rapoport SI, Ehrenstein G (1994) β-Amyloid polypeptide increases calcium-uptake in PC12 cells: A possible mechanism for its cellular toxicity in Alzheimer’s disease. Brain Res 667:269–272

    PubMed  CAS  Google Scholar 

  • Gao B, Yao CS, Zhou JY, Chen RY, Fang WS (2006) Active constituents from Aloe arborescens as BACE inhibitors. Yao Xue Xue Bao 41:1000–1003

    PubMed  CAS  Google Scholar 

  • Gao J, Morganm WA, Sanchez-Medina A, Corcoran O (2011) The ethanol extract of Scutellaria baicalensis and the active compounds induce cell cycle arrest and apoptosis including upregulation of p53 and Bax in human lung cancer cells. Toxicol Appl Pharmacol 254:221–228

    PubMed  CAS  Google Scholar 

  • Goedert M, Strittmatter WJ, Roses AD (1994) Alzheimer’s disease. Risky apolipoprotein in brain. Nature 372:45–46

    PubMed  CAS  Google Scholar 

  • Gong L, Li SL, Li H, Zhang L (2011) Ginsenoside Rg1 protects primary cultured rat hippocampal neurons from cell apoptosis induced by β-amyloid protein. Pharm Biol 49:501–507

    PubMed  CAS  Google Scholar 

  • Gong Y, Chang L, Viola KL, Lacor PN, Lambert MP, Finch CE, Krafft GA, Klein WL (2003) Alzheimer’s disease-affected brain: Presence of oligomeric Aβ ligands (ADDLs) suggests a molecular basis for reversible memory loss. Proc Natl Acad Sci USA 100:10417–10422

    PubMed  CAS  Google Scholar 

  • Green NS, Foss TR, Kelly JW (2005) Genistein, a natural product from soy, is a potent inhibitor of transthyretin amyloidosis. Proc Natl Acad Sci USA 102:14545–14550

    PubMed  CAS  Google Scholar 

  • Grundke-Iqbal I, Iqbal K, Tung YC (1986) Abnormal phosphorylation of the microtubule-associated protein τ (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci USA 83:44913–44917

    Google Scholar 

  • Gupta VB, Indi SS, Rao KS (2009) Garlic extract exhibits antiamyloidogenic activity on amyloid-beta fibrillogenesis: relevance to Alzheimer’s disease. Phytother Res 23:111–115

    PubMed  Google Scholar 

  • Hage S, Kienlen-Campard P, Octave JN (2010) Quetin-Leclercq J. In vitro screening on β-amyloid peptide production of plants used in traditional medicine for cognitive disorders. J. Ethnopharmacol 131:585–591

    PubMed  CAS  Google Scholar 

  • Hardy J (2006) Alzheimer’s disease: The amyloid cascade hypothesis—An update and reappraisal. J Alzheimers Dis 9:151–153

    PubMed  CAS  Google Scholar 

  • Hardy J, Allsop D (1991) Amyloid deposition as the central event in the aetiology of Alzheimers’disease. Trends Pharmacol Sci 12:383–388

    PubMed  CAS  Google Scholar 

  • Hardy JA, Higgins GA (1992) Alzheimer’s disease: The amyloid cascade hypothesis. Science 256:184–185

    PubMed  CAS  Google Scholar 

  • Harper JD, Lansbury PT Jr (1997) Models of amyloid seeding in Alzheimer’s disease and scrapie: mechanistic truths and physiological consequences of time-dependent solubility of amyloid proteins. Ann Rev Biochem 66:385–407

    CAS  Google Scholar 

  • Harper JD, Wong SS, Lieber CM, Lansbury PT Jr (1997) Observation of metastable Aβ amyloid protofibrils by atomic force microscopy. Chem Biol 4:119–125

    CAS  Google Scholar 

  • Ho YS, Yu MS, Lai CS, So KF, Yuen WH, Chang RC (2007) Characterizing the neuroprotective effects of alkaline extract of Lycium barbarum on beta-amyloid peptide neurotoxicity. Brain Res 1158:123–134

    PubMed  CAS  Google Scholar 

  • Ho YS, Yu MS, Yang XF, So KF, Yuen WH, Chang RC (2010) Neuroprotective effects of polysaccharides from Wolfberry, the fruits of Lycium barbarum, against homocysteine- induced cytotoxicity in rat cortical neurons. J Alzheimers Dis 19:813–827

    PubMed  CAS  Google Scholar 

  • Hoi CP, Ho YP, Baum L, Chow AH (2010) Neuroprotective effects of constituents of honokiol and magnolol, compounds from Magnolia officinalis, on beta- amyloid- induced toxicity in PC 12 cells. Phytother Res 24:1538–1542

    PubMed  CAS  Google Scholar 

  • Holmgren G, Ericzon BG, Groth CG, Steen L, Suhr O, Andersen O, Wallin BG, Seymour A, Richardson S, Hawkins PN (1993) Clinical improvement and amyloid regression after liver transplantation in hereditary transthyretin amyloidosis. Lancet 341:1113–1116

    PubMed  CAS  Google Scholar 

  • Hossain DS, Bhattacharyya S, Das T, Sa G (2012) Curcumin: The multi-targeted therapy for cancer regression. Front. Biosci. (Schol. Ed.) 4:335–355

    Google Scholar 

  • Huang SH, Lin CM, Chiang BH (2008) Protective effects of Angelica sinensis extract on amyloid beta-peptide-induced neurotoxicity. Phytomedicine 15:710–721

    PubMed  CAS  Google Scholar 

  • Huang Y, Qi X, Guan Z, Wang Y, Wang A, Li C, Chi M (2010) Study on fingerprints correlated with pharmacodynamic of constituents in Herba erigerontis against neurotoxicity induced by beta-amyloid peptide. Zhongguo Zhong Yao Za Zhi 35:1038–1041

    PubMed  CAS  Google Scholar 

  • Imai K, Nakachi K (1995) Cross sectional study of effects of drinking green tea on cardiovascular and liver diseases. BMJ 310:693–696

    PubMed  CAS  Google Scholar 

  • Iqbal M, Okazaki Y, Okada S (2009) Curcumin attenuates oxidative damage in animals treated with a renal carcinogen, ferric nitrilotriacetate (Fe-NTA): implications for cancer prevention. Mol Cell Biochem 324:157–164

    PubMed  CAS  Google Scholar 

  • Iuvone T, De Filippis D, Esposito G, D’Amico A, Izzo AA (2006) The spice sage and its active ingredient rosmarinic acid protect PC12 cells from amyloid-beta peptide-induced neurotoxicity. J Pharmacol Exp Ther 317:1143–1149

    PubMed  CAS  Google Scholar 

  • Izzo AA, Capasso F (2007) Herbal medicines to treat Alzheimer’s disease. Trends Pharmacol Sci 28:47–48

    PubMed  CAS  Google Scholar 

  • Jacobson DR, Pastore RD, Yaghoubian R, Kane I, Gallo G, Buck FS, Buxbaum JN (1997) Variant-sequence transthyretin (isoleucine 122) in late-onset cardiac amyloidosis in black Americans. N Engl J Med 336:466–473

    PubMed  CAS  Google Scholar 

  • Jaisin Y, Thampithak A, Meesarapee B, Ratanachamnong P, Suksamrarn A, Phivthong-Ngam L, Phumala-Morales N, Chongthammakun S, Govitrapong P, Sanvarinda Y (2011) Curcumin protects the dopaminergic cell line SH-SY5Y from 6-hydroxydopamine-induced neurotoxicity through attenuation of p53-mediated apoptosis. Neurosci Lett 489:192–196

    PubMed  CAS  Google Scholar 

  • Jeon SY, Bae K, Seong YH, Song KS (2003) Green tea catechins as a BACE1 (beta-secretase) inhibitor. Bioorg Med Chem Lett 13:3905–3908

    PubMed  CAS  Google Scholar 

  • Jeong HY, Kim JY, Lee HK, Hado T, Song KS, Bae K, Seong YH (2010) Leaf and stem of Vitis amurensis and its active components protect against amyloid β protein (25–35)—induced neurotoxicity. Arch Pharm Res 33:1655–1664

    PubMed  CAS  Google Scholar 

  • Jeong JC, Yoon CH, Lee WH, Park KK, Chang YC, Choi YH, Kim CH (2005) Effects of Bambusae concretio Salicea (Chunchukhwang) on amyloid beta-induced cell toxicity and antioxidative enzymes in cultured rat neuronal astrocytes. J Ethnopharmacol 98:259–266

    PubMed  Google Scholar 

  • Ji HF, Zhang HY (2008) Multipotent natural agents to combat Alzheimer’s disease. Functional spectrum and structural features. Acta Pharmacol Sinica 29:143–151

    CAS  Google Scholar 

  • Jung Choi S, Kim MJ, Jin Heo H, Kim JK, Jin Jun W, Kim HK, Kim EK, Ok Kim M, Yon Chao H, Hwang HJ, Jun Kim Y, Shin DH (2009) Ameliorative effect of 1, 2-benzenedicarboxylic acid dinonyl ester against amyloid peptide-induced neurotoxicity. Amyloid 16:15–24

    CAS  Google Scholar 

  • Jung HA, Yokozawa T, Kim BW, Jung JH, Choi JS (2010) Selective inhibition of prenylated flavonoids from Sophora flavescens against BACE1 and cholinesterases. Am J Chin Med 38:415–429

    PubMed  CAS  Google Scholar 

  • Kang IJ, Jeon YE, Yin XF, Nam JS, You SG, Hong MS, Jang BG, Kim MJ (2011) Butanol extract of Ecklonia cava prevents production and aggregation of beta-amyloid, and reduces beta-amyloid mediated neuronal death. Food Chem Toxicol 49:2252–2259

    PubMed  CAS  Google Scholar 

  • Kelly JW (1998) The alternative conformations of amyloidogenic proteins and their multi-step assembly pathways. Curr Opin Struct Biol 8:101–106

    PubMed  CAS  Google Scholar 

  • Kim DC, Kim SH, Choi BH, Baek NI, Kim D, Kim MJ, Kim KT (2005) Curcuma longa extract protects against gastric ulcers by blocking H2 histamine receptors. Biol Pharm Bull 28:2220–2224

    PubMed  CAS  Google Scholar 

  • Kim HG, Ju MS, Park H, Seo Y, Jang YP, Hong J, Oh MS (2010) Evaluation of Samjunghwan, a traditional medicine, for neuroprotection against damage by amyloid-beta in rat cortical neurons. J Ethnopharmacol 130:625–630

    PubMed  Google Scholar 

  • Kim KH, Lee EN, Park JK, Lee JR, Kim JH, Choi HJ, Kim BS, Lee HW, Lee KS, Yoon S (2011) Curcumin Attenuates TNF-α-induced Expression of Intercellular Adhesion Molecule-1, Vascular Cell Adhesion Molecule-1 and Proinflammatory Cytokines in Human Endometriotic Stromal Cells Phytother Res doi:10.1002/ptr.3694

    Google Scholar 

  • Kim ST, Kim JD, Lyu YS, Lee MY, Kang HW (2006) Neuroprotective effect of some plant extracts in cultured CT105-induced PC12 cells. Biol Pharm Bull 29:2021–2024

    PubMed  CAS  Google Scholar 

  • Klein WL (2002) Aβ toxicity in Alzheimer’s disease: Globular oligomers (ADDLs) as new vaccine and drug targets. Neurochem Int 41:345–352

    PubMed  CAS  Google Scholar 

  • Kocisko DA, Baron GS, Rubenstein R, Chen J, Kuizon S, Caughey B (2003) New inhibitors of scrapie-associated prion protein formation in a library of 2000 drugs and natural products. J Virol 77:10288–10294

    Google Scholar 

  • Kumar S, Seal CJ, Howes MJ, Kite GC, Okello EJ (2010) In vitro protective effects of Withania somnifera (L.) dunal root extract against hydrogen peroxide and β-amyloid(1–42)-induced cytotoxicity in differentiated PC12 cells. Phytother Res 24:1567–1574

    PubMed  CAS  Google Scholar 

  • Kumar S, Harris JR, Seal CJ, Okello EJ (2012) An aqueous extract of Withania somnifera root inhibits Amyloid β fibril formation in vitro. Phytother Res 6:113–117

    Google Scholar 

  • Kwak YD, Wang R, Li JJ, Zhang YW, Xu H, Liao FF (2011) Differential regulation of BACE1 expression by oxidative and nitrosative signals. Mol Neurodegener 6:17

    PubMed  CAS  Google Scholar 

  • Lai SW, Yu MS, Yuen WH, Chang RC (2006) Novel neuroprotective effects of the aqueous extracts from Verbena officinalis Linn. Neuropharmacology 23:55–64

    Google Scholar 

  • Lambert JD, Sang S, Yang CS (2008) N-acetylcysteine enhances the lung cancer inhibitory effect of epigallocatechin-3-gallate and forms a new adduct. Free Radic Biol Med 44:1069–1074

    PubMed  CAS  Google Scholar 

  • Lee S, Suh S, Kim S (2000) Protective effects of the green tea polyphenol (−)-epigallocatechin gallate against hippocampal neuronal damage after transient global ischemia in gerbils. Neurosci Lett 287:191–194

    PubMed  CAS  Google Scholar 

  • Lee CL, Wang JJ, Pan TM (2008) Red mold rice extract represses amyloid beta peptide-induced neurotoxicity via potent synergism of anti-inflammatory and antioxidative effect. Appl Microbiol Biotechnol 79:829–841

    PubMed  CAS  Google Scholar 

  • Li F, Gong Q, Dong H, Shi J (2012) Resveratrol, a neuroprotective supplement for Alzheimer’s disease. Curr Pharm Des 18:27–33

    PubMed  Google Scholar 

  • Lim GP, Chu T, Yang F, Beech W, Frautschy SA, Cole GM (2001) The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. J Neurosci 21:8370–8377

    PubMed  CAS  Google Scholar 

  • Lim J, Lu KP (2005) Pinning down phosphorylated tau and tauopathies. Biochim Biophys Acta 1739:311–322

    PubMed  CAS  Google Scholar 

  • Limpeanchob N, Jaipan S, Rattanakaruna S, Phrompittayarat W, Ingkaninan K (2008) Neuroprotective effect of Bacopa monnieri on beta-amyloid-induced cell death in primary cortical culture. J Ethnopharmacol 120:112–117

    PubMed  Google Scholar 

  • Lin LC, Wang MN, Tseng TY, Sung JS, Tsai TH (2007) Pharmacokinetics of (−)-epigallocatechin-3-gallate in conscious and freely moving rats and its brain regional distribution. J Agric Food Chem 55:1517–1524

    PubMed  CAS  Google Scholar 

  • Liu Z, Yu Y, Li X, Ross CA, Smith WW (2011) Curcumin protects against A53T alpha-synuclein induced toxicity ina PC12 inducible cell model for Parkinsonism. Pharmacol Res 63:439–444

    PubMed  Google Scholar 

  • Longpré F, Garneau P, Christein Y, Ramassamy C (2006) Protection by EGb 761 against beta-amyloid—induced neurotoxicity: involvement of NF-Kappa B, SIRT 1 and MAPKs pathways and inhibition of amyloid fibril formation. Free Radic Biol Med 41:1781–1794

    PubMed  CAS  Google Scholar 

  • Lovestone S (1996) The genetics of Alzheimer’s disease—New opportunities and new challenges. Int J Geriatr Psychiatry 11:491–497

    Google Scholar 

  • Lu J, Jia H, Jiang Y, Xuan Y, Liu Z, Yue W, Beyreuther K, Tu P, Zhang D (2009) Tenuifolin, an extract derived from tenuigenin, inhibits amyloid-beta secretion in vitro. Acta Physiologica 196:419–425

    Google Scholar 

  • Lu Y, Wang Q, Melzigm MF, Jenett- Siems K (2009) Extracts of Cynomorium songaricum protect human neuroblastoma cells from beta-amyloid 25–35 and superoxide anion induced injury. Pharmazie 64:609–612

    CAS  Google Scholar 

  • Lu JH, Ardah MT, Durairajan SS, Liu LF, Xie LX, Fong WF, Hasan MY, Huang JD, El-Agnaf OM, Li M (2011) Baicalein Inhibits Formation of α-Synuclein Oligomers within Living Cells and Prevents Aβ Peptide Fibrillation and Oligomerisation. Chem biochem 12:615–624

    CAS  Google Scholar 

  • Luo H, Gu F, Li X (2003) Inhibiting effect of ethanol extract from Achyranthes bidentata on A beta 42 aggregation. Zhong Yao Cai 26:412–415

    PubMed  Google Scholar 

  • Luo Y, Bolon B, Kahn S, Bennett BD, Babu-Khan S, Denis P, Fan W, Kha H, Zhang J, Gong Y, Martin L, Louis JC, Yan Q, Richards WG, Citron M, Vassar R (2001) Mice deficient in BACE1, the Alzheimer’s γ-secretase, have normal phenotype and abolished β-amyloid generation. Nat Neurosci 4:231–232

    PubMed  CAS  Google Scholar 

  • Luo Y, Smith JV, Paramasivam V, Burdick A, Curry KJ, Buford JP, Khan I, Netzer WJ, Xu H (2002) Butko P. Inhibition of amyloid-beta aggregation and caspase-3 activation by the Ginkgo biloba extract EGb761. Proc Natl Acad Sci USA 99:12197–12202

    PubMed  CAS  Google Scholar 

  • Lv L, Yang QY, Zhao Y, Yao CS, Sun Y, Yang EJ, Song KS, Mook-Jung I, Fang WS (2008) BACE1 (beta-secretase) inhibitory chromone glycosides from Aloe vera and Aloe nobilis. Planta Med 74:540–545

    PubMed  CAS  Google Scholar 

  • Malva JO, Santos S, Macedo T (2004) Neuroprotective properties of Valeriana officinalis extracts. Neurotox Res 6:131–140

    PubMed  Google Scholar 

  • Mancini F, Simone AD, Andrisano V (2011) Beta-secretase as a target for Alzheimer’s disease. Anal Bioanal Chem 400:1979–1996

    PubMed  CAS  Google Scholar 

  • Manikandan R, Beulaja M, Thiagarajan R, Priyadarsini A, Saravanan R, Arumugam M (2011) Ameliorative effects of curcumin against renal injuries mediated by inducible nitric oxide synthase and nuclear factor kappa B during gentamicin-induced toxicity in Wistar rats. Eur J Pharmacol 670:578–585

    PubMed  CAS  Google Scholar 

  • Marchesi VT (2012) Alzheimer’s disease 2012: The great amyloid gamble. Amer J Pathol 180:1–6

    Google Scholar 

  • Martinez A, Perez DI (2008) GSK-3 inhibitors: a ray of hope for the treatment of Alzheimer’s disease? J Alzheimers Dis 15:181–191

    PubMed  CAS  Google Scholar 

  • Marumoto S, Miyazawa M (2010) β-secretase inhibitory effects of furanocoumarins from the root of Angelica dahurica. Phytother Res 24:510–513

    PubMed  CAS  Google Scholar 

  • Masuda M, Suzuki N, Taniguchi S, Oikawa T, Nonaka T, Iwatsubo T, Hisanaga S, Goedert M, Hasegawa M (2006) Small molecule inhibitors of alpha-synuclein filament assembly. Biochemistry 45:6085–6094

    PubMed  CAS  Google Scholar 

  • Matus A (1994) Stiff microtubules and neuronal morphology. Trends Neurosci 17:19–22

    PubMed  CAS  Google Scholar 

  • Mazanetz MP, Peter M, Fische PM (2007) Untangling tau hyperphosphorylation in drug design for neurodegenerative diseases. Nat Rev Drug Discov 6:464–479

    PubMed  CAS  Google Scholar 

  • Mereles D, Buss SJ, Hardt SE, Hunstein W, Katus HA (2010) Effects of the main green tea polyphenol epigallocatechin-3-gallate on cardiac involvement in patients with AL amyloidosis. Clin Res Cardiol 99:483–490

    PubMed  CAS  Google Scholar 

  • Michaelis ML, Ranciat N, Chen Y, Bechtel M, Ragan R, Hepperle M, Liu Y, Georg G (1998) Protection against β-amyloid toxicity in primary neurons by paclitaxel (taxol). J Neurochem 70:1623–1627

    PubMed  CAS  Google Scholar 

  • Mudher A, Lovestone S (2002) Alzheimer’s disease—Do tauists and baptists finally shake hands? Trends Neurosci 25:22–26

    PubMed  CAS  Google Scholar 

  • Na CS, Hong, SS, Choi YH, Lee YH, Hong SH, Lim JY, Kang BH, Park SY, Lee D (2010) Neuroprotective effects of constituents of Eragrostis ferruginea against Aβ induced toxicity in PC 12 cells. Arch Pharm Res 33:999–1003

    PubMed  CAS  Google Scholar 

  • Nelson PT, Jicha GA, Schmitt FA, Liu H, Davis DG, Mendiondo MS, Abner EL, Markesbery WR (2007) Clinicopathologic correlations in a large Alzheimer disease center autopsy cohort: Neuritic plaques and neurofibrillary tangles “do count” when staging disease severity. J Neuropathol Exp Neurol 66:1136–1146

    PubMed  Google Scholar 

  • Noble W, Planel E, Zehr C, Olm V, Meyerson J, Suleman F, Gaynor K, Wang L, LaFrancois J, Feinstein B, Burns M, Krishnamurthy P, Wen Y, Bhat R, Lewis J, Dickson D, Duff K (2005) Inhibition of glycogen synthase kinase-3 by lithium correlates with reduced tauopathy and degeneration in vivo. Proc Natl Acad Sci USA 102:6990–6995

    PubMed  CAS  Google Scholar 

  • Niidome T, Takahashi K, Goto Y, Goh S, Tanaka N, Kamei K, Ichida M, Hara S, Akaike A, Kihara T, Sugimoto H (2007) Mulberry leaf extract prevents amyloid beta-peptide fibril formation and neurotoxicity. Neuroreport 18:813–816

    PubMed  Google Scholar 

  • Nishida H, Kushida M, Nakajima Y, Ogawa Y, Tatewaki N, Sato S, Konishi T (2007) Amyloid beta-induced cytotoxicity of PC-12 cells was attenuated by Shengmai-San through redox regulation and outgrowth induction. J Pharmacol Sci 107:73–81

    Google Scholar 

  • Ohyagi Y (2008) Intracellular amyloid β-protein as a therapeutic target for treating Alzheimer’s disease. Curr Alzheimer Res 5:555–561

    PubMed  CAS  Google Scholar 

  • Okello EJ, Okello EJ, Savelev SU, Perry EK (2004) In vitro anti-beta-secretase and dual anti-cholinesterase activities of Camellia sinensis L. (tea) relevant to treatment of dementia. Phytother Res 18:624–627

    PubMed  Google Scholar 

  • Ono K, Hasegawa K, Naiki H, Yamada M (2004) Anti-amyloidogenic activity of tannic acid and its activity to destabilize Alzheimer’s beta-amyloid fibrils in vitro. Biochim Biophys Acta 1690:193–202

    PubMed  CAS  Google Scholar 

  • Pandey N, Strider J, Nolan WC, Yan SX, Galvin JE (2008) Curcumin inhibits aggregation of alpha-synuclein. Acta Neuropathol 115:479–489

    PubMed  CAS  Google Scholar 

  • Papandreou MA, Kanakis CD, Polissiou MG, Efthimiopoulos S, Cordopatis P, Margarity M, Lamari FN (2006) Inhibitory activity on amyloid-beta aggregation and antioxidant properties of Crocus sativus stigmas extract and its crocin constituents. J Agric Food Chem 54:8762–8768

    PubMed  CAS  Google Scholar 

  • Park SY, Lim JY, Jeong W, Hong SS, Yang YT, Hwang BY, Lee D (2010) C-methylflavonoids isolated from Callistemon lanceolates protect PC cells against Abeta-induced toxicity. Planta Medica 76:863–868

    PubMed  CAS  Google Scholar 

  • Park YH, Son IH, Kim B, Lyu YS, Movn HI, Kang HW (2009) Poria cocos water extract (PCW) protects PC 12 neuronal cells from beta-amyloid- induced cell death through antioxidant and antiapoptotic functions. Pharmazie 64:760–764

    PubMed  CAS  Google Scholar 

  • Petkova AT, Ishii Y, Balbach J, Antzutkin ON, Leapman RD, Delaglio F, Tycko R (2002) A structural model for Alzheimer’s β-amyloid fibrils based on experimental constraints from solid state NMR. Proc Natl Acad Sci USA 99:16742–16747

    PubMed  CAS  Google Scholar 

  • Porat Y, Abramowitz A, Gazit E (2006) Inhibition of amyloid fibril formation by polyphenols: structural similarity and aromatic interactions as a common inhibition mechanism. Chem Biol Drug Des 67:27–37

    PubMed  CAS  Google Scholar 

  • Prusiner SB (1987) Prions causing degenerative neurological diseases. Ann Rev Med 38:381–398

    PubMed  CAS  Google Scholar 

  • Pullakhandam R, Srinivas PN, Nair MK, Reddy GB (2009) Binding and stabilization of transthyretin by Curcumin. Archiv Biochem Biophys 485:115–119

    CAS  Google Scholar 

  • Qin XY, Cui J, Zhang Y (2010) Coeloglossum viride var.bracteatum extract protect against amyloid toxicity in rat prefrontal cortex neurons. Int J Clin Exp Med 30:88–99

    Google Scholar 

  • Quintas A, Saraiva MJ, Brito RM (1999) The tetrameric protein transthyretin dissociates to a non-native monomer in solution. A novel model for amyloidogenesis. J Biol Chem 274:32943–32949

    PubMed  CAS  Google Scholar 

  • Radović B, Mentrup B, Köhrle J (2006) Genistein and other soya isoflavones are potent ligands for transthyretin in serum and cerebrospinal fluid. Br J Nutr 95:1171–1176

    PubMed  Google Scholar 

  • Rambold AS, Müller V, Ron U, Ben-Tal N, Winklhofer KF, Tatzelt J (2008) Stress-protective signalling of prion protein is corrupted by scrapie prions. EMBO J 27:1974–1984

    PubMed  CAS  Google Scholar 

  • Ramesh BN, Rao TS, Prakasam A, Sambamurti K, Rao KS (2010) Neuronutrition and Alzheimer’s disease. J Alzheimers Dis 19:1123–1139

    PubMed  CAS  Google Scholar 

  • Rezai-Zadeh K, Shytle D, Sun N, Mori T, Hou H, Jeanniton D, Ehrhart J, Townsend K, Zeng J, Morgan D, Hardy J, Town T, Tan J (2005) Green tea epigallocatechin-3-gallate (EGCG) modulates amyloid precursor protein cleavage and reduces cerebral amyloidosis in Alzheimer transgenic mice. J Neurosci 25:8807–8814

    PubMed  CAS  Google Scholar 

  • Richard T, Poupard P, Nassra M, Papastamoulis Y, Iglésias ML, Krisa S, Waffo-Teguo P, Mérillon JM, Monti JP (2011) Protective effect of ε-viniferin on β-amyloid peptide aggregation investigated by electrospray ionization mass spectrometry. Bioorg Med Chem 19:3152–3155

    PubMed  CAS  Google Scholar 

  • Rivière C, Delaunay JC, Immel F, Cullin C, Monti JP (2009) The polyphenol piceid destabilizes preformed amyloid fibrils and oligomers in vitro:hypothesis on possible molecular mechanisms. Neurochem Res 34:1120–1128

    PubMed  Google Scholar 

  • Rossi L, Mazzitelli S, Arciello M, Capo CR, Rotilio G (2008) Benefits from dietary polyphenols for brain aging and Alzheimer’s disease. Neurochem Res 33:2390–2400

    PubMed  CAS  Google Scholar 

  • Roy S, Sannigrahi S, Majumdar S, Ghosh B, Sarkar B (2011) Resveratrol regulates antioxidant status, inhibits cytokine expression and restricts apoptosis in carbon tetrachloride induced rat hepatic injury. Oxid Med Cell Longev doi:10.1155/2011/703676

    Google Scholar 

  • Saengkhae C, Salerno M, Adès D, Siove A, Le Moyec L, Migonney V, Garnier-Suillerot A (2007) Ability of carbazole salts, inhibitors of Alzheimer beta-amyloid fibril formation, to cross cellular membranes. Eur J Pharmacol 559:124–131

    PubMed  CAS  Google Scholar 

  • Sakaguchi S (2009) Systematic review of the therapeutics for prion diseases. Brain Nerve 61:929–938

    PubMed  CAS  Google Scholar 

  • Schneider A, Mandelkow E (2008) Tau-Based Treatment Strategies in Neurodegenerative Diseases. Neurotherapeutics 5:443–457

    PubMed  CAS  Google Scholar 

  • Scott E, Steward WP, Gescher AJ, Brown K (2012) Resveratrol in human cancer chemoprevention—Choosing the ‘right’ dose. Mol Nutr Food Res 56:7–13

    PubMed  CAS  Google Scholar 

  • Selkoe DJ (1991) The molecular pathology of Alzheimer’s disease. Neuron 6:487–498

    PubMed  CAS  Google Scholar 

  • Selkoe DJ (2006) The ups and downs of Aβ. Nat Med 12:758–759

    PubMed  CAS  Google Scholar 

  • Sengupta M, Sharma GD, Chakraborty B (2012) Hepatoprotective and immunomodulatory properties of aqueous extract of Curcuma longa in carbon tetrachloride intoxicated Swiss albino mice. Asian Pac J Trop Biomed 1:193–199

    Google Scholar 

  • Serio TR, Cashikar AG, Kowal AS, Sawicki GJ, Moslehi JJ, Serpell L, Arnsdorf MF, Lindquist SL (2000) Nucleated conformational conversion and the replication of conformational information by a prion determinant. Science 289:1317–1321

    PubMed  CAS  Google Scholar 

  • Sha D, Li L, Ye L, Liu R, Xu Y (2009) Icariin inhibits neurotoxicity of beta-amyloid by upregulating cocaine-regulated and amphetamine- regulated transcripts. Neuroreport 20:1564–1567

    PubMed  CAS  Google Scholar 

  • Shao H, Jao SC, Ma K, Zagorski MG (1999) Solution structures of micelle-bound amyloid β-(1–40) and β-(1–42) peptides of Alzheimer’s disease. J Mol Biol 285:755–73

    PubMed  CAS  Google Scholar 

  • Shi C, Zhao L, Zhu B, Li Q, Yew DT, Yao Z, Xu J (2009) Protective effects of Ginkgo biloba extract(EGb 761) and its constituents quercetin and ginkgolide B against beta-amyloid peptide-induced toxicity in SH-SY5Y cells. Chem Biol Interact 181:115–123

    PubMed  CAS  Google Scholar 

  • Shytle RD, Bickford PC, Rezai-zadeh, K, Hou L, Zeng J, Tan J, Sanberg PR, Sanberg CD, Roschek B, Jr, Fink RC, Alberte RS (2009) Optimized turmeric extracts have potent anti-amyloidogenic effects. Curr Alzheimer Res 6:564–571

    PubMed  CAS  Google Scholar 

  • Siemers ER, Dean RA, Demattos R, May PC (2006) New pathways in drug discovery for Alzheimer’s disease. Curr Neurol Neurosci Rep 6:372–378

    PubMed  CAS  Google Scholar 

  • Silva BA, Dias AC, Ferreres F, Malva JO, Oliveira CR (2004) Neuroprotective effect of H. perforatum extracts on beta-amyloid-induced neurotoxicity. Neurotox Res 6:119–130

    PubMed  Google Scholar 

  • Stangou AJ, Hawkins PN (2004) Liver transplantation in transthyretin-related familial amyloid polyneuropathy. Curr Opin Neurol 17:615–620

    PubMed  Google Scholar 

  • Steiner H, Fluhrer R, Haass C (2008) Intramembrane proteolysis by gamma-secretase. J Biol Chem 283:29627–292631

    PubMed  CAS  Google Scholar 

  • Stokin, GB, Lillo C, Falzone TL, Brusch RG, Rockenstein E, Mount SL, Raman R, Davies P, Masliah E, Williams DS, Goldstein LS (2005) Axonopathy and transport deficits early in the pathogenesis of Alzheimer’s disease. Science 307:1282–1288

    PubMed  CAS  Google Scholar 

  • Sun AY, Wang Q, Simonyi A, Sun GY (2010) Resveratrol as a therapeutic agent for neurodegenerative diseases. Mol Neurobiol 41:375–383

    PubMed  CAS  Google Scholar 

  • Sun X, He G, Song W (2006) BACE2, as a novel APP θ-secretase, is not responsible for the pathogenesis of Alzheimer’s disease in Down syndrome. FASEB J 20:1369–1376

    PubMed  CAS  Google Scholar 

  • Tham DM, Gardner CD, Haskell WL (1998) Clinical review 97: potential health benefits of dietary phytoestrogens: a review of the clinical, epidemiological, and mechanistic evidence. J Clin Endocrinol Metab 83:2223–2235

    Google Scholar 

  • Thapa A, Woo ER, Chi EY, Sharoar MG, Jin HG, Shin SY, Park IS (2011) Biflavonoids are superior to monoflavonoids in inhibiting amyloid-β toxicity and fibrillogenesis via accumulation of nontoxic oligomer-like structures. Biochemistry 50:2445–2455

    PubMed  CAS  Google Scholar 

  • Trevitt CR, Collinge J (2006) A systematic review of prion therapeutics in experimental models. Brain 129:2241–2265

    PubMed  Google Scholar 

  • Van Der Schyf CJ, Geldenhuys WJ, Youdim MBH (2006) Multifunctional neuroprotective drugs for the treatment of cognitive and movement impairment disorders, including Alzheimer’s and Parkinson’s diseases. Drugs Future 31:447–460

    CAS  Google Scholar 

  • Van Marum RJ (2008) Current and future therapy in Alzheimer’s disease. Fundam Clinl Pharmacol 22:265–274

    Google Scholar 

  • Walsh DM, Lomakin A, Benedek GB, Condron MM, Teplow DB (1997) Amyloid β -protein fibrillogenesis: Detection of a protofibrillar intermediate. J Biol Chem 272:22364–22372

    PubMed  CAS  Google Scholar 

  • Walsh DM, Hartley DM, Kusumoto Y, Fezoui Y, Condron MM, Lomakin A, Benedek GB, Selkoe DJ, Teplow DB (1999) Amyloid β-protein fibrillogenesis. Structure and biological activity of protofibrillar intermediates. J Biol Chem 274:25945–25952

    PubMed  CAS  Google Scholar 

  • Wang G, Zhang SQ, Zhan H (2006) Effect of huperzine A on cerebral cholinesterase and acetylcholine in elderly patients during recovery from general anesthesia. Nan fang yi ke da xue xue bao. J Southern Hist 26:1660–1662

    CAS  Google Scholar 

  • Wang MS, Boddapati S, Emadi S, Sierks MR (2010) Curcumin reduces alpha-synuclein induced cytotoxicity in Parkinson’s disease cell model. BMC Neurosci 11:57

    PubMed  Google Scholar 

  • Wang SW, Wang YJ, Su YJ, Zhou WW, Yang S, Zhang R, Zhao M, Li YN, Zhang Z, Zhan D, Liu R (2012) Rutin inhibits b-amyloid aggregation and cytotoxicity, attenuates oxidative stress, and decreases the production of nitric oxide and proinflammatory cytokines. Neurotoxicology doi:10.1016/j.neuro.2012.03.003

    Google Scholar 

  • Wang Q, Xu J, Rottinhaus GE, Simonyi A, Lubahn D, Sun GY, Sun AY (2002) Resveratrol protects against global ischemic injury in gerbils. Brain Res 958:439–447

    PubMed  CAS  Google Scholar 

  • Weiner HL, Frenkel D (2006) Immunology and immunotherapy of Alzheimer’s disease. Nat Rev Immunol 6:404–416

    PubMed  CAS  Google Scholar 

  • Wolfe MS (2008) Inhibition and modulation of gamma-secretase for Alzheimer’s disease. Neurotherapeutics 5:391–398

    PubMed  CAS  Google Scholar 

  • Yang CS, Lambert JD, Sang S (2009) Antioxidative and anti-carcinogenic activities of tea polyphenols. Arch Toxicol 83:11–21

    PubMed  CAS  Google Scholar 

  • Yang F, Lim GP, Begum AN, Ubeda OJ, Simmons MR, Ambegaokar SS, Chen PP, Kayed R, Glabe CG, Frautschy SA, Cole GM (2005) Curcumin inhibits formation of amyloid beta oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J Biol Chem 280:5892–5901

    PubMed  CAS  Google Scholar 

  • Yang J, Ji Y, Mehta P, Bates KA, Sun Y, Wisniewski T (2011) Blocking the apolipoprotein E/amyloid-β interaction reduces fibrillar vascular amyloid deposition and cerebral microhemorrhages in TgSwDI mice. J Alzheimers Dis 24(2):269–85

    PubMed  CAS  Google Scholar 

  • Yang S, Zhang D, Yang Z, Hu X, Qian S, Liu J, Wilson B, Block M, Hong JS (2008) Curcumin protects dopaminergic neuron against LPS induced neurotoxicity in primary rat neuron/glia culture. Neurochem Res 33:2044–2053

    PubMed  CAS  Google Scholar 

  • Yin F, Liu J, Ji X, Wang Y, Zidichouski J, Zhang J (2011) Baicalin prevents the production of hydrogen peroxide and oxidative stress induced by Aβ aggregation in SH-SY5Y cells. J Neurosci Lett 492:76–79

    CAS  Google Scholar 

  • Youdim MBH, Buccafusco JJ (2005) Multi-functional drugs for various CNS targets in the treatment of neurodegenerative disorders. Trends Pharmacol Sci 26:27–35

    PubMed  CAS  Google Scholar 

  • Yu S, Zheng W, Xin N, Chi ZH, Wang NQ, Nie YX, Feng WY, Wang ZY (2010) Curcumin prevents dopaminergic neuronal death through inhibition of the c-Jun N-terminal kinase pathway. Rejuvenation Res 13:55–64

    PubMed  CAS  Google Scholar 

  • Zbarsky V, Datla KP, Parkar S, Rai DK, Aruoma OI, Dexter DT (2005) Neuroprotective properties of the natural phenolic antioxidants curcumin and naringenin but not quercetin and fisetin in a 6-OHDA model of Parkinson’s disease. Free Radic Res 39:1119–1125

    PubMed  CAS  Google Scholar 

  • Zhang N, Van Crombruggen K, Holtappels G, Bachhert C (2012) A herbal composition of Scutellaria baicallensis and Eleutherococus senticosus shows potent anti-inflammatory effects in an ex-vivo human mucosal tissue model. Evid Based Complement Altern Med doi:10.1155/2012/673145

    Google Scholar 

  • Zhang Z, Zhao R, Qi J, Wen S, Tang Y, Wang D (2011) Inhibition of glycogen synthase kinase—3β by Angelica sinesis extract decreases β-amyloid—induced neurotoxicity and tau phosphorylation in cultured cortical neurons. J Neurosci Res 89:437–447

    CAS  Google Scholar 

  • Zhang Z, Zhao R, Tang Y, Wen S, Wang D, Qi J (2011) Fuzhisan, a Chinese herbal medicine, inhibits beta-amyloid –induced neurotoxicity and tau phosphorylation through calpain/Cdk 5 pathway in cultured cortical neurons. Neurochem Res 36:801–811

    CAS  Google Scholar 

  • Zhou Y, Li W, Xu L, Chen L (2011) In Salvia miltiorrhiza, phenolic acids possess protective properties against amyloid β-induced cytotoxicity, and tanshinones act as acetylcholinesterase inhibitors. Environ Toxicol Pharmacol 31:443–452

    PubMed  CAS  Google Scholar 

  • Zhu M, Rajamani S, Kaylor J, Han S, Zhou F, Fink AL (2004) The flavonoid baicalein inhibits fibrillation of alpha-synuclein and disaggregates existing fibrils. J Biol Chem 279:26846–26857

    PubMed  CAS  Google Scholar 

  • Zhu Z, Li C, Wang X, Yang Z, Chen J, Hu L, Jiang H, Shen X (2010) 2, 2’, 4’-trihydroxychalcone from Glycyrrhiza glabra as a new specific BACE1 inhibitor efficiently ameliorates memory impairment in mice. J Neurochem 114:374–385

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suresh Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kumar, S., Okello, E., Harris, J. (2012). Experimental Inhibition of Fibrillogenesis and Neurotoxicity by amyloid-beta (Aβ) and Other Disease-Related Peptides/Proteins by Plant Extracts and Herbal Compounds. In: Harris, J. (eds) Protein Aggregation and Fibrillogenesis in Cerebral and Systemic Amyloid Disease. Subcellular Biochemistry, vol 65. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5416-4_13

Download citation

Publish with us

Policies and ethics