Skip to main content

Discovery of microRNA Regulatory Networks by Integrating Multidimensional High-Throughput Data

  • Chapter
  • First Online:
MicroRNA Cancer Regulation

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 774))

Abstract

MicroRNAs (miRNAs) are endogenous non-coding RNAs (ncRNAs) of approximately 22 nt that regulate the expression of a large fraction of genes by targeting messenger RNAs (mRNAs). However, determining the biologically significant targets of miRNAs is an ongoing challenge. In this chapter, we describe how to identify miRNA-target interactions and miRNA regulatory networks from high-throughput deep sequencing, CLIP-Seq (HITS-CLIP, PAR-CLIP) and degradome sequencing data using starBase platforms. In starBase, several web-based and stand-alone computational tools were developed to discover Argonaute (Ago) binding and cleavage sites, miRNA-target interactions, perform enrichment analysis of miRNA target genes in Gene Ontology (GO) categories and biological pathways, and identify combinatorial effects between Ago and other RNA-binding proteins (RBPs). Investigating target pathways of miRNAs in human CLIP-Seq data, we found that many cancer-associated miRNAs modulate cancer pathways. Performing an enrichment analysis of genes targeted by highly expressed miRNAs in the mouse brain showed that many miRNAs are involved in cancer-associated MAPK signaling and glioma pathways, as well as neuron-associated neurotrophin signaling and axon guidance pathways. Moreover, thousands of combinatorial binding sites between Ago and RBPs were identified from CLIP-Seq data suggesting RBPs and miRNAs coordinately regulate mRNA transcripts. As a means of comprehensively integrating CLIP-Seq and Degradome-Seq data, the starBase platform is expected to identify clinically relevant miRNA-target regulatory relationships, and reveal multi-dimensional post-transcriptional regulatory networks involving miRNAs and RBPs. starBase is available at http://starbase.sysu.edu.cn/.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Filipowicz W, Bhattacharyya SN, Sonenberg N (2008) Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 9:102–114

    Article  CAS  PubMed  Google Scholar 

  3. Inui M, Martello G, Piccolo S (2010) MicroRNA control of signal transduction. Nat Rev Mol Cell Biol 11:252–263

    Article  CAS  PubMed  Google Scholar 

  4. Thomas M, Lieberman J, Lal A (2010) Desperately seeking microRNA targets. Nat Struct Mol Biol 17:1169–1174

    Article  CAS  PubMed  Google Scholar 

  5. Rajewsky N (2006) microRNA target predictions in animals. Nat Genet 38(Suppl):S8–S13

    Article  CAS  PubMed  Google Scholar 

  6. Ambros V (2004) The functions of animal microRNAs. Nature 431:350–355

    Article  CAS  PubMed  Google Scholar 

  7. Chi SW, Zang JB, Mele A et al (2009) Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. Nature 460:479–486

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Zisoulis DG, Lovci MT, Wilbert ML et al (2010) Comprehensive discovery of endogenous Argonaute binding sites in Caenorhabditis elegans. Nat Struct Mol Biol 17:173–179

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Hafner M, Landthaler M, Burger L et al (2010) Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 141:129–141

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. German MA, Pillay M, Jeong DH et al (2008) Global identification of microRNA-target RNA pairs by parallel analysis of RNA ends. Nat Biotechnol 26:941–946

    Article  CAS  PubMed  Google Scholar 

  11. Addo-Quaye C, Eshoo TW, Bartel DP et al (2008) Endogenous siRNA and miRNA targets identified by sequencing of the Arabidopsis degradome. Curr Biol 18:758–762

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Yang JH, Li JH, Shao P et al (2011) starBase: a database for exploring microRNA-mRNA interaction maps from Argonaute CLIP-Seq and Degradome-Seq data. Nucleic Acids Res 39:D202–D209

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Griffiths-Jones S, Saini HK, van Dongen S et al (2008) miRBase: tools for microRNA genomics. Nucleic Acids Res 36:D154–D158

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Kersey PJ, Lawson D, Birney E et al (2010) Ensembl Genomes: extending Ensembl across the taxonomic space. Nucleic Acids Res 38:D563–D569

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Rhead B, Karolchik D, Kuhn RM et al (2010) The UCSC Genome Browser database: update 2010. Nucleic Acids Res 38:D613–D619

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15–20

    Article  CAS  PubMed  Google Scholar 

  17. Lewis BP, Shih IH, Jones-Rhoades MW et al (2003) Prediction of mammalian microRNA targets. Cell 115:787–798

    Article  CAS  PubMed  Google Scholar 

  18. Krek A, Grun D, Poy MN et al (2005) Combinatorial microRNA target predictions. Nat Genet 37:495–500

    Article  CAS  PubMed  Google Scholar 

  19. John B, Enright AJ, Aravin A et al (2004) Human MicroRNA targets. PLoS Biol 2:e363

    Article  PubMed Central  PubMed  Google Scholar 

  20. Kertesz M, Iovino N, Unnerstall U et al (2007) The role of site accessibility in microRNA target recognition. Nat Genet 39:1278–1284

    Article  CAS  PubMed  Google Scholar 

  21. Miranda KC, Huynh T, Tay Y et al (2006) A pattern-based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes. Cell 126:1203–1217

    Article  CAS  PubMed  Google Scholar 

  22. Xiao F, Zuo Z, Cai G et al (2009) miRecords: an integrated resource for microRNA-target interactions. Nucleic Acids Res 37:D105–D110

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Barrett T, Troup DB, Wilhite SE et al (2009) NCBI GEO: archive for high-throughput functional genomic data. Nucleic Acids Res 37:D885–D890

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Wu L, Zhang Q, Zhou H et al (2009) Rice MicroRNA effector complexes and targets. Plant Cell 21:3421–3435

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Pantaleo V, Szittya G, Moxon S et al (2010) Identification of grapevine microRNAs and their targets using high throughput sequencing and degradome analysis. Plant J 62:960–976

    CAS  PubMed  Google Scholar 

  26. Zhou MGL, Li P, Song X, Wei L, Chen Z, Cao X (2010) Degradome sequencing reveals endogenous small RNA targets in rice (Oryza sativa L. ssp. indica). Front Biol 5:67–90

    Article  CAS  Google Scholar 

  27. Ashburner M, Ball CA, Blake JA et al (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25:25–29

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Castillo-Davis CI, Hartl DL (2003) GeneMerge–post-genomic analysis, data mining, and hypothesis testing. Bioinformatics 19:891–892

    Article  CAS  PubMed  Google Scholar 

  30. Yang JH, Shao P, Zhou H et al (2010) deepBase: a database for deeply annotating and mining deep sequencing data. Nucleic Acids Res 38:D123–D130

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Zhang C, Darnell RB (2011) Mapping in vivo protein-RNA interactions at single-nucleotide resolution from HITS-CLIP data. Nat Biotechnol 29:607–614

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760

    Article  CAS  PubMed  Google Scholar 

  33. Langmead B, Trapnell C, Pop M et al (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25

    Article  PubMed Central  PubMed  Google Scholar 

  34. Li H, Handsaker B, Wysoker A et al (2009) The Sequence Alignment/Map format and SAMtools. Bioinformatics 25:2078–2079

    Article  PubMed  Google Scholar 

  35. Iorio MV, Croce CM (2009) MicroRNAs in cancer: small molecules with a huge impact. J Clin Oncol 27:5848–5856

    Article  CAS  PubMed  Google Scholar 

  36. Cimmino A, Calin GA, Fabbri M et al (2005) miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci U S A 102:13944–13949

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Mayr C, Hemann MT, Bartel DP (2007) Disrupting the pairing between let-7 and Hmga2 enhances oncogenic transformation. Science 315:1576–1579

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. O’Donnell KA, Wentzel EA, Zeller KI et al (2005) c-Myc-regulated microRNAs modulate E2F1 expression. Nature 435:839–843

    Article  PubMed  Google Scholar 

  39. Addo-Quaye C, Miller W, Axtell MJ (2009) CleaveLand: a pipeline for using degradome data to find cleaved small RNA targets. Bioinformatics 25:130–131

    Article  CAS  PubMed  Google Scholar 

  40. Hoffmann S, Otto C, Kurtz S et al (2009) Fast mapping of short sequences with mismatches, insertions and deletions using index structures. PLoS Comput Biol 5:e1000502

    Article  PubMed Central  PubMed  Google Scholar 

  41. Jones-Rhoades MW, Bartel DP (2004) Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell 14:787–799

    Article  CAS  PubMed  Google Scholar 

  42. Allen E, Xie Z, Gustafson AM et al (2005) microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell 121:207–221

    Article  CAS  PubMed  Google Scholar 

  43. George AD, Tenenbaum SA (2006) MicroRNA modulation of RNA-binding protein regulatory elements. RNA Biol 3:57–59

    Article  CAS  PubMed  Google Scholar 

  44. Kishore S, Luber S, Zavolan M (2010) Deciphering the role of RNA-binding proteins in the post-transcriptional control of gene expression. Brief Funct Genomics 9:391–404

    Article  CAS  PubMed  Google Scholar 

  45. Kedde M, van Kouwenhove M, Zwart W et al (2010) A Pumilio-induced RNA structure switch in p27-3′ UTR controls miR-221 and miR-222 accessibility. Nat Cell Biol 12:1014–1020

    Article  CAS  PubMed  Google Scholar 

  46. Nolde MJ, Saka N, Reinert KL et al (2007) The Caenorhabditis elegans pumilio homolog, puf-9, is required for the 3′UTR-mediated repression of the let-7 microRNA target gene, hbl-1. Dev Biol 305:551–563

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Lebedeva S, Jens M, Theil K et al (2011) Transcriptome-wide analysis of regulatory interactions of the RNA-binding protein HuR. Mol Cell 43:340–352

    Article  CAS  PubMed  Google Scholar 

  48. Xue Y, Zhou Y, Wu T et al (2009) Genome-wide analysis of PTB-RNA interactions reveals a strategy used by the general splicing repressor to modulate exon inclusion or skipping. Mol Cell 36:996–1006

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Tollervey JR, Curk T, Rogelj B et al (2011) Characterizing the RNA targets and position-dependent splicing regulation by TDP-43. Nat Neurosci 14:452–458

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Yeo GW, Coufal NG, Liang TY et al (2009) An RNA code for the FOX2 splicing regulator revealed by mapping RNA-protein interactions in stem cells. Nat Struct Mol Biol 16:130–137

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Papadopoulos GL, Alexiou P, Maragkakis M et al (2009) DIANA-mirPath: integrating human and mouse microRNAs in pathways. Bioinformatics 25:1991–1993

    Article  CAS  PubMed  Google Scholar 

  52. Keene JD (2007) RNA regulons: coordination of post-transcriptional events. Nat Rev Genet 8:533–543

    Article  CAS  PubMed  Google Scholar 

  53. Shannon P, Markiel A, Ozier O et al (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504

    Article  CAS  PubMed  Google Scholar 

  54. Gentleman RC, Carey VJ, Bates DM et al (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5:R80

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This research is supported by the National Natural Science Foundation of China (No. 30830066, 30900820); Ministry of Science and Technology of China, National Basic Research Program (No. 2011CB811300); the funds from Guangdong Province (No. S2012010010510); The project of Science and Technology New Star in ZhuJiang Guangzhou city (No. 2012J2200025); Fundamental Research Funds for the Central Universities (No. 2011330003161070); China Postdoctoral Science Foundation (No. 200902348).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang-Hu Qu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Yang, JH., Qu, LH. (2013). Discovery of microRNA Regulatory Networks by Integrating Multidimensional High-Throughput Data. In: Schmitz, U., Wolkenhauer, O., Vera, J. (eds) MicroRNA Cancer Regulation. Advances in Experimental Medicine and Biology, vol 774. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5590-1_13

Download citation

Publish with us

Policies and ethics