Skip to main content

The Duality of Stem Cells: Double-Edged Sword in tumor Evolution and Treatment

  • Chapter
  • First Online:
Trends in Stem Cell Proliferation and Cancer Research

Abstract

Cancer is a disease of the gene, caused by genetic and epigenetic mutations, resulting in the development of malignant cells. Previous concepts of the monoclonal origin of tumors and the stochastic nature of carcinogenesis are being challenged by hierarchical/plasticity models that predict the existence of tumor-initiating and tumor-propagating cells, which have stem cell properties and are thus highly resistant to therapy. It may therefore be postulated that cancer is a stem cell disease. One of the actively investigated tumors of cancer stem cell origin is glioma, one of the commonest primary brain tumors in adults. In this chapter we shall focus on glioblastoma multiforme (GBM), glioma’s most malignant stage, characterized by enhanced, single-cell infiltration into normal brain. The invasive cell phenotype is the major obstacle for successful therapy, as highly invasive cells that can migrate from the bulk tumor mass cannot be removed by any currently available therapy. Invasion is a complex, stepwise process, initiated at various levels—from gene activation to the level of protein post-translational modification. At the phenotype level, the process is reminiscent of the epithelial to mesenchymal transition in carcinoma malignization, which includes the activation of the so-called migratome, possibly overlapping with proteases, i.e. a cancer degradome. On the basis of the hierarchical/plasticity model of carcinogenesis, the cells undergoing epithelial to mesenchymal transition may also have stem/progenitor cell characteristics. Other types of stem cells associated with tumors are infiltrating haematopoietic stem cells, endothelial progenitor cells and mesenchymal stem cells (MSCs), comprising the tumor microenvironment. Their role and differentiation pathways in tumor niches are the subject of intensive investigations, and unravelling the mechanisms underlying MSC-mediated modulation of tumor behaviour via paracrine and direct interactions with GBM stem cells in vitro may solve the dispute regarding their antimalignant activity, which is currently contradictory to the hypothesis of a possible mesenchymal origin of GBM stem cells. By the same token, MSCs may be novel therapeutic vectors for drug delivery, which are badly needed. Cell therapies using stem cells are promising owing to their selective tropism towards tumors. In particular, autologous MSCs are considered promising at least in some tumors, especially owing to their immunomodulatory potential. However, MSC therapy may have adverse effects, since the role of MSCs in tumor progression has been evidenced. Combined cell-based drug and gene delivery with anti-invasive strategies could therefore contribute to enhanced efficacy of conventional therapeutic approaches in glioblastoma treatment. In this chapter we shall thoroughly revisit the advantages of and obstacles in recent preclinical trials using stem cells for treating brain tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aboody KS, Brown A, Rainov NG, Bower KA, Liu S, Yang W, Small JE, Herrlinger U, Ourednik V, Black PM, Breakefield XO, Snyder EY (2000) Neural stem cells display extensive tropism for pathology in adult brain: evidence from intracranial gliomas. Proc Natl Acad Sci USA 97:12846–12851

    PubMed  CAS  Google Scholar 

  • Aguirre-Ghiso JA (2007) Models, mechanisms and clinical evidence for cancer dormancy. Nat Rev Cancer 7(11):834–846

    PubMed  CAS  Google Scholar 

  • Al-Hajj M, Clarke MF (2004) Self-renewal and solid tumor stem cells. Oncogene 23:7274–7282

    PubMed  CAS  Google Scholar 

  • Alviano F, Fossati V, Marchionni C, Arpinati M, Bonsi L, Franchina M, Lanzoni G, Cantoni S, Cavallini C, Bianchi F, Tazzari PL, Pasquinelli G, Foroni L, Ventura C, Grossi A, Bagnara GP (2007) Term amniotic membrane is a high throughput source for multipotent mesenchymal stem cells with the ability to differentiate into endothelial cells in vitro. BMC Dev Biol 7:11

    PubMed  Google Scholar 

  • Anand P, Kunnumakkara AB, Sundaram C, Harikumar KB, Tharakan ST, Lai OS, Sung B, Aggarwal BB (2008) Cancer is a preventable disease that requires major lifestyle changes. Pharm Res 25:2097–2116

    PubMed  CAS  Google Scholar 

  • Ardebili SY, Zajc I, Gole B, Campos B, Herold-Mende C, Drmota S, Lah TT (2011) CD133/prominin1 is prognostic for GBM patient’s survival, but inversely correlated with cysteine cathepsins’ expression in glioblastoma derived spheroids. Radiol Oncol 45:102–115

    PubMed  CAS  Google Scholar 

  • Atai NA, Renkema-Mills NA, Bosman J, Schmidt N, Rijkeboer D, Tigchelaar W, Bosch KS, Troost D, Jonker A, Bleeker FE, Miletic H, Bjerkvig R, De Witt Hamer PC, Van Noorden CJ (2011) Differential activity of NADPH-producing dehydrogenases renders rodents unsuitable models to study IDH1R132 mutation effects in human glioblastoma. J Histochem Cytochem 59:489–503

    PubMed  CAS  Google Scholar 

  • Bagci-Onder T, Wakimoto H, Anderegg M, Cameron C, Shah K (2011) A dual PI3 K/mTOR inhibitor, PI-103, cooperates with stem cell-delivered TRAIL in experimental glioma models. Cancer Res 71:154–163

    PubMed  CAS  Google Scholar 

  • Balyasnikova IV, Ferguson SD, Sengupta S, Han Y, Lesniak MS (2010) Mesenchymal stem cells modified with a single-chain antibody against EGFRvIII successfully inhibit the growth of human xenograft malignant glioma. PLoS One 5:e9750

    PubMed  Google Scholar 

  • Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, Dewhirst MW, Bigner DD, Rich JN (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444:756–760

    PubMed  CAS  Google Scholar 

  • Bednarz-Knoll N, Alix-Panabieres C, Pantel K (2011) Clinical relevance and biology of circulating tumor cells. Breast Cancer Res 13:228

    PubMed  Google Scholar 

  • Beier D, Hau P, Proescholdt M, Lohmeier A, Wischhusen J, Oefner PJ, Aigner L, Brawanski A, Bogdahn U, Beier CP (2007) CD133+ and CD133- glioblastoma-derived cancer stem cells show differential growth characteristics and molecular profiles. Cancer Res 67:4010–4015

    PubMed  CAS  Google Scholar 

  • Bellail AC, Hunter SB, Brat DJ, Tan C, Van Meir EG (2004) Microregional extracellular matrix heterogeneity in brain modulates glioma cell invasion. Int J Biochem Cell Biol 36:1046–1069

    PubMed  CAS  Google Scholar 

  • Bentzon JF, Stenderup K, Hansen FD, Schroder HD, Abdallah BM, Jensen TG, Kassem M (2005) Tissue distribution and engraftment of human mesenchymal stem cells immortalized by human telomerase reverse transcriptase gene. Biochem Biophys Res Commun 330:633–640

    PubMed  CAS  Google Scholar 

  • Bernardo ME, Zaffaroni N, Novara F, Cometa AM, Avanzini MA, Moretta A, Montagna D, Maccario R, Villa R, Daidone MG, Zuffardi O, Locatelli F (2007) Human bone marrow derived mesenchymal stem cells do not undergo transformation after long-term in vitro culture and do not exhibit telomere maintenance mechanisms. Cancer Res 67:9142–9149

    PubMed  CAS  Google Scholar 

  • Bexell D, Gunnarsson S, Tormin A, Darabi A, Gisselsson D, Roybon L, Scheding S, Bengzon J (2009) Bone marrow multipotent mesenchymal stroma cells act as pericyte-like migratory vehicles in experimental gliomas. Mol Ther 17:183–190

    PubMed  CAS  Google Scholar 

  • Bexell D, Scheding S, Bengzon J (2010) Toward brain tumor gene therapy using multipotent mesenchymal stromal cell vectors. Mol Ther 18:1067–1075

    PubMed  CAS  Google Scholar 

  • Biddle A, Liang X, Gammon L, Fazil B, Harper LJ, Emich H, Costea DE, Mackenzie IC (2011) Cancer stem cells in squamous cell carcinoma switch between two distinct phenotypes that are preferentially migratory or proliferative. Cancer Res 71:5317–5326

    PubMed  CAS  Google Scholar 

  • Binello E, Germano IM (2012) Stem cells as therapeutic vehicles for the treatment of high-grade gliomas. Neuro-oncology 14:256–265

    PubMed  CAS  Google Scholar 

  • Birnbaum T, Roider J, Schankin CJ, Padovan CS, Schichor C, Goldbrunner R, Straube A (2007) Malignant gliomas actively recruit bone marrow stromal cells by secreting angiogenic cytokines. J Neurooncol 83:241–247

    PubMed  CAS  Google Scholar 

  • Bjerkvig R, Tysnes BB, Aboody KS, Najbauer J, Terzis AJ (2005) Opinion: the origin of the cancer stem cell: current controversies and new insights. Nat Rev Cancer 5:899–904

    PubMed  CAS  Google Scholar 

  • Bjerkvig R, Johansson M, Miletic H, Niclou SP (2009) Cancer stem cells and angiogenesis. Semin Cancer Biol 19:279–284

    PubMed  CAS  Google Scholar 

  • Bleeker FE, Molenaar RJ, Leenstra S (2012) Recent advances in the molecular understanding of glioblastoma. J Neurooncol 108:11–27

    PubMed  CAS  Google Scholar 

  • Bonavia R, Inda MM, Cavenee WK, Furnari FB (2011) Heterogeneity maintenance in glioblastoma: a social network. Cancer Res 71:4055–4060

    PubMed  CAS  Google Scholar 

  • Borovski T, Vermeulen L, Sprick MR, Medema JP (2009) One renegade cancer stem cell? Cell Cycle 8:803–808

    PubMed  CAS  Google Scholar 

  • Borovski T, De Sousa EMF, Vermeulen L, Medema JP (2011) Cancer stem cell niche: the place to be. Cancer Res 71:634–639

    PubMed  CAS  Google Scholar 

  • Brabletz T, Jung A, Spaderna S, Hlubek F, Kirchner T (2005) Opinion: migrating cancer stem cells—an integrated concept of malignant tumor progression. Nat Rev Cancer 5:744–749

    PubMed  CAS  Google Scholar 

  • Brabletz T (2012) To differentiate or not–routes towards metastasis. Nat Rev Cancer 12:425–436

    PubMed  CAS  Google Scholar 

  • Calabrese C, Poppleton H, Kocak M, Hogg TL, Fuller C, Hamner B, Oh EY, Gaber MW, Finklestein D, Allen M, Frank A, Bayazitov IT, Zakharenko SS, Gajjar A, Davidoff A, Gilbertson RJ (2007) A perivascular niche for brain tumor stem cells. Cancer Cell 11:69–82

    PubMed  CAS  Google Scholar 

  • Cesselli D, Beltrami AP, Rigo S, Bergamin N, D’Aurizio F, Verardo R, Piazza S, Klaric E, Fanin R, Toffoletto B, Marzinotto S, Mariuzzi L, Finato N, Pandolfi M, Leri A, Schneider C, Beltrami CA, Anversa P (2009) Multipotent progenitor cells are present in human peripheral blood. Circ Res 104:1225–1234

    PubMed  CAS  Google Scholar 

  • Charafe-Jauffret E, Ginestier C, Iovino F, Wicinski J, Cervera N, Finetti P, Hur MH, Diebel ME, Monville F, Dutcher J, Brown M, Viens P, Xerri L, Bertucci F, Stassi G, Dontu G, Birnbaum D, Wicha MS (2009) Breast cancer cell lines contain functional cancer stem cells with metastatic capacity and a distinct molecular signature. Cancer Res 69:1302–1313

    PubMed  CAS  Google Scholar 

  • Chen R, Nishimura MC, Bumbaca SM, Kharbanda S, Forrest WF, Kasman IM, Greve JM, Soriano RH, Gilmour LL, Rivers CS, Modrusan Z, Nacu S, Guerrero S, Edgar KA, Wallin JJ, Lamszus K, Westphal M, Heim S, James CD, VandenBerg SR, Costello JF, Moorefield S, Cowdrey CJ, Prados M, Phillips HS (2010) A hierarchy of self-renewing tumor-initiating cell types in glioblastoma. Cancer Cell 17:362–375

    PubMed  CAS  Google Scholar 

  • Chin L, Gray JW (2008) Translating insights from the cancer genome into clinical practice. Nature 452:553–563

    PubMed  CAS  Google Scholar 

  • Ciavarella S, Dominici M, Dammacco F, Silvestris F (2011) Mesenchymal stem cells: a new promise in anticancer therapy. Stem Cells Dev 20:1–10

    PubMed  CAS  Google Scholar 

  • Colin C, Voutsinos-Porche B, Nanni I, Fina F, Metellus P, Intagliata D, Baeza N, Bouvier C, Delfino C, Loundou A, Chinot O, Lah T, Kos J, Martin PM, Ouafik L, Figarella-Branger D (2009) High expression of cathepsin B and plasminogen activator inhibitor type-1 are strong predictors of survival in glioblastomas. Acta Neuropathol 118:745–754

    PubMed  CAS  Google Scholar 

  • Corallini F, Secchiero P, Beltrami AP, Cesselli D, Puppato E, Ferrari R, Beltrami CA, Zauli G (2010) TNF-alpha modulates the migratory response of mesenchymal stem cells to TRAIL. Cell Mol Life Sci 67:1307–1314

    PubMed  CAS  Google Scholar 

  • Cousin B, Ravet E, Poglio S, De Toni F, Bertuzzi M, Lulka H, Touil I, André M, Grolleau J-L, Péron J-M, Chavoin J-P, Bourin P, Pénicaud L, Casteilla L, Buscail L, Cordelier P (2009) Adult stromal cells derived from human adipose tissue provoke pancreatic cancer cell death both in vitro and in vivo. PLoS One 4:e6278

    PubMed  Google Scholar 

  • Dalerba P, Clarke MF (2007) Cancer stem cells and tumor metastasis: first steps into uncharted territory. Cell Stem Cell 1:241–242

    PubMed  CAS  Google Scholar 

  • Das S, Srikanth M, Kessler JA (2008) Cancer stem cells and glioma. Nat Clin Pract Neurol 4:427–435

    PubMed  CAS  Google Scholar 

  • De Miguel MP, Fuentes-Julian S, Alcaina Y (2010) Pluripotent stem cells: origin, maintenance and induction. Stem Cell Rev 6:633–649

    PubMed  Google Scholar 

  • Dean M, Fojo T, Bates S (2005) Tumor stem cells and drug resistance. Nat Rev Cancer 5:275–284

    PubMed  CAS  Google Scholar 

  • Dell’Albani P (2008) Stem cell markers in gliomas. Neurochem Res 33:2407–2415

    PubMed  Google Scholar 

  • Demuth T, Berens ME (2004) Molecular mechanisms of glioma cell migration and invasion. J Neurooncol 70:217–228

    PubMed  Google Scholar 

  • Demuth T, Rennert JL, Hoelzinger DB, Reavie LB, Nakada M, Beaudry C, Nakada S, Anderson EM, Henrichs AN, McDonough WS, Holz D, Joy A, Lin R, Pan KH, Lih CJ, Cohen SN, Berens ME (2008) Glioma cells on the run—the migratory transcriptome of 10 human glioma cell lines. BMC Genomics 9:54

    PubMed  Google Scholar 

  • Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317

    PubMed  CAS  Google Scholar 

  • Dominici M, Paolucci P, Conte P, Horwitz EM (2009) Heterogeneity of multipotent mesenchymal stromal cells: from stromal cells to stem cells and vice versa. Transplantation 87:S36–S42

    PubMed  Google Scholar 

  • Donnenberg VS, Donnenberg AD (2005) Multiple drug resistance in cancer revisited: the cancer stem cell hypothesis. J Clin Pharmacol 45:872–877

    PubMed  CAS  Google Scholar 

  • Donovan LK, Pilkington GJ (2012) CD133: holy of grail of neuro-oncology or promiscuous red-herring? Cell Prolif 45:527–537

    PubMed  CAS  Google Scholar 

  • Donovan LK, Potter NE, Warr T, Pilkington GJ (2012) A Prominin-1-rich pediatric glioblastoma: biologic behavior is determined by oxygen tension-modulated CD133 expression but not accompanied by underlying molecular profiles. Transl Oncol 5:141–154

    PubMed  Google Scholar 

  • Francois S, Bensidhoum M, Mouiseddine M, Mazurier C, Allenet B, Semont A, Frick J, Sache A, Bouchet S, Thierry D, Gourmelon P, Gorin NC, Chapel A (2006) Local irradiation not only induces homing of human mesenchymal stem cells at exposed sites but promotes their widespread engraftment to multiple organs: a study of their quantitative distribution after irradiation damage. Stem Cells 24:1020–1029

    PubMed  Google Scholar 

  • Friedl P, Wolf K (2003) tumor-cell invasion and migration: diversity and escape mechanisms. Nat Rev Cancer 3:362–374

    PubMed  CAS  Google Scholar 

  • Giannoni E, Bianchini F, Calorini L, Chiarugi P (2011) Cancer associated fibroblasts exploit reactive oxygen species through a proinflammatory signature leading to epithelial mesenchymal transition and stemness. Antioxid Redox Signal 14:2361–2371

    PubMed  CAS  Google Scholar 

  • Gole B, Duran Alonso MB, Dolenc V, Lah T (2009) Post-translational regulation of cathepsin B, but not of other cysteine cathepsins, contributes to increased glioblastoma cell invasiveness in vitro. Pathol Oncol Res 15:711–723

    PubMed  CAS  Google Scholar 

  • Gole B, Huszthy PC, Popovic M, Jeruc J, Ardebili YS, Bjerkvig R, Lah TT (2012) The regulation of cysteine cathepsins and cystatins in human gliomas. Int J Cancer 131:1779–1789

    PubMed  CAS  Google Scholar 

  • Gordon SL, Oppenheimer SR, Mackay AM, Brunnabend J, Puhlev I, Levine F (2001) Recovery of human mesenchymal stem cells following dehydration and rehydration. Cryobiology 43:182–187

    PubMed  CAS  Google Scholar 

  • Grayson WL, Zhao F, Bunnell B, Ma T (2007) Hypoxia enhances proliferation and tissue formation of human mesenchymal stem cells. Biochem Biophys Res Commun 358:948–953

    PubMed  CAS  Google Scholar 

  • Grisendi G, Bussolari R, Cafarelli L, Petak I, Rasini V, Veronesi E, De Santis G, Spano C, Tagliazzucchi M, Barti-Juhasz H, Scarabelli L, Bambi F, Frassoldati A, Rossi G, Casali C, Morandi U, Horwitz EM, Paolucci P, Conte P, Dominici M (2010) Adipose-derived mesenchymal stem cells as stable source of tumor necrosis factor-related apoptosis-inducing ligand delivery for cancer therapy. Cancer Res 70:3718–3729

    PubMed  CAS  Google Scholar 

  • Grisendi G, Bussolari R, Veronesi E, Piccinno S, Burns JS, De Santis G, Loschi P, Pignatti M, Di Benedetto F, Ballarin R, Di Gregorio C, Guarneri V, Piccinini L, Horwitz EM, Paolucci P, Conte P, Dominici M (2011) Understanding tumor-stroma interplays for targeted therapies by armed mesenchymal stromal progenitors: the mesenkillers. Am J Cancer Res 1:787–805

    PubMed  CAS  Google Scholar 

  • Gunther HS, Schmidt NO, Phillips HS, Kemming D, Kharbanda S, Soriano R, Modrusan Z, Meissner H, Westphal M, Lamszus K (2008) Glioblastoma-derived stem cell-enriched cultures form distinct subgroups according to molecular and phenotypic criteria. Oncogene 27:2897–2909

    PubMed  CAS  Google Scholar 

  • Hadjipanayis CG, Van Meir EG (2009) Brain cancer propagating cells: biology, genetics and targeted therapies. Trends Mol Med 15:519–530

    PubMed  CAS  Google Scholar 

  • Hamada H, Kobune M, Nakamura K, Kawano Y, Kato K, Honmou O, Houkin K, Matsunaga T, Niitsu Y (2005) Mesenchymal stem cells (MSC) as therapeutic cytoreagents for gene therapy. Cancer Sci 96:149–156

    PubMed  CAS  Google Scholar 

  • Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    PubMed  CAS  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    PubMed  CAS  Google Scholar 

  • Hashimoto O, Shimizu K, Semba S, Chiba S, Ku Y, Yokozaki H, Hori Y (2011) Hypoxia induces tumor aggressiveness and the expansion of CD133-positive cells in a hypoxia-inducible factor-1alpha-dependent manner in pancreatic cancer cells. Pathobiology 78:181–192

    PubMed  CAS  Google Scholar 

  • Heddleston JM, Li Z, McLendon RE, Hjelmeland AB, Rich JN (2009) The hypoxic microenvironment maintains glioblastoma stem cells and promotes reprogramming towards a cancer stem cell phenotype. Cell Cycle 8:3274–3284

    PubMed  CAS  Google Scholar 

  • Hermann PC, Huber SL, Herrler T, Aicher A, Ellwart JW, Guba M, Bruns CJ, Heeschen C (2007) Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell 1:313–323

    PubMed  CAS  Google Scholar 

  • Hingtgen SD, Kasmieh R, van de Water J, Weissleder R, Shah K (2010) A novel molecule integrating therapeutic and diagnostic activities reveals multiple aspects of stem cell-based therapy. Stem Cells 28:832–841

    Google Scholar 

  • Hingtgen S, Kasmieh R, Elbayly E, Nesterenko I, Figueiredo J-L, Dash R, Sarkar D, Hall D, Kozakov D, Vajda S, Fisher PB, Shah K (2012) A first-generation multi-functional cytokine for simultaneous optical tracking and tumor therapy. PLoS One 7:e40234

    PubMed  CAS  Google Scholar 

  • Hirata E, Arakawa Y, Shirahata M, Yamaguchi M, Kishi Y, Okada T, Takahashi JA, Matsuda M, Hashimoto N (2009) Endogenous tenascin-C enhances glioblastoma invasion with reactive change of surrounding brain tissue. Cancer Sci 100:1451–1459

    PubMed  CAS  Google Scholar 

  • Houghton J, Morozov A, Smirnova I, Wang TC (2007) Stem cells and cancer. Semin Cancer Biol 17:191–203

    PubMed  CAS  Google Scholar 

  • Huse JT, Holland EC (2010) Targeting brain cancer: advances in the molecular pathology of malignant glioma and medulloblastoma. Nat Rev Cancer 10:319–331

    PubMed  CAS  Google Scholar 

  • Joo KM, Kim SY, Jin X, Song SY, Kong DS, Lee JI, Jeon JW, Kim MH, Kang BG, Jung Y, Jin J, Hong SC, Park WY, Lee DS, Kim H, Nam DH (2008) Clinical and biological implications of CD133-positive and CD133-negative cells in glioblastomas. Lab Invest 88:808–815

    PubMed  CAS  Google Scholar 

  • Kalluri R, Weinberg RA (2009) The basics of epithelial-mesenchymal transition. J Clin Invest 119:1420–1428

    PubMed  CAS  Google Scholar 

  • Kamijo M, Haraguchi T, Tonogi M, Yamane GY (2006) The function of connexin 43 on the differentiation of rat bone marrow cells in culture. Biomed Res 27:289–295

    Google Scholar 

  • Kauer TM, Figueiredo JL, Hingtgen S, Shah K (2012) Encapsulated therapeutic stem cells implanted in the tumor resection cavity induce cell death in gliomas. Nat Neurosci 15:197–204

    CAS  Google Scholar 

  • Kenig S, Alonso MB, Mueller MM, Lah TT (2010) Glioblastoma and endothelial cells cross-talk, mediated by SDF-1, enhances tumor invasion and endothelial proliferation by increasing expression of cathepsins B, S, and MMP-9. Cancer Lett 289:53–61

    PubMed  CAS  Google Scholar 

  • Khakoo AY, Pati S, Anderson SA, Reid W, Elshal MF, Rovira II, Nguyen AT, Malide D, Combs CA, Hall G, Zhang J, Raffeld M, Rogers TB, Stetler-Stevenson W, Frank JA, Reitz M, Finkel T (2006) Human mesenchymal stem cells exert potent antitumorigenic effects in a model of Kaposi’s sarcoma. J Exp Med 203:1235–1247

    PubMed  CAS  Google Scholar 

  • Kim SM, Lim JY, Park SI, Jeong CH, Oh JH, Jeong M, Oh W, Park SH, Sung YC, Jeun SS (2008) Gene therapy using TRAIL-secreting human umbilical cord blood-derived mesenchymal stem cells against intracranial glioma. Cancer Res 68:9614–9623

    PubMed  CAS  Google Scholar 

  • Kim SM, Oh JH, Park SA, Ryu CH, Lim JY, Kim DS, Chang JW, Oh W, Jeun SS (2010) Irradiation enhances the tumor tropism and therapeutic potential of tumor necrosis factor-related apoptosis-inducing ligand-secreting human umbilical cord blood-derived mesenchymal stem cells in glioma therapy. Stem Cells 28:2217–2228

    PubMed  Google Scholar 

  • Kogler G, Sensken S, Airey JA, Trapp T, Muschen M, Feldhahn N, Liedtke S, Sorg RV, Fischer J, Rosenbaum C, Greschat S, Knipper A, Bender J, Degistirici O, Gao J, Caplan AI, Colletti EJ, Almeida-Porada G, Muller HW, Zanjani E, Wernet P (2004) A new human somatic stem cell from placental cord blood with intrinsic pluripotent differentiation potential. J Exp Med 200:123–135

    PubMed  Google Scholar 

  • Komatsu K, Honmou O, Suzuki J, Houkin K, Hamada H, Kocsis JD (2010) Therapeutic time window of mesenchymal stem cells derived from bone marrow after cerebral ischemia. Brain Res 1334:84–92

    PubMed  CAS  Google Scholar 

  • Kruger A, Soeltl R, Sopov I, Kopitz C, Arlt M, Magdolen V, Harbeck N, Gansbacher B, Schmitt M (2001) Hydroxamate-type matrix metalloproteinase inhibitor batimastat promotes liver metastasis. Cancer Res 61:1272–1275

    PubMed  CAS  Google Scholar 

  • Kucerova L, Altanerova V, Matuskova M, Tyciakova S, Altaner C (2007) Adipose tissue-derived human mesenchymal stem cells mediated prodrug cancer gene therapy. Cancer Res 67:6304–6313

    PubMed  CAS  Google Scholar 

  • Kucerova L, Matuskova M, Hlubinova K, Altanerova V, Altaner C (2010) Tumor cell behaviour modulation by mesenchymal stromal cells. Mol Cancer 9:129

    PubMed  Google Scholar 

  • Kucerova L, Matuskova M, Hlubinova K, Bohovic R, Feketeova L, Janega P, Babal P, Poturnajova M (2011) Bystander cytotoxicity in human medullary thyroid carcinoma cells mediated by fusion yeast cytosine deaminase and 5-fluorocytosine. Cancer Lett 311:101–112

    PubMed  CAS  Google Scholar 

  • Lah TT, Duran Alonso MB, Van Noorden CJ (2006) Antiprotease therapy in cancer: hot or not? Expert Opin Biol Ther 6:257–279

    Google Scholar 

  • Lathia JD, Hitomi M, Gallagher J, Gadani SP, Adkins J, Vasanji A, Liu L, Eyler CE, Heddleston JM, Wu Q, Minhas S, Soeda A, Hoeppner DJ, Ravin R, McKay RD, McLendon RE, Corbeil D, Chenn A, Hjelmeland AB, Park DM, Rich JN (2011) Distribution of CD133 reveals glioma stem cells self-renew through symmetric and asymmetric cell divisions. Cell Death Dis 2:e200

    PubMed  CAS  Google Scholar 

  • Levicar N, Nuttall RK, Lah TT (2003) Proteases in brain tumor progression. Acta Neurochir 145:825–838

    PubMed  CAS  Google Scholar 

  • Li L, Neaves WB (2006) Normal stem cells and cancer stem cells: the niche matters. Cancer Res 66:4553–4557

    PubMed  CAS  Google Scholar 

  • Li A, Walling J, Ahn S, Kotliarov Y, Su Q, Quezado M, Oberholtzer JC, Park J, Zenklusen JC, Fine HA (2009) Unsupervised analysis of transcriptomic profiles reveals six glioma subtypes. Cancer Res 69:2091–2099

    PubMed  CAS  Google Scholar 

  • Liu G, Yuan X, Zeng Z, Tunici P, Ng H, Abdulkadir IR, Lu L, Irvin D, Black KL, Yu JS (2006) Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma. Mol Cancer 5:67

    PubMed  Google Scholar 

  • Loebinger MR, Eddaoudi A, Davies D, Janes SM (2009) Mesenchymal stem cell delivery of TRAIL can eliminate metastatic cancer. Cancer Res 69:4134–4142

    PubMed  CAS  Google Scholar 

  • Loebinger MR, Janes SM (2010) Stem cells as vectors for antitumor therapy. Thorax 65:362–369

    PubMed  Google Scholar 

  • Lopez-Otin C, Matrisian LM (2007) Emerging roles of proteases in tumor suppression. Nat Rev Cancer 7:800–808

    PubMed  CAS  Google Scholar 

  • Lu YR, Yuan Y, Wang XJ, Wei LL, Chen YN, Cong C, Li SF, Long D, Tan WD, Mao YQ, Zhang J, Li YP, Cheng JQ (2008) The growth inhibitory effect of mesenchymal stem cells on tumor cells in vitro and in vivo. Cancer Biol Ther 7:245–251

    PubMed  CAS  Google Scholar 

  • Ma S, Lee TK, Zheng BJ, Chan KW, Guan XY (2008a) CD133+ HCC cancer stem cells confer chemoresistance by preferential expression of the Akt/PKB survival pathway. Oncogene 27:1749–1758

    PubMed  CAS  Google Scholar 

  • Ma YH, Mentlein R, Knerlich F, Kruse ML, Mehdorn HM, Held-Feindt J (2008b) Expression of stem cell markers in human astrocytomas of different WHO grades. J Neurooncol 86:31–45

    PubMed  Google Scholar 

  • Marko NF, Quackenbush J, Weil RJ (2011) Why is there a lack of consensus on molecular subgroups of glioblastoma? Understanding the nature of biological and statistical variability in glioblastoma expression data. PLoS One 6:e20826

    PubMed  CAS  Google Scholar 

  • Martins AH, Alves JM, Trujillo CA, Schwindt TT, Barnabe GF, Motta FL, Guimaraes AO, Casarini DE, Mello LE, Pesquero JB, Ulrich H (2008) Kinin-B2 receptor expression and activity during differentiation of embryonic rat neurospheres. Cytometry A 73:361–368

    PubMed  Google Scholar 

  • Martins AH, Alves JM, Perez D, Carrasco M, Torres-Rivera W, Eterović VA, Ferchmin PA, Ulrich H (2012) Kinin-B2 receptor mediated neuroprotection after NMDA excitotoxicity is reversed in the presence of Kinin-B1 receptor agonists. PLoS One 7:e30755

    PubMed  CAS  Google Scholar 

  • Menon LG, Kelly K, Yang HW, Kim SK, Black PM, Carroll RS (2009) Human bone marrow-derived mesenchymal stromal cells expressing S-TRAIL as a cellular delivery vehicle for human glioma therapy. Stem Cells 27:2320–2330

    PubMed  CAS  Google Scholar 

  • Miletic H, Fischer Y, Litwak S, Giroglou T, Waerzeggers Y, Winkeler A, Li H, Himmelreich U, Lange C, Stenzel W, Deckert M, Neumann H, Jacobs AH, von Laer D (2007) Bystander killing of malignant glioma by bone marrow-derived tumor-infiltrating progenitor cells expressing a suicide gene. Mol Ther 15:1373–1381

    PubMed  CAS  Google Scholar 

  • Mir SE, De Witt Hamer PC, Krawczyk PM, Balaj L, Claes A, Niers JM, Van Tilborg AA, Zwinderman AH, Geerts D, Kaspers GJ, Peter Vandertop W, Cloos J, Tannous BA, Wesseling P, Aten JA, Noske DP, Van Noorden CJ, Wurdinger T (2010) In silico analysis of kinase expression identifies WEE1 as a gatekeeper against mitotic catastrophe in glioblastoma. Cancer Cell 18:244–257

    Google Scholar 

  • Momin EN, Vela G, Zaidi HA, Quinones-Hinojosa A (2010) The oncogenic potential of mesenchymal stem cells in the treatment of cancer: directions for future research. Curr Immunol Rev 6:137–148

    PubMed  CAS  Google Scholar 

  • Montiel-Eulefi E, Nery AA, Rodrigues LC, Sanchez R, Romero F, Ulrich H (2012) Neural differentiation of rat aorta pericyte cells. Cytometry A 81:65–71

    PubMed  Google Scholar 

  • Motaln H, Schichor C, Lah TT (2010) Human mesenchymal stem cells and their use in cell-based therapies. Cancer 116:2519–2530

    PubMed  CAS  Google Scholar 

  • Motaln H, Gruden K, Hren M, Schichor C, Primon M, Rotter A, Lah TT (2012) Human mesenchymal stem cells exploit the immune response mediating chemokines to impact the phenotype of glioblastoma. Cell Transplant 21:1529–1545

    Google Scholar 

  • Mueller MM, Fusenig NE (2004) Friends or foes—bipolar effects of the tumor stroma in cancer. Nat Rev Cancer 4:839–849

    PubMed  CAS  Google Scholar 

  • Nakamizo A, Marini F, Amano T, Khan A, Studeny M, Gumin J, Chen J, Hentschel S, Vecil G, Dembinski J, Andreeff M, Lang FF (2005) Human bone marrow-derived mesenchymal stem cells in the treatment of gliomas. Cancer Res 65:3307–3318

    PubMed  CAS  Google Scholar 

  • Nakamura K, Ito Y, Kawano Y, Kurozumi K, Kobune M, Tsuda H, Bizen A, Honmou O, Niitsu Y, Hamada H (2004) Antitumor effect of genetically engineered mesenchymal stem cells in a rat glioma model. Gene Ther 11:1155–1164

    PubMed  CAS  Google Scholar 

  • Nguyen DX, Bos PD, Massague J (2009) Metastasis: from dissemination to organ-specific colonization. Nat Rev Cancer 9:274–284

    PubMed  CAS  Google Scholar 

  • Ohgaki H, Kleihues P (2007) Genetic pathways to primary and secondary glioblastoma. Am J Pathol 170:1445–1453

    PubMed  CAS  Google Scholar 

  • Pati S, Khakoo AY, Zhao J, Jimenez F, Gerber MH, Harting M, Redell JB, Grill R, Matsuo Y, Guha S, Cox CS, Reitz MS, Holcomb JB, Dash PK (2011) Human mesenchymal stem cells inhibit vascular permeability by modulating vascular endothelial cadherin/beta-catenin signaling. Stem Cells Dev 20:89–101

    PubMed  CAS  Google Scholar 

  • Phillips HS, Kharbanda S, Chen R, Forrest WF, Soriano RH, Wu TD, Misra A, Nigro JM, Colman H, Soroceanu L, Williams PM, Modrusan Z, Feuerstein BG, Aldape K (2006) Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell 9:157–173

    PubMed  CAS  Google Scholar 

  • Piccirillo SG, Combi R, Cajola L, Patrizi A, Redaelli S, Bentivegna A, Baronchelli S, Maira G, Pollo B, Mangiola A, DiMeco F, Dalpra L, Vescovi AL (2009) Distinct pools of cancer stem-like cells coexist within human glioblastomas and display different tumorigenicity and independent genomic evolution. Oncogene 28:1807–1811

    PubMed  CAS  Google Scholar 

  • Potenta S, Zeisberg E, Kalluri R (2008) The role of endothelial-to-mesenchymal transition in cancer progression. Br J Cancer 99:1375–1379

    PubMed  CAS  Google Scholar 

  • Potet E, Cameron L, Habib NA, Levicar N (2011) Cancer stem cells in solid tumors. In: Appasani K, Appasani RK (eds) Stem cells and regenerative medicine. Humana, New York, pp 59–76

    Google Scholar 

  • Prestegarden L, Enger PO (2010) Cancer stem cells in the central nervous system—a critical review. Cancer Res 70:8255–8258

    PubMed  CAS  Google Scholar 

  • Psaila B, Lyden D (2009) The metastatic niche: adapting the foreign soil. Nat Rev Cancer 9:285–293

    PubMed  CAS  Google Scholar 

  • Quintana E, Shackleton M, Foster HR, Fullen DR, Sabel MS, Johnson TM, Morrison SJ (2010) Phenotypic heterogeneity among tumorigenic melanoma cells from patients that is reversible and not hierarchically organized. Cancer Cell 18:510–523

    PubMed  CAS  Google Scholar 

  • Rao JS (2003) Molecular mechanisms of glioma invasiveness: the role of proteases. Nat Rev Cancer 3:489–501

    PubMed  CAS  Google Scholar 

  • Rebelatto CK, Aguiar AM, Moretao MP, Senegaglia AC, Hansen P, Barchiki F, Oliveira J, Martins J, Kuligovski C, Mansur F, Christofis A, Amaral VF, Brofman PS, Goldenberg S, Nakao LS, Correa A (2008) Dissimilar differentiation of mesenchymal stem cells from bone marrow, umbilical cord blood, and adipose tissue. Exp Biol Med (Maywood) 233:901–913

    CAS  Google Scholar 

  • Rebetz J, Tian D, Persson A, Widegren B, Salford LG, Englund E, Gisselsson D, Fan X (2008) Glial progenitor-like phenotype in low-grade glioma and enhanced CD133-expression and neuronal lineage differentiation potential in high-grade glioma. PLoS One 3:e1936

    PubMed  Google Scholar 

  • Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer, and cancer stem cells. Nature 414:105–111

    PubMed  CAS  Google Scholar 

  • Ricci-Vitiani L, Pallini R, Larocca LM, Lombardi DG, Signore M, Pierconti F, Petrucci G, Montano N, Maira G, De Maria R (2008) Mesenchymal differentiation of glioblastoma stem cells. Cell Death Differ 15:1491–1498

    PubMed  CAS  Google Scholar 

  • Ricci-Vitiani L, Pallini R, Biffoni M, Todaro M, Invernici G, Cenci T, Maira G, Parati EA, Stassi G, Larocca LM, De Maria R (2010) tumor vascularization via endothelial differentiation of glioblastoma stem-like cells. Nature 468:824–828

    PubMed  CAS  Google Scholar 

  • Riddick G, Fine HA (2011) Integration and analysis of genome-scale data from gliomas. Nat Rev Neurol 7:439–450

    PubMed  CAS  Google Scholar 

  • Rubio D, Garcia S, De la Cueva T, Paz MF, Lloyd AC, Bernad A, Garcia-Castro J (2008) Human mesenchymal stem cell transformation is associated with a mesenchymal-epithelial transition. Exp Cell Res 314:691–698

    PubMed  CAS  Google Scholar 

  • Sadan O, Bahat-Stromza M, Barhum Y, Levy YS, Pisnevsky A, Peretz H, Ilan AB, Bulvik S, Shemesh N, Krepel D, Cohen Y, Melamed E, Offen D (2009) Protective effects of neurotrophic factor-secreting cells in a 6-OHDA rat model of Parkinson disease. Stem Cells Dev 18:1179–1190

    PubMed  CAS  Google Scholar 

  • Sahai E (2007) Illuminating the metastatic process. Nat Rev Cancer 7:737–749

    PubMed  CAS  Google Scholar 

  • Sakariassen PO, Prestegarden L, Wang J, Skaftnesmo KO, Mahesparan R, Molthoff C, Sminia P, Sundlisaeter E, Misra A, Tysnes BB, Chekenya M, Peters H, Lende G, Kalland KH, Oyan AM, Petersen K, Jonassen I, van der Kogel A, Feuerstein BG, Terzis AJ, Bjerkvig R, Enger PO (2006) Angiogenesis-independent tumor growth mediated by stem-like cancer cells. Proc Natl Acad Sci USA 103:16466–16471

    PubMed  CAS  Google Scholar 

  • Sameni M, Anbalagan A, Olive MB, Moin K, Mattingly RR, Sloane BF (2012) MAME models for 4D live-cell imaging of tumor: microenvironment interactions that impact malignant progression. J Vis Exp

    Google Scholar 

  • Sasportas LS, Kasmieh R, Wakimoto H, Hingtgen S, van de Water JAJM, Mohapatra G, Figueiredo JL, Martuza RL, Weissleder R, Shah K (2009) Assessment of therapeutic efficacy and fate of engineered human mesenchymal stem cells for cancer therapy. Proc Natl Acad Sci USA 106:4822–4827

    Google Scholar 

  • Sawada R, Ito T, Tsuchiya T (2006) Changes in expression of genes related to cell proliferation in human mesenchymal stem cells during in vitro culture in comparison with cancer cells. J Artif Organs 9:179–184

    PubMed  CAS  Google Scholar 

  • Schichor C, Birnbaum T, Etminan N, Schnell O, Grau S, Miebach S, Aboody K, Padovan C, Straube A, Tonn JC, Goldbrunner R (2006) Vascular endothelial growth factor A contributes to glioma-induced migration of human marrow stromal cells (hMSC). Exp Neurol 199:301–310

    PubMed  CAS  Google Scholar 

  • Schichor C, Albrecht V, Korte B, Buchner A, Riesenberg R, Mysliwietz J, Paron I, Motaln H, Turnsek TL, Jurchott K, Selbig J, Tonn JC (2012) Mesenchymal stem cells and glioma cells form a structural as well as a functional syncytium in vitro. Exp Neurol 234:208–219

    PubMed  CAS  Google Scholar 

  • Schmidt S, Friedl P (2010) Interstitial cell migration: integrin-dependent and alternative adhesion mechanisms. Cell Tissue Res 339:83–92

    PubMed  CAS  Google Scholar 

  • Schubert J, Brabletz T (2011) p53 spreads out further: suppression of EMT and stemness by activating miR-200c expression. Cell Res 21:705–707

    PubMed  CAS  Google Scholar 

  • Secchiero P, Zauli G (2008) Tumor-necrosis-factor-related apoptosis-inducing ligand and the regulation of hematopoiesis. Curr Opin Hematol 15:42–48

    PubMed  CAS  Google Scholar 

  • Seidel S, Garvalov BK, Wirta V, von Stechow L, Schanzer A, Meletis K, Wolter M, Sommerlad D, Henze AT, Nister M, Reifenberger G, Lundeberg J, Frisen J, Acker T (2010) A hypoxic niche regulates glioblastoma stem cells through hypoxia inducible factor 2 alpha. Brain 133:983–995

    PubMed  Google Scholar 

  • Shah K (2012) Mesenchymal stem cells engineered for cancer therapy. Adv Drug Deliv Rev 64:739–748

    PubMed  CAS  Google Scholar 

  • Shah K, Bureau E, Kim DE, Yang K, Tang Y, Weissleder R, Breakefield XO (2005) Glioma therapy and real-time imaging of neural precursor cell migration and tumor regression. Ann Neurol 57:34–41

    PubMed  CAS  Google Scholar 

  • Shiras A, Chettiar ST, Shepal V, Rajendran G, Prasad GR, Shastry P (2007) Spontaneous transformation of human adult nontumorigenic stem cells to cancer stem cells is driven by genomic instability in a human model of glioblastoma. Stem Cells 25:1478–1489

    Google Scholar 

  • Signore M, Ricci-Vitiani L, De Maria R (2013) Targeting apoptosis pathways in cancer stem cells. Cancer Lett 332:374–382

    Google Scholar 

  • Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, Dirks PB (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63:5821–5828

    PubMed  CAS  Google Scholar 

  • Snyder EY (2011) The risk of putting something where it does not belong: mesenchymal stem cells produce masses in the brain. Exp Neurol 230:75–77

    PubMed  Google Scholar 

  • Sonabend AM, Ulasov IV, Tyler MA, Rivera AA, Mathis JM, Lesniak MS (2008) Mesenchymal stem cells effectively deliver an oncolytic adenovirus to intracranial glioma. Stem Cells 26:831–841

    Google Scholar 

  • Sotiropoulou PA, Perez SA, Salagianni M, Baxevanis CN, Papamichail M (2006) Characterization of the optimal culture conditions for clinical scale production of human mesenchymal stem cells. Stem Cells 24:462–471

    PubMed  Google Scholar 

  • Stagg J, Lejeune L, Paquin A, Galipeau J (2004) Marrow stromal cells for interleukin-2 delivery in cancer immunotherapy. Hum Gene Ther 15:597–608

    PubMed  CAS  Google Scholar 

  • Stoff-Khalili MA, Rivera AA, Mathis JM, Banerjee NS, Moon AS, Hess A, Rocconi RP, Numnum TM, Everts M, Chow LT, Douglas JT, Siegal GP, Zhu ZB, Bender HG, Dall P, Stoff A, Pereboeva L, Curiel DT (2007) Mesenchymal stem cells as a vehicle for targeted delivery of CRAds to lung metastases of breast carcinoma. Breast Cancer Res Treat 105:157–167

    PubMed  Google Scholar 

  • Strojnik T, Kavalar R, Trinkaus M, Lah TT (2005) Cathepsin L in glioma progression: comparison with cathepsin B. Cancer Detect Prev 29:448–455

    PubMed  CAS  Google Scholar 

  • Strojnik T, Rosland GV, Sakariassen PO, Kavalar R, Lah T (2007) Neural stem cell markers, nestin and musashi proteins, in the progression of human glioma: correlation of nestin with prognosis of patient survival. Surg Neurol 68:133–143; discussion 143–134

    Google Scholar 

  • Sugawara K, Kurihara H, Negishi M, Saito N, Nakazato Y, Sasaki T, Takeuchi T (2002) Nestin as a marker for proliferative endothelium in gliomas. Lab Invest 82:345–351

    PubMed  CAS  Google Scholar 

  • Tarin D (2005) The fallacy of epithelial mesenchymal transition in neoplasia. Cancer Res 65:5996–6001

    PubMed  CAS  Google Scholar 

  • Teo AK, Vallier L (2010) Emerging use of stem cells in regenerative medicine. Biochem J 428:11–23

    PubMed  CAS  Google Scholar 

  • Théry C (2011) Exosomes: secreted vesicles and intercellular communications. F1000 Biol Rep 3:15

    Google Scholar 

  • Thiery JP (2002) Epithelial-mesenchymal transitions in tumor progression. Nat Rev Cancer 2:442–454

    PubMed  CAS  Google Scholar 

  • Thiery JP, Acloque H, Huang RY, Nieto MA (2009) Epithelial-mesenchymal transitions in development and disease. Cell 139:871–890

    PubMed  CAS  Google Scholar 

  • Torsvik A, Rosland GV, Svendsen A, Molven A, Immervoll H, McCormack E, Lonning PE, Primon M, Sobala E, Tonn JC, Goldbrunner R, Schichor C, Mysliwietz J, Lah TT, Motaln H, Knappskog S, Bjerkvig R (2010) Spontaneous malignant transformation of human mesenchymal stem cells reflects cross-contamination: putting the research field on track—letter. Cancer Res 70:6393–6396

    PubMed  CAS  Google Scholar 

  • Tso CL, Shintaku P, Chen J, Liu Q, Liu J, Chen Z, Yoshimoto K, Mischel PS, Cloughesy TF, Liau LM, Nelson SF (2006) Primary glioblastomas express mesenchymal stem-like properties. Mol Cancer Res 4:607–619

    PubMed  CAS  Google Scholar 

  • Tysnes BB, Bjerkvig R (2007) Cancer initiation and progression: involvement of stem cells and the microenvironment. Biochim Biophys Acta 1775:283–297

    PubMed  CAS  Google Scholar 

  • Uchibori R, Okada T, Ito T, Urabe M, Mizukami H, Kume A, Ozawa K (2009) Retroviral vector-producing mesenchymal stem cells for targeted suicide cancer gene therapy. J Gene Med 11:373–381

    PubMed  CAS  Google Scholar 

  • Cancer Research UK (2012) CancerStats UK. In: Incidence 2009 UK, vol 1.8. Cancer Research UK, London

    Google Scholar 

  • Van Meir EG, Hadjipanayis CG, Norden AD, Shu HK, Wen PY, Olson JJ (2010) Exciting new advances in neuro-oncology: the avenue to a cure for malignant glioma. CA Cancer J Clin 60:166–193

    Google Scholar 

  • Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, Miller CR, Ding L, Golub T, Mesirov JP, Alexe G, Lawrence M, O’Kelly M, Tamayo P, Weir BA, Gabriel S, Winckler W, Gupta S, Jakkula L, Feiler HS, Hodgson JG, James CD, Sarkaria JN, Brennan C, Kahn A, Spellman PT, Wilson RK, Speed TP, Gray JW, Meyerson M, Getz G, Perou CM, Hayes DN (2010) Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17:98–110

    PubMed  CAS  Google Scholar 

  • Vescovi AL, Galli R, Reynolds BA (2006) Brain tumor stem cells. Nat Rev Cancer 6:425–436

    PubMed  CAS  Google Scholar 

  • Visvader JE, Lindeman GJ (2008) Cancer stem cells in solid tumors: accumulating evidence and unresolved questions. Nat Rev Cancer 8:755–768

    PubMed  CAS  Google Scholar 

  • Wang J, Sakariassen PØ, Tsinkalovsky O, Immervoll H, Bøe SO, Svendsen A, Prestegarden L, Røsland G, Thorsen F, Stuhr L, Molven A, Bjerkvig R, Enger PØ (2008) CD133 negative glioma cells form tumors in nude rats and give rise to CD133 positive cells. Int J Cancer 122:761–768

    PubMed  CAS  Google Scholar 

  • Wang R, Chadalavada K, Wilshire J, Kowalik U, Hovinga KE, Geber A, Fligelman B, Leversha M, Brennan C, Tabar V (2010) Glioblastoma stem-like cells give rise to tumor endothelium. Nature 468:829–833

    PubMed  CAS  Google Scholar 

  • WHO (2012) Cancer. Fact sheet 297. World Health Organization, Geneva

    Google Scholar 

  • Wicha MS, Liu S, Dontu G (2006) Cancer stem cells: an old idea—a paradigm shift. Cancer Res 66:1883–1890; discussion 1895–1886

    Google Scholar 

  • Withana NP, Blum G, Sameni M, Slaney C, Anbalagan A, Olive MB, Bidwell BN, Edgington L, Wang L, Moin K, Sloane BF, Anderson RL, Bogyo MS, Parker BS (2012) Cathepsin B inhibition limits bone metastasis in breast cancer. Cancer Res 72:1199–1209

    PubMed  CAS  Google Scholar 

  • Wolf K, Friedl P (2011) Extracellular matrix determinants of proteolytic and non-proteolytic cell migration. Trends Cell Biol 21:736–744

    PubMed  CAS  Google Scholar 

  • Yong RL, Shinojima N, Fueyo J, Gumin J, Vecil GG, Marini FC, Bogler O, Andreeff M, Lang FF (2009) Human bone marrow-derived mesenchymal stem cells for intravascular delivery of oncolytic adenovirus Delta24-RGD to human gliomas. Cancer Res 69:8932–8940

    PubMed  CAS  Google Scholar 

  • Yu SC, Ping YF, Yi L, Zhou ZH, Chen JH, Yao XH, Gao L, Wang JM, Bian XW (2008) Isolation and characterization of cancer stem cells from a human glioblastoma cell line U87. Cancer Lett 265:124–134

    PubMed  CAS  Google Scholar 

  • Yuan X, Curtin J, Xiong Y, Liu G, Waschsmann-Hogiu S, Farkas DL, Black KL, Yu JS (2004) Isolation of cancer stem cells from adult glioblastoma multiforme. Oncogene 23:9392–9400

    PubMed  CAS  Google Scholar 

  • Zeppernick F, Ahmadi R, Campos B, Dictus C, Helmke BM, Becker N, Lichter P, Unterberg A, Radlwimmer B, Herold-Mende CC (2008) Stem cell marker CD133 affects clinical outcome in glioma patients. Clin Cancer Res 14:123–129

    PubMed  CAS  Google Scholar 

  • Zhai H, Heppner FL, Tsirka SE (2011) Microglia/macrophages promote glioma progression. Glia 59:472–485

    PubMed  Google Scholar 

  • Zhang Y, Ma B, Fan Q (2010) Mechanisms of breast cancer bone metastasis. Cancer Lett 292:1–7

    PubMed  CAS  Google Scholar 

  • Zong H, Verhaak RG, Canolk P (2012) The cellular origin for malignant glioma and prospects for clinical advancements. Expert Rev Mol Diagn 12:383–394

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The work presented here was partially supported by the Slovenian Research Agency Programme P1-0245 and by the ERA-NET action of the INREMOS project on Systems Biology Tools Development for Cell Therapy and Drug Development—SYSTHER (contract no. 3211-06-000539; 2006-2011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamara T. Lah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Tajnšek, U., Motaln, H., Levičar, N., Rotter, A., Lah, T.T. (2013). The Duality of Stem Cells: Double-Edged Sword in tumor Evolution and Treatment. In: Resende, R., Ulrich, H. (eds) Trends in Stem Cell Proliferation and Cancer Research. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6211-4_15

Download citation

Publish with us

Policies and ethics