Skip to main content

Regulatory mechanisms of fluid and electrolyte turnover

  • Chapter
Critical Care Nephrology

Abstract

Acute renal failure is characterized by the sudden onset of azotemia in a previously stable patient, usually in association with oliguria or anuria. It is a common complication of many forms of serious illness and metabolic stress. Not infrequently, it is the accidental consequence of medical intervention(s) [1]. The breakdown of the etiology of acute renal failure in prerenal, renal and postrenal causes is not only conceptually attractive, but often dictates initial therapy as well. Knowledge of the normal regulatory mechanisms of electrolyte and fluid turnover, and the changes therein that accompany antecedent chronic renal insufficiency, is essential in this approach. In the following chapter, we will discuss regulatory mechanisms of fluid and electrolyte turnover as it relates to acute renal failure. For extensive review of normal renal physiology, we refer the readers to well-known reference books [2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Shusterman N, Strom BL, Murray TG, et. al. Risk factors and outcome of hospital-acquired renal failure. Am J Med 1987; 83: 65–71.

    Article  PubMed  CAS  Google Scholar 

  2. Rose BD. Clinical physiology of acid-base and electrolyte disorders ( fourth ed. ): McGraw-Hill, Inc., New York, 1994.

    Google Scholar 

  3. Bhandari S, Johnston P. Fowler RC, Joyce A, Turney JH. Nondilated bilateral ureteric obstruction. Nephrol Dial Transplant 1995; 10: 2337–9.

    PubMed  CAS  Google Scholar 

  4. Walshe JJ, Venuto RC. Acute oligurie renal failure induced by indomethacin: possible mechanism. Ann Intern Med 1979; 91: 47–9.

    PubMed  CAS  Google Scholar 

  5. Garella S, Matarese RA. Renal effects of prostaglandins and clinical adverse effects of nonsteroidal anti-inflammatory agents. Medicine 1984; 63: 165–81.

    Article  PubMed  CAS  Google Scholar 

  6. Clive DM, Stoff JS. Renal syndromes associated with nonsteroidal antiinflammatory drugs. N Engl J Med 1984; 310: 563–72.

    Article  PubMed  CAS  Google Scholar 

  7. Weinberg MS, Quigg RJ, Salant DJ, Bernard DB. Anuric renal failure precipitated by indomethacin and triamterene. Nephron 1985; 40: 216–8.

    Article  PubMed  CAS  Google Scholar 

  8. Hricik DE, Browning PJ, Kopelman R, Goorno WE, Madias NE, Dzau VJ. Captopril-induced functional renal insufficiency in patients with bilateral renal-artery stenoses or renal-artery stenosis in a solitary kidney. N Engl J Med 1983; 308: 373–6.

    Article  PubMed  CAS  Google Scholar 

  9. Curtis JJ, Luke RG, Whelchel JD. Diethelm AG, Jones P, Dustan HP. Inhibition of angiotensin-converting enzyme in renal-transplant recipients with hypertension. N Engl J Med 1983; 308: 377–81.

    Article  PubMed  CAS  Google Scholar 

  10. Jackson B, Matthews PG, McGrath BP, Johnston Cl. Angiotensin converting enzyme inhibition in renovascular hypertension: frequency of reversible renal failure. Lancet 1984; 1: 225–6.

    Article  PubMed  CAS  Google Scholar 

  11. Motwani JG, Fenwick MK, Morton JJ, Struthers AD. Determinants of the initial effects of captopril on blood pressure, glomerular filtration rate, and natriuresis in mild-to-moderate chronic congestive heart failure secondary to coronary artery disease. Am J Cardiol 1994; 73: 1191–6.

    Article  PubMed  CAS  Google Scholar 

  12. Hricik DE. Captopril-induced renal insufficiency and the role of sodium balance. Ann Intern Med 1985; 103: 222–3.

    PubMed  CAS  Google Scholar 

  13. Bennett WM, Porter GA. Endogenous creatinine clearance as a clinical measure of glomerular filtration rate. Br Med J 1971; 4: 84–6.

    Article  PubMed  CAS  Google Scholar 

  14. Levey AS. Measurement of renal function in chronic renal disease. Kidney Int 1990; 38: 167–84.

    Article  PubMed  CAS  Google Scholar 

  15. Olson JL, Heptinstall RM. Nonimmunologic mechanisms of glomerular injury. Lab Invest 1988; 59: 564.

    PubMed  CAS  Google Scholar 

  16. Chagnac A, Kiberd BA, Farinas MC, et al. Outcome of the acute glomerular injury in proliferative lupus nephritis. J Clin Invest 1989; 84: 922.

    Article  PubMed  CAS  Google Scholar 

  17. Van de Acker BAC, Koomen GCM, Koopman MG, de Waart DR, Arisz L. Creatinine clearance during cimetidine administration for measurement of glomerular filtration rate. Lancet 1992; 340: 1326–9.

    Article  PubMed  Google Scholar 

  18. Gabow PA, Kaehny WD, Kelleher SP. The spectrum of rhabdomyolysis. Medicine 1982; 61: 141–52.

    Article  PubMed  CAS  Google Scholar 

  19. Dossetor JB. Creatininemia versus uremia. Ann Intern Med 1966; 65: 1287–99.

    PubMed  CAS  Google Scholar 

  20. Yeh BPY, Tomko DJ, Stacy WK, et al. Factors influencing sodium and water excretion in uremic man. Kidney Int 1975; 7: 103.

    Article  PubMed  CAS  Google Scholar 

  21. Mitch WE, Wilcox CS. Disorders of body fluids, sodium and potassium in chronic renal failure. Am J Med 1982; 72: 536–50.

    Article  PubMed  CAS  Google Scholar 

  22. Miller TR, Anderson RJ, Linas SL, et al. Urinary diagnostic indices in acute renal failure. A prospective study. Ann Intern Med 1978; 89: 47–50.

    PubMed  CAS  Google Scholar 

  23. Espinel CH, Gregory AW. Differential diagnosis of acute renal failure. Clin Nephrol 1980; 13: 73–7.

    PubMed  CAS  Google Scholar 

  24. Danovitch GM, Bourgoignie J, Bricker NS. Reversibility of the “salt-losing” tendency of chronic renal failure. N Engl J Med 1977; 296: 14–19.

    Article  PubMed  CAS  Google Scholar 

  25. Sherman RA, Eisinger RP. The use (and misuse) of urinary sodium and chloride measurements. JAMA 1982; 247: 3121–4.

    Article  PubMed  CAS  Google Scholar 

  26. Oster JR, Singer I, Fishman LM. Heparin-induced aldosterone suppression and hyperkalemia. Am J Med 1995; 98 (6): 575–86.

    Article  PubMed  CAS  Google Scholar 

  27. Bantle JP, Nath KA, Sutherland DER, et al. Effect of cyclosporine on the renin-angiotensin system and potassium excretion in renal transplant recipients. Arch Intern Med 1985; 45: 505.

    Article  Google Scholar 

  28. Thadhani R, Pascual M, Bonventure JV. Acute renal failure. N Engl J Med 1996; 334: 1448–60.

    Article  PubMed  CAS  Google Scholar 

  29. Fang LS, Sirota RA, Ebert TH, Lichtenstein NS. Low fractional excretion of sodium with contrast media-induced acute renal failure. Arch Intern Med 1980; 140: 531–3.

    Article  PubMed  CAS  Google Scholar 

  30. Corwin HL, Schreiber MJ, Fang LST. Low fractional excretion of sodium. Occurrence with hemoglobinuricand myoglobinuric-induced acute renal failure. Arch Intern Med 1984; 144: 981–2.

    Article  PubMed  CAS  Google Scholar 

  31. Hoffman LM, Suki WN. Obstructive uropathy mimicking volume depletion. JAMA 1976; 236: 2096–7.

    Article  PubMed  CAS  Google Scholar 

  32. Espinel CH. The FENa test. Use in the differential diagnosis of acute renal failure. JAMA 1976; 236: 579–81.

    Article  PubMed  CAS  Google Scholar 

  33. van Ypersele de Strihou C. Acute oliguric interstitial nephritis. Kidney Int 1979; 16: 751–65.

    Article  Google Scholar 

  34. Diamond JR, Yoburn DC. Nonoliguric acute renal failure associated with a low fractional excretion of sodium. Ann Intern Med 1982; 96: 597–600.

    PubMed  CAS  Google Scholar 

  35. Planas M, Wachtel T, Frank H, Henderson LW. Characterization of acute renal failure in the burned patient. Arch Intern Med 1982; 142: 2087–91.

    Article  PubMed  CAS  Google Scholar 

  36. Sturrock NDC, Struthers AD. Hormonal and other mechanisms involved in the pathogenesis of cyclosporin-induced nephrotoxicity and hypertension in man. Clin Sci 1994; 86: 1–9.

    PubMed  CAS  Google Scholar 

  37. Levi M, Ellis MA, Berl T. Control of renal hemodynamics and glomerular filtration rate in chronic hypercalcemia. J Clin Invest 1983; 71: 1624–32.

    Article  PubMed  CAS  Google Scholar 

  38. Steiner RW. Interpreting the fractional excretion of sodium. Am J Med 1984; 77: 699–702.

    Article  PubMed  CAS  Google Scholar 

  39. Lindeman RD, Van Buren HC, Raisz LG. Osmolar renal concentrating ability in healthy young men and hospitalized patients without renal disease. N Engl J Med 1960; 262: 1306–9.

    Article  PubMed  CAS  Google Scholar 

  40. Sporn IN, Lancestremere RG, Papper S. Differential diagnosis of oliguria in aged patients. N Engl J Med 1962; 67: 130–2.

    Article  Google Scholar 

  41. Dorhout-Mees EJ. Relation between maximal urine concentration, maximal water reabsorption capacity, and mannitol clearance in patients with renal disease. Br Med J 1959: 1159–60.

    Google Scholar 

  42. Zerbe RL, Robertson GL. A comparison of plasma vasopressin measurements with a standard indirect test in the differential diagnosis of polyuria. N Engl J Med 1981; 305 (26): 1539–46.

    Article  PubMed  CAS  Google Scholar 

  43. Anderson RJ, Linas SL, Berns AS, et al. Nonoliguric acute renal failure. N Engl J Med 1977; 296: 1134–8.

    Article  PubMed  CAS  Google Scholar 

  44. Gary NE, Buzzeo L, Salaki J, Eisinger RP. Gentamycinassociated acute renal failure. Arch Intern Med 1976; 136: 1101–4.

    Article  PubMed  CAS  Google Scholar 

  45. Moore RD, Smith CG, Lipsky JJ, Mellits ED, Lietman PS. Risk factors for nephrotoxicity in patients treated with aminoglycosides. Ann Intern Med 1984; 100: 352–7.

    PubMed  CAS  Google Scholar 

  46. Loehrer PJ, Einhorn LH. Cisplatin diagnosis and treatment drugs five years later. Ann Intern Med 1984; 100: 704–13.

    PubMed  CAS  Google Scholar 

  47. Patel R, Savage A. Symptomatic hypomagnesemia with gentamycin therapy. Nephron 1979; 23: 50–2.

    Article  PubMed  CAS  Google Scholar 

  48. Schilsky RL, Anderson T. Hypomagnesemia and renal magnesium wasting in patients receiving cisplatin. Ann Intern Med 1979; 90: 929–31.

    PubMed  CAS  Google Scholar 

  49. Chakko SC, Frutchey J, Gheorghiade M. Life-threatening hyperkalemia in severe heart failure. Am Heart J 1989; 117: 1083–91.

    Article  PubMed  CAS  Google Scholar 

  50. Popovtzer MM, Katz FH, Pinggera WF, Robinette J, Halgrimson CG, Butkus DE. Hyperkalemia in salt-wasting nephropathy. Arch Intern Med 1973; 132: 203–8.

    Article  PubMed  CAS  Google Scholar 

  51. Battle DC, Arruda JAL, Kurtzman NA. Hyperkalemic distal renal tubular acidosis associated with obstructive uropathy. N Engl J Med 1981; 304: 373–80.

    Article  Google Scholar 

  52. O’Connor LR, Klein KL, Bethune JE. Hyperphosphatemia in lactic acidosis. N Engl J Med 1977; 297: 707–8.

    Article  PubMed  Google Scholar 

  53. Kebler R, McDonald FD, Cadnapaphornchai P. Dynamic changes in serum phosphorus levels in diabetic ketoacidosis. Am J Med 1985; 79: 571–6.

    Article  PubMed  CAS  Google Scholar 

  54. Knochel JP. Serum calcium derangements in rhab-domyolysis. N Engl J Med 1981; 305: 161–3.

    Article  PubMed  CAS  Google Scholar 

  55. Akmal M, Bishop JE, Telfer N, Norman AW, Massry SG. Hypocalcemia and hypercalcemia in patients with rhabdomyolysis with and without renal failure. J Clin Endocrinol Metab 1986; 63: 137–42.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Gans, R.O.B., Ter Wee, P.M. (1998). Regulatory mechanisms of fluid and electrolyte turnover. In: Critical Care Nephrology. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5482-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5482-6_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6306-7

  • Online ISBN: 978-94-011-5482-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics