Skip to main content

Integrin Recognition Motifs in the Human Collagens

  • Chapter
  • First Online:
I Domain Integrins

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 819))

Abstract

The best-known (fibrillar) collagens support cellular adhesion primarily through a subset of collagen-binding integrins, α1β1, α2β1, α10β1 and α11β1, which have been shown to recognise a series of similar sequences. These contain Gxx′GEx′′motifs (where x is a hydrophobic residue, x′ is usually O (hydroxyproline) and x′′ is often R). Here, we review the variations within such sequences that support integrin reactivity, and their distribution across the 28 human collagens. The main basis for our understanding is the use of triple-helical, homotrimeric collagen peptides, but this work is far from exhaustive, and there is good evidence that heterotrimeric collagens where the sequence of interest occurs in two or even just a single chain may still support integrin binding. The fibrillar collagens I, II and III are rich in GxOGER motifs, whereas GxOGEK is more widely distributed, and less frequent in these three archetypal fibrillar collagens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adiguzel E, Hou G, Sabatini PJ, Bendeck MP (2013) Type VIII collagen signals via beta1 integrin and RhoA to regulate MMP-2 expression and smooth muscle cell migration. Matrix Biol 32(6):332–341

    Article  CAS  PubMed  Google Scholar 

  2. Aquilina A, Korda M, Bergelson JM, Humphries MJ, Farndale RW, Tuckwell D (2002) A novel gain-of-function mutation of the integrin [alpha]2 VWFA domain. Eur J Biochem 269(4):1136–1144

    Article  CAS  PubMed  Google Scholar 

  3. Ball S, Bella J, Kielty C, Shuttleworth A (2003) Structural basis of type VI collagen dimer formation. J Biol Chem 278(17):15326–15332

    Article  CAS  PubMed  Google Scholar 

  4. Barczyk M, Carracedo S, Gullberg D (2010) Integrins. Cell Tissue Res 339(1):269–280

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Bengtsson T, Camper L, Schneller M, Lundgren-Akerlund E (2001) Characterization of the mouse integrin subunit alpha10 gene and comparison with its human homologue. Genomic structure, chromosomal localization and identification of splice variants. Matrix Biol 20(8):565–576

    Article  CAS  PubMed  Google Scholar 

  6. Bienkowska J, Cruz M, Atiemo A, Handin R, Liddington R (1997) The von Willebrand factor A3 domain does not contain a metal ion-dependent adhesion site motif. J Biol Chem 272:25162–25167

    Article  CAS  PubMed  Google Scholar 

  7. Camper L, Hellman U, Lundgren-Akerlund E (1998) Isolation, cloning, and sequence analysis of the integrin subunit alpha10, a beta1-associated collagen binding integrin expressed on chondrocytes. J Biol Chem 273(32):20383–20389

    Article  CAS  PubMed  Google Scholar 

  8. Camper L, Holmvall K, Wangnerud C, Aszodi A, Lundgren-Akerlund E (2001) Distribution of the collagen-binding integrin alpha10beta1 during mouse development. Cell Tissue Res 306(1):107–116

    Article  CAS  PubMed  Google Scholar 

  9. Carafoli F, Hamaia SW, Bihan D, Hohenester E, Farndale RW (2013) An activating mutation reveals a second binding mode of the integrin alpha2 I domain to the GFOGER motif in collagens. PLoS One 8(7):e69833

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Caswell CC, Barczyk M, Keene DR, Lukomska E, Gullberg DE, Lukomski S (2008) Identification of the first prokaryotic collagen sequence motif that mediates binding to human collagen receptors, integrins alpha2beta1 and alpha11beta1. J Biol Chem 283(52):36168–36175

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Chen M, O’Toole EA, Li YY, Woodley DT (1999) Alpha 2 beta 1 integrin mediates dermal fibroblast attachment to type VII collagen via a 158-amino-acid segment of the NC1 domain. Exp Cell Res 249(2):231–239

    Article  CAS  PubMed  Google Scholar 

  12. Chin YK, Headey SJ, Mohanty B, Patil R, McEwan PA, Swarbrick JD, Mulhern TD, Emsley J, Simpson JS, Scanlon MJ (2013) The structure of integrin alpha1I domain in complex with a collagen-mimetic peptide. J Biol Chem 288(52):36796–36809

    Article  CAS  PubMed  Google Scholar 

  13. Colombatti A, Bonaldo P, Doliana R (1993) Type A modules: interacting domains found in several non-fibrillar collagens and in other extracellular matrix proteins. Matrix 13:297–306

    Article  CAS  PubMed  Google Scholar 

  14. Davies D, Tuckwell DS, Calderwood DA, Weston SA, Takigawa M, Humphries MJ (1997) Molecular characterisation of integrin-procollagen C-propeptide interactions. Eur J Biochem 246(2):274–282

    Article  CAS  PubMed  Google Scholar 

  15. Dickeson SK, Walsh JJ, Santoro SA (1997) Contributions of the I and EF hand domains to the divalent cation-dependent collagen binding activity of the α2β1 integrin. J Biol Chem 272:7661–7668

    Article  CAS  PubMed  Google Scholar 

  16. Eble JA, Kassner A, Niland S, Morgelin M, Grifka J, Grassel S (2006) Collagen XVI harbors an integrin alpha1 beta1 recognition site in its C-terminal domains. J Biol Chem 281(35):25745–25756

    Article  CAS  PubMed  Google Scholar 

  17. Emsley J, King SL, Bergelson JM, Liddington RC (1997) Crystal structure of the I-domain from integrin α2β1. J Biol Chem 272:28512–28517

    Article  CAS  PubMed  Google Scholar 

  18. Emsley J, Knight CG, Farndale RW, Barnes MJ, Liddington RC (2000) Structural basis of collagen recognition by integrin alpha2beta1. Cell 101(1):47–56

    Article  CAS  PubMed  Google Scholar 

  19. Farndale RW, Lisman T, Bihan D, Hamaia S, Smerling CS, Pugh N, Konitsiotis A, Leitinger B, de Groot PG, Jarvis GE, Raynal N (2008) Cell–collagen interactions: the use of peptide Toolkits to investigate collagen–receptor interactions. Biochem Soc Trans 36(Pt 2):241–250

    Article  CAS  PubMed  Google Scholar 

  20. Fitzsimmons CM, Cawston TE, Barnes MJ (1986) The platelet reactivity of collagen type I: evidence for multiple platelet-reactive sites in the type I collagen molecule. Thromb Haemost 56:95–99

    CAS  PubMed  Google Scholar 

  21. Gullberg D, Gehlsen KR, Turner DC, Ahlen K, Zijenah LS, Barnes MJ, Rubin K (1992) Analysis of α1β1, α2β1 and α3β1 integrins in cell–collagen interactions: identification of conformation dependent α1β1 binding sites in collagen type 1. EMBO J 11:3865–3873

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Halfter W, Dong S, Schurer B, Cole GJ (1998) Collagen XVIII is a basement membrane heparan sulfate proteoglycan. J Biol Chem 273(39):25404–25412

    Article  CAS  PubMed  Google Scholar 

  23. Hamaia SW, Pugh N, Raynal N, Nemoz B, Stone R, Gullberg D, Bihan D, Farndale RW (2012) Mapping of potent and specific binding motifs, GLOGEN and GVOGEA, for integrin alpha1beta1 using Collagen Toolkits II and III. J Biol Chem 287(31):26019–26028

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Humphries JD, Byron A, Humphries MJ (2006) Integrin ligands at a glance. J Cell Sci 119(Pt 19):3901–3903

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Humtsoe JO, Kim JK, Xu Y, Keene DR, Hook M, Lukomski S, Wary KK (2005) A streptococcal collagen-like protein interacts with the alpha2beta1 integrin and induces intracellular signaling. J Biol Chem 280(14):13848–13857

    Article  CAS  PubMed  Google Scholar 

  26. Hurskainen M, Ruggiero F, Hagg P, Pihlajaniemi T, Huhtala P (2010) Recombinant human collagen XV regulates cell adhesion and migration. J Biol Chem 285(8):5258–5265

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Kadler KE, Baldock C, Bella J, Boot-Handford RP (2007) Collagens at a glance. J Cell Sci 120(Pt 12):1955–1958

    Article  CAS  PubMed  Google Scholar 

  28. Kapyla J, Jaalinoja J, Tulla M, Ylostalo J, Nissinen L, Viitasalo T, Vehvilainen P, Marjomaki V, Nykvist P, Saamanen AM, Farndale RW, Birk DE, Ala-Kokko L, Heino J (2004) The fibril-associated collagen IX provides a novel mechanism for cell adhesion to cartilaginous matrix. J Biol Chem 279(49):51677–51687

    Article  PubMed  Google Scholar 

  29. Kim JK, Xu Y, Xu X, Keene DR, Gurusiddappa S, Liang X, Wary KK, Hook M (2005) A novel binding site in collagen type III for the integrins, alpha 1beta 1 and alpha 2beta 1. J Biol Chem 280:32512–32520

    Article  CAS  PubMed  Google Scholar 

  30. Knight CG, Morton LF, Onley DJ, Peachey AR, Messent AJ, Smethurst PA, Tuckwell DS, Farndale RW, Barnes MJ (1998) Identification in collagen type I of an integrin alpha2 beta1-binding site containing an essential GER sequence. J Biol Chem 273(50):33287–33294

    Article  CAS  PubMed  Google Scholar 

  31. Knight CG, Morton LF, Peachey AR, Tuckwell DS, Farndale RW, Barnes MJ (2000) The collagen-binding A-domains of integrins alpha(1)beta(1) and alpha(2)beta(1) recognize the same specific amino acid sequence, GFOGER, in native (triple-helical) collagens. J Biol Chem 275(1):35–40

    Article  CAS  PubMed  Google Scholar 

  32. Koch M, Schulze J, Hansen U, Ashwodt T, Keene DR, Brunken WJ, Burgeson RE, Bruckner P, Bruckner-Tuderman L (2004) A novel marker of tissue junctions, collagen XXII. J Biol Chem 279(21):22514–22521

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Lahti M, Heino J, Kapyla J (2013) Leukocyte integrins alphaLbeta2, alphaMbeta2 and alphaXbeta2 as collagen receptors–receptor activation and recognition of GFOGER motif. Int J Biochem Cell Biol 45(7):1204–1211

    Article  CAS  PubMed  Google Scholar 

  34. Lebbink RJ, de Ruiter T, Adelmeijer J, Brenkman AB, van Helvoort JM, Koch M, Farndale RW, Lisman T, Sonnenberg A, Lenting PJ, Meyaard L (2006) Collagens are functional, high affinity ligands for the inhibitory immune receptor LAIR-1. J Exp Med 203:1419–1425

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Li Y, Brodsky B, Baum J (2009) NMR conformational and dynamic consequences of a Gly to Ser substitution in an osteogenesis imperfecta collagen model peptide. J Biol Chem 284(31):20660–20667

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Liebert M, Washington R, Wedemeyer G, Carey TE, Grossman HB (1994) Loss of co-localization of alpha 6 beta 4 integrin and collagen VII in bladder cancer. Am J Pathol 144(4):787–795

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Morton LF, Peachey AR, Barnes MJ (1989) Platelet-reactive sites in collagens type I and type III. Evidence for separate adhesion and aggregatory sites. BJ 258:157–163

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Morton LF, Peachey AR, Zijenah LS, Goodall AH, Humphries MJ, Barnes MJ (1994) Conformation-dependent platelet adhesion to collagen involving integrin alpha 2 beta 1-mediated and other mechanisms: multiple alpha 2 beta 1-recognition sites in collagen type I. Biochem J 299(Pt 3):791–797

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Morton LF, Zijenah LS, McCulloch IY, Knight CG, Humphries MJ, Barnes MJ (1991) Integrin-dependent platelet recognition sites in collagen: identification of a short platelet-reactive sequence in the type III-derived fragment alpha 1(III) CB3. Biochem Soc Trans 19(4):439S

    CAS  PubMed  Google Scholar 

  40. Nishiyama T, McDonough AM, Bruns RR, Burgeson RE (1994) Type XII and XIV collagens mediate interactions between banded collagen fibers in vitro and may modulate extracellular matrix deformability. J Biol Chem 269(45):28193–28199

    CAS  PubMed  Google Scholar 

  41. Nykvist P, Tasanen K, Viitasalo T, Kapyla J, Jokinen J, Bruckner-Tuderman L, Heino J (2001) The cell adhesion domain of type XVII collagen promotes integrin-mediated cell spreading by a novel mechanism. J Biol Chem 276(42):38673–38679

    Article  CAS  PubMed  Google Scholar 

  42. Nykvist P, Tu H, Ivaska J, Kapyla J, Pihlajaniemi T, Heino J (2000) Distinct recognition of collagen subtypes by alpha(1)beta(1) and alpha(2)beta(1) integrins. Alpha(1)beta(1) mediates cell adhesion to type XIII collagen. J Biol Chem 275(11):8255–8261

    Article  CAS  PubMed  Google Scholar 

  43. Nystrom A, Velati D, Mittapalli VR, Fritsch A, Kern JS, Bruckner-Tuderman L (2013) Collagen VII plays a dual role in wound healing. J Clin Invest 123(8):3498–3509

    Article  PubMed Central  PubMed  Google Scholar 

  44. Parkin JD, San Antonio JD, Pedchenko V, Hudson B, Jensen ST, Savige J (2011) Mapping structural landmarks, ligand binding sites, and missense mutations to the collagen IV heterotrimers predicts major functional domains, novel interactions, and variation in phenotypes in inherited diseases affecting basement membranes. Hum Mutat 32(2):127–143

    Google Scholar 

  45. Persikov AV, Ramshaw JAM, Kirkpatrick A, Brodsky B (2000) Amino acid propensities for the collagen triple-helix. Biochemistry 39:14960–14967

    Article  CAS  PubMed  Google Scholar 

  46. Perumal S, Antipova O, Orgel JP (2008) Collagen fibril architecture, domain organization, and triple-helical conformation govern its proteolysis. Proc Natl Acad Sci USA 105(8):2824–2829

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Plumb DA, Dhir V, Mironov A, Ferrara L, Poulsom R, Kadler KE, Thornton DJ, Briggs MD, Boot-Handford RP (2007) Collagen XXVII is developmentally regulated and forms thin fibrillar structures distinct from those of classical vertebrate fibrillar collagens. J Biol Chem 282(17):12791–12795

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Popova SN, Rodriguez-Sanchez B, Liden A, Betsholtz C, Van Den Bos T, Gullberg D (2004) The mesenchymal alpha11beta1 integrin attenuates PDGF-BB-stimulated chemotaxis of embryonic fibroblasts on collagens. Dev Biol 270(2):427–442

    Article  CAS  PubMed  Google Scholar 

  49. Prockop DJ, Kivirikko KI, Tuderman L, Guzman NA (1979) The biosynthesis of collagen and its disorders (Pt 2). NEJM 301:77–85

    Article  CAS  PubMed  Google Scholar 

  50. Raynal N, Hamaia SW, Siljander PR, Maddox B, Peachey AR, Fernandez R, Foley LJ, Slatter DA, Jarvis GE, Farndale RW (2006) Use of synthetic peptides to locate novel integrin alpha2beta1-binding motifs in human collagen III. J Biol Chem 281(7):3821–3831

    Article  CAS  PubMed  Google Scholar 

  51. Rehn M, Veikkola T, Kukk-Valdre E, Nakamura H, Ilmonen M, Lombardo C, Pihlajaniemi T, Alitalo K, Vuori K (2001) Interaction of endostatin with integrins implicated in angiogenesis. Proc Natl Acad Sci USA 98(3):1024–1029

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Ricard-Blum S (2011) The Collagen Family. Cold Spring Harb Perspect Biol 3(1):a004978

    Article  PubMed Central  PubMed  Google Scholar 

  53. Sacca B, Sinner EK, Kaiser J, Lubken C, Eble JA, Moroder L (2002) Binding and docking of synthetic heterotrimeric collagen type IV peptides with alpha1beta1 integrin. ChemBioChem 3(9):904–907

    Article  CAS  PubMed  Google Scholar 

  54. Saelman EU, Nieuwenhuis HK, Hese KM, de Groot PG, Heijnen HF, Sage EH, Williams S, McKeown L, Gralnick HR, Sixma JJ (1994) Platelet adhesion to collagen types I through VIII under conditions of stasis and flow is mediated by GPIa/IIa (alpha 2 beta 1-integrin). Blood 83(5):1244–1250

    CAS  PubMed  Google Scholar 

  55. Santoro SA (1986) Identification of a 160000 dalton platelet membrane protein that mediates the initial divalent cation-dependent adhesion of platelets to collagen. Cell 46:913–920

    Article  CAS  PubMed  Google Scholar 

  56. Santoro SA (1988) Molecular basis of platelet adhesion to collagen. In: Jamieson GA (ed.) Platelet membrane receptors: molecular biology, immunology, biochemistry, and pathology. Alan R. Liss, New York

    Google Scholar 

  57. Santoro SA, Cunningham L (1980) Collagen-mediated platelet aggregation: the role of multiple interactions between the platelet surface and collagen. Thromb Haemost 43:158–162

    CAS  PubMed  Google Scholar 

  58. Seo N, Russell BH, Rivera JJ, Liang X, Xu X, Afshar-Kharghan V, Hook M (2010) An engineered alpha1 integrin-binding collagenous sequence. J Biol Chem 285(40):31046–31054

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Siljander PR, Hamaia S, Peachey AR, Slatter DA, Smethurst PA, Ouwehand WH, Knight CG, Farndale RW (2004) Integrin activation state determines selectivity for novel recognition sites in fibrillar collagens. J Biol Chem 279(46):47763–47772

    Article  CAS  PubMed  Google Scholar 

  60. Smith SM, Zhang G, Birk DE (2014) Collagen V localizes to pericellular sites during tendon collagen fibrillogenesis. Matrix Biol 33:47–53

    Google Scholar 

  61. Staatz WD, Fok KF, Zutter MM, Adams SP, Rodriguez BA, Santoro SA (1991) Identification of a tetrapeptide recognition sequence for the a2b1-binding sites in collagen I. JBC 266:7363–7367

    CAS  Google Scholar 

  62. Staatz WD, Rajpara SM, Wayner EA, Carter WG, Santoro SA (1989) The membrane glycoprotein Ia-IIa (VLA2) complex mediates the Mg2+-dependent adhesion of platelets to collagen. JCB 108:1917–1924

    Article  CAS  PubMed  Google Scholar 

  63. Staatz WD, Walsh JJ, Pexton T, Santoro SA (1990) The alpha 2 beta 1 integrin cell surface collagen receptor binds to the alpha 1 (I)-CB3 peptide of collagen. J Biol Chem 265(9):4778–4781

    CAS  PubMed  Google Scholar 

  64. Sun M, Chen S, Adams SM, Florer JB, Liu H, Kao WW, Wenstrup RJ, Birk DE (2011) Collagen V is a dominant regulator of collagen fibrillogenesis: dysfunctional regulation of structure and function in a corneal-stroma-specific Col5a1-null mouse model. J Cell Sci 124(Pt 23):4096–4105

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Trachslin J, Koch M, Chiquet M (1999) Rapid and reversible regulation of collagen XII expression by changes in tensile stress. Exp Cell Res 247(2):320–328

    Article  CAS  PubMed  Google Scholar 

  66. Tuckwell DS, Reid KBM, Barnes MJ, Humphries MJ (1996) The A-domain of integrin alpha 2 binds specifically to a range of collagens but is not a general receptor for the collagenous motif. Eur J Biochem 241(3):732–739

    Article  CAS  PubMed  Google Scholar 

  67. Tulla M, Lahti M, Puranen JS, Brandt AM, Kapyla J, Domogatskaya A, Salminen TA, Tryggvason K, Johnson MS, Heino J (2008) Effects of conformational activation of integrin alpha 1I and alpha 2I domains on selective recognition of laminin and collagen subtypes. Exp Cell Res 314(8):1734–1743

    Article  CAS  PubMed  Google Scholar 

  68. Tulla M, Pentikainen OT, Viitasalo T, Kapyla J, Impola U, Nykvist P, Nissinen L, Johnson MS, Heino J (2001) Selective binding of collagen subtypes by integrin alpha 1I, alpha 2I, and alpha 10I domains. J Biol Chem 276(51):48206–48212

    CAS  PubMed  Google Scholar 

  69. Turner NJ, Murphy MO, Kielty CM, Shuttleworth CA, Black RA, Humphries MJ, Walker MG, Canfield AE (2006) Alpha2(VIII) collagen substrata enhance endothelial cell retention under acute shear stress flow via an alpha2beta1 integrin-dependent mechanism: an in vitro and in vivo study. Circulation 114(8):820–829

    Article  CAS  PubMed  Google Scholar 

  70. Veit G, Zwolanek D, Eckes B, Niland S, Kapyla J, Zweers MC, Ishada-Yamamoto A, Krieg T, Heino J, Eble JA, Koch M (2011) Collagen XXIII, novel ligand for integrin alpha2beta1 in the epidermis. J Biol Chem 286(31):27804–27813

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Wenstrup RJ, Florer JB, Davidson JM, Phillips CL, Pfeiffer BJ, Menezes DW, Chervoneva I, Birk DE (2006) Murine model of the Ehlers-Danlos syndrome. Col5a1 haploinsufficiency disrupts collagen fibril assembly at multiple stages. J Biol Chem 281(18):12888–12895

    Article  CAS  PubMed  Google Scholar 

  72. Weston SA, Hulmes DJS, Mould AP, Watson RB, Humphries MJ (1994) Identification of integrin α2β1 as cell surface receptor for the carboxy-terminal propeptide of type I procollagen. J Biol Chem 269:20982–20986

    CAS  PubMed  Google Scholar 

  73. Wickstrom SA, Alitalo K, Keski-Oja J (2002) Endostatin associates with integrin alpha5beta1 and caveolin-1, and activates Src via a tyrosyl phosphatase-dependent pathway in human endothelial cells. Cancer Res 62(19):5580–5589

    CAS  PubMed  Google Scholar 

  74. Xu Y, Gurusiddappa S, Rich RL, Owens RT, Keene DR, Mayne R, Hook A, Hook M (2000) Multiple binding sites in collagen type I for the integrins α1β1 and α2β1. JBC 275:38981–38989

    Article  CAS  Google Scholar 

  75. Zhang WM, Kapyla J, Puranen JS, Knight CG, Tiger CF, Pentikainen OT, Johnson MS, Farndale RW, Heino J, Gullberg D (2003) Alpha 11beta 1 integrin recognizes the GFOGER sequence in interstitial collagens. J Biol Chem 278(9):7270–7277

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Work described here from the authors’ laboratory was supported by grants from the Medical Research Council, British Heart Foundation and the Wellcome Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard W. Farndale .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hamaia, S., Farndale, R.W. (2014). Integrin Recognition Motifs in the Human Collagens. In: Gullberg, D. (eds) I Domain Integrins. Advances in Experimental Medicine and Biology, vol 819. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9153-3_9

Download citation

Publish with us

Policies and ethics