Skip to main content

Crosstalk Between Mdm2, p53 and HIF1-α: Distinct Responses to Oxygen Stress and Implications for Tumour Hypoxia

  • Chapter
  • First Online:
Mutant p53 and MDM2 in Cancer

Part of the book series: Subcellular Biochemistry ((SCBI,volume 85))

Abstract

The E3 ubiquitin ligase Mdm2 regulates two transcription factors, p53 and HIF1α, which appear to be tailored towards different and specific roles within the cell, the DNA damage and hypoxia responses, respectively. However, evidence increasingly points towards the interplay between these factors being crucial for the regulation of cellular metabolism and survival in times of oxygen stress, which has particular relevance for tumour formation. Mdm2, p53 and HIF1α all respond to hypoxia, and intriguingly, have distinct roles depending on the level of hypoxia. The data from numerous studies across different conditions hint at the interplay between these key factors in cellular homeostasis. Here we try to weave these strands together, to create a picture of the complex tapestry of interactions that demonstrates the importance of the crosstalk between these key regulatory proteins during hypoxia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alarcón R, Koumenis C, Geyer RK, Maki CG, Giaccia AJ (1999) Hypoxia induces p53 accumulation through MDM2 down-regulation and inhibition of E6-mediated degradation. Cancer Res 59(24):6046–6051

    PubMed  Google Scholar 

  2. An WG, Kanekal M, Simon MC, Maltepe E, Blagosklonny MV, Neckers LM (1998) Stabilization of wild-type p53 by hypoxia-inducible factor 1alpha. Nature 392(6674):405–408

    Article  CAS  PubMed  Google Scholar 

  3. Ashur-Fabian O, Avivi A, Trakhtenbrot L, Adamsky K, Cohen M, Kajakaro G, Joel A, Amariglio N, Nevo E, Rechavi G (2004) Evolution of p53 in hypoxia-stressed Spalax mimics human tumor mutation. Proc Natl Acad Sci U S A 101(33):12236–12241

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Band M, Ashur-Fabian O, Avivi A (2010) The expression of p53-target genes in the hypoxia-tolerant subterranean mole-rat is hypoxia-dependent and similar to expression patterns in solid tumors. Cell Cycle 9(16):3347–3352

    Article  CAS  PubMed  Google Scholar 

  5. Bárdos JI, Chau NM, Ashcroft M (2004) Growth factor-mediated induction of HDM2 positively regulates hypoxia-inducible factor 1α expression. Mol Cell Biol 24(7):2905–2914

    Article  PubMed Central  PubMed  Google Scholar 

  6. Bensaad K, Tsuruta A, Selak MA, Vidal MNC, Nakano K, Bartrons R, Gottlieb E, Vousden KH (2006) TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell 126(1):107–120

    Article  CAS  PubMed  Google Scholar 

  7. Bertout JA, Patel SA, Simon MC (2008) The impact of O2 availability on human cancer. Nat Rev Cancer 8(12):967–975

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Carroll VA, Ashcroft M (2008) Regulation of angiogenic factors by HDM2 in renal cell carcinoma. Cancer Res 68(2):545–552

    Article  CAS  PubMed  Google Scholar 

  9. Chen D, Li M, Luo J, Gu W (2003) Direct interactions between HIF-1α and Mdm2 modulate p53 function. J Biol Chem 278(16):13595–13598

    Article  CAS  PubMed  Google Scholar 

  10. Choy M-K, Movassagh M, Bennett MR, Foo RSY (2010) PKB/Akt activation inhibits p53-mediated HIF1A degradation that is independent of MDM2. J Cell Physiol 222(3):635–639. doi:10.1002/jcp.21980

    CAS  PubMed  Google Scholar 

  11. Contractor T, Harris CR (2012) p53 negatively regulates transcription of the pyruvate dehydrogenase kinase Pdk2. Cancer Res 72(2):560–567

    Article  CAS  PubMed  Google Scholar 

  12. Fang J, Xia C, Cao Z, Zheng JZ, Reed E, Jiang BH (2005) Apigenin inhibits VEGF and HIF-1 expression via PI3K/AKT/p70S6K1 and HDM2/p53 pathways. FASEB J 19(3):342–353

    Article  CAS  PubMed  Google Scholar 

  13. Fei P, Wang W, Kim SH, Wang S, Burns TF, Sax JK, Buzzai M, Dicker DT, McKenna WG, Bernhard EJ, El-Deiry WS (2004) Bnip3L is induced by p53 under hypoxia, and its knockdown promotes tumor growth. Cancer Cell 6(6):597–609

    Article  CAS  PubMed  Google Scholar 

  14. Feng X, Liu X, Zhang W, Xiao W (2011) P53 directly suppresses BNIP3 expression to protect against hypoxia-induced cell death. EMBO J 30(16):3397–3415

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Gasparini G, Weidner N, Maluta S, Pozza F, Boracchi P, Mezzetti M, Testolin A, Bevilacqua P (1993) Intratumoral microvessel density and p53 protein: correlation with metastasis in head-and-neck squamous-cell carcinoma. Int J Cancer 55(5):739–744

    Article  CAS  PubMed  Google Scholar 

  16. Goda N, Kanai M (2012) Hypoxia-inducible factors and their roles in energy metabolism. Int J Hematol 95(5):457–463

    Article  CAS  PubMed  Google Scholar 

  17. Graeber TG, Peterson JF, Tsai M, Monica K, Fornace AJ Jr, Giaccia AJ (1994) Hypoxia induces accumulation of p53 protein, but activation of a G1- phase checkpoint by low-oxygen conditions is independent of p53 status. Mol Cell Biol 14(9):6264–6277

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Gross C, Buchwalter G, Dubois-Pot H, Cler E, Zheng H, Wasylyk B (2007) The ternary complex factor net is downregulated by hypoxia and regulates hypoxia- responsive genes. Mol Cell Biol 27(11):4133–4141

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Gross C, Dubois-Pot H, Wasylyk B (2008) The ternary complex factor Net/Elk-3 participates in the transcriptional response to hypoxia and regulates HIF-1α. Oncogene 27(9):1333–1341

    Article  CAS  PubMed  Google Scholar 

  20. Hammond EM, Denko NC, Dorie MJ, Abraham RT, Giaccia AJ (2002) Hypoxia links ATR and p53 through replication arrest. Mol Cell Biol 22(6):1834–1843

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Hansson LO, Friedler A, Freund S, Rüdiger S, Fersht AR (2002) Two sequence motifs from HIF-1α bind to the DNA-binding site of p53. Proc Natl Acad Sci USA 99(16):10305–10309. doi:10.1073/pnas.122347199

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Hu W, Zhang C, Wu R, Sun Y, Levine A, Feng Z (2010) Glutaminase 2, a novel p53 target gene regulating energy metabolism and antioxidant function. Proc Natl Acad Sci U S A 107(16):7455–7460

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Kang SM, Maeda K, Onoda N, Chung YS, Nakata B, Nishiguchi Y, Sowa M (1997) Combined analysis of p53 and vascular endothelial growth factor expression in colorectal carcinoma for determination of tumor vascularity and liver metastasis. Int J Cancer 74(5):502–507

    Article  CAS  PubMed  Google Scholar 

  24. Kawauchi K, Araki K, Tobiume K, Tanaka N (2008) p53 regulates glucose metabolism through an IKK-NF-κB pathway and inhibits cell transformation. Nat Cell Biol 10(5):611–618

    Article  CAS  PubMed  Google Scholar 

  25. Ke Q, Costa M (2006) Hypoxia-inducible factor-1 (HIF-1). Mol Pharmacol 70(5):1469–1480

    Article  CAS  PubMed  Google Scholar 

  26. Koumenis C, Alarcon R, Hammond E, Sutphin P, Hoffman W, Murphy M, Derr J, Taya Y, Lowe SW, Kastan M, Giaccia A (2001) Regulation of p53 by hypoxia: dissociation of transcriptional repression and apoptosis from p53-dependent transactivation. Mol Cell Biol 21(4):1297–1310

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Kubbutat MHG, Jones SN, Vousden KH (1997) Regulation of p53 stability by Mdm2. Nature 387(6630):299–303

    Article  CAS  PubMed  Google Scholar 

  28. Kuschel A, Simon P, Tug S (2012) Functional regulation of HIF-1alpha under normoxia – is there more than post-translational regulation? J Cell Physiol 227(2):514–524. doi:10.1002/jcp.22798

    Article  CAS  PubMed  Google Scholar 

  29. LaRusch GA, Jackson MW, Dunbar JD, Warren RS, Donner DB, Mayo LD (2007) Nutlin3 blocks vascular endothelial growth factor induction by preventing the interaction between hypoxia inducible factor 1α and Hdm2. Cancer Res 67(2):450–454. doi:10.1158/0008-5472.can-06-2710

    Article  CAS  PubMed  Google Scholar 

  30. Lau CK, Yang ZF, Lam CT, Tam KH, Poon RTP, Fan ST (2006) Suppression of hypoxia inducible factor-1α (HIF-1α) by YC-1 is dependent on murine double minute 2 (Mdm2). Biochem Biophys Res Commun 348(4):1443–1448

    Article  CAS  PubMed  Google Scholar 

  31. Laughner E, Taghavi P, Chiles K, Mahon PC, Semenza GL (2001) HER2 (neu) signaling increases the rate of hypoxia-inducible factor 1α (HIF-1α) synthesis: novel mechanism for HIF-1-mediated vascular endothelial growth factor expression. Mol Cell Biol 21(12):3995–4004

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Lee SJ, Lim CJ, Min JK, Lee JK, Kim YM, Lee JY, Won MH, Kwon YG (2007) Protein phosphatase 1 nuclear targeting subunit is a hypoxia inducible gene: its role in post-translational modification of p53 and MDM2. Cell Death Differ 14(6):1106–1116

    Article  CAS  PubMed  Google Scholar 

  33. Lee YM, Lim JH, Chun YS, Moon HE, Lee MK, Huang LE, Park JW (2009) Nutlin-3, an Hdm2 antagonist, inhibits tumor adaptation to hypoxia by stimulating the FIH-mediated inactivation of HIF-1α. Carcinogenesis 30(10):1768–1775

    Article  CAS  PubMed  Google Scholar 

  34. Lin J, Chen J, Elenbaas B, Levine AJ (1994) Several hydrophobic amino acids in the p53 amino-terminal domain are required for transcriptional activation, binding to mdm-2 and the adenovirus 5 E1B 55-kD protein. Genes Dev 8(10):1235–1246

    Article  CAS  PubMed  Google Scholar 

  35. Ma J, Xue Y, Cui W, Li Y, Zhao Q, Ye W, Zheng J, Cheng Y, Ma Y, Li S, Han T, Miao L, Yao L, Zhang J, Liu W (2012) Ras homolog gene family, member A promotes p53 degradation and vascular endothelial growth factor-dependent angiogenesis through an interaction with murine double minute 2 under hypoxic conditions. Cancer 118(17):4105–4116

    Article  CAS  PubMed  Google Scholar 

  36. Mizuno S, Bogaard HJ, Kraskauskas D, Alhussaini A, Gomez-Arroyo J, Voelkel NF, Ishizaki T (2011) P53 gene deficiency promotes hypoxia-induced pulmonary hypertension and vascular remodeling in mice. Am J Physiol Lung Cell Mol Physiol 300(5):L753–L761

    Article  CAS  PubMed  Google Scholar 

  37. Mucaj V, Shay JES, Simon MC (2012) Effects of hypoxia and HIFs on cancer metabolism. Int J Hematol 95(5):464–470

    Article  CAS  PubMed  Google Scholar 

  38. Nieminen AL, Qanungo S, Schneider EA, Jiang BH, Agani FH (2005) Mdm2 and HIF-1α interaction in tumor cells during hypoxia. J Cell Physiol 204(2):364–369

    Article  CAS  PubMed  Google Scholar 

  39. Pan Y, Oprysko PR, Asham AM, Koch CJ, Simon MC (2004) p53 cannot be induced by hypoxia alone but responds to the hypoxic microenvironment. Oncogene 23(29):4975–4983

    Article  CAS  PubMed  Google Scholar 

  40. Patterson DM, Gao D, Trahan DN, Johnson BA, Ludwig A, Barbieri E, Chen Z, Diaz-Miron J, Vassilev L, Shohet JM, Kim ES (2011) Effect of MDM2 and vascular endothelial growth factor inhibition on tumor angiogenesis and metastasis in neuroblastoma. Angiogenesis 14(3):255–266

    Article  CAS  PubMed  Google Scholar 

  41. Ravi R, Mookerjee B, Bhujwalla ZM, Sutter CH, Artemov D, Zeng Q, Dillehay LE, Madan A, Semenza GL, Bedi A (2000) Regulation of tumor angiogenesis by p53-induced degradation of hypoxia- inducible factor 1α. Genes Dev 14(1):34–44

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Ren BF, Deng LF, Wang J, Zhu YP, Wei L, Zhou Q (2008) Hypoxia regulation of facilitated glucose transporter-1 and glucose transporter-3 in mouse chondrocytes mediated by HIF-1α. Joint Bone Spine 75(2):176–181

    Article  CAS  PubMed  Google Scholar 

  43. Roe J-S, Kim H, Lee S-M, Kim S-T, Cho E-J, Youn H-D (2006) p53 stabilization and transactivation by a von Hippel-Lindau protein. Mol Cell 22(3):395–405. doi:10.1016/j.molcel.2006.04.006

    Article  CAS  PubMed  Google Scholar 

  44. Sánchez-Puig N, Veprintsev DB, Fersht AR (2005) Binding of natively unfolded HIF-1α ODD domain to p53. Mol Cell 17(1):11–21. doi:http://dx.doi.org/10.1016/j.molcel.2004.11.019

    Article  PubMed  Google Scholar 

  45. Schwartzenberg-Bar-Yoseph F, Armoni M, Karnieli E (2004) The tumor suppressor p53 down-regulates glucose transporters GLUT1 and GLUT4 gene expression. Cancer Res 64(7):2627–2633

    Article  CAS  PubMed  Google Scholar 

  46. Serchov T, Dubois-Pot-Schneider H, Charlot C, Rösl F, Wasylyk B (2010) Involvement of net and Hif1α in distinct yet intricately linked hypoxia-induced signaling pathways. J Biol Chem 285(28):21223–21232

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Shams I, Malik A, Manov I, Joel A, Band M, Avivi A (2013) Transcription pattern of p53-targeted DNA repair genes in the hypoxia-tolerant subterranean mole rat Spalax. J Mol Biol 425:1111–1118

    Article  CAS  PubMed  Google Scholar 

  48. Skinner HD, Zheng JZ, Fang J, Agani F, Jiang BH (2004) Vascular endothelial growth factor transcriptional activation is mediated by hypoxia-inducible factor 1α, HDM2, and p70S6K1 in response to phosphatidylinositol 3-kinase/AKT signaling. J Biol Chem 279(44):45643–45651

    Article  CAS  PubMed  Google Scholar 

  49. Song H, Yin D, Liu Z (2012) GDF-15 promotes angiogenesis through modulating p53/HIF-1α signaling pathway in hypoxic human umbilical vein endothelial cells. Mol Biol Rep 39(4):4017–4022

    Article  CAS  PubMed  Google Scholar 

  50. Supiot S, Hill RP, Bristow RG (2008) Nutlin-3 radiosensitizes hypoxic prostate cancer cells independent of p53. Mol Cancer Ther 7(4):993–999

    Article  CAS  PubMed  Google Scholar 

  51. Suzuki H, Tomida A, Tsuruo T (2001) Dephosphorylated hypoxia-inducible factor 1α as a mediator of p53-dependent apoptosis during hypoxia. Oncogene 20(41):5779–5788

    Article  CAS  PubMed  Google Scholar 

  52. Wood SM, Wiesener MS, Yeates KM, Okada N, Pugh CW, Maxwell PH, Ratcliffe PJ (1998) Selection and analysis of a mutant cell line defective in the hypoxia- inducible factor-1 α-subunit (HIF-1α). Characterization of HIF-1α- dependent and -independent hypoxia-inducible gene expression. J Biol Chem 273(14):8360–8368

    Article  CAS  PubMed  Google Scholar 

  53. Wu X, Bayle JH, Olson D, Levine AJ (1993) The p53-mdm-2 autoregulatory feedback loop. Genes Dev 7(7A):1126–1132

    Article  CAS  PubMed  Google Scholar 

  54. Yamakuchi M, Lotterman CD, Bao C, Hruban RH, Karim B, Mendell JT, Huso D, Lowenstein CJ (2010) P53-induced microRNA-107 inhibits HIF-1 and tumor angiogenesis. Proc Natl Acad Sci U S A 107(14):6334–6339

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Yan HL, Xue G, Mei Q, Wang YZ, Ding FX, Liu MF, Lu MH, Tang Y, Yu HY, Sun SH (2009) Repression of the miR-17-92 cluster by p53 has an important function in hypoxia-induced apoptosis. EMBO J 28(18):2719–2732

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Yoshioka Y, Shimizu S, Ito T, Taniguchi M, Nomura M, Nishida T, Sawa Y (2012) p53 inhibits vascular endothelial growth factor expression in solid tumor. J Surg Res 174(2):291–297, http://dx.doi.org/10.1016/j.jss.2010.12.028

    Article  CAS  PubMed  Google Scholar 

  57. Zhang J, Biggar KK, Storey KB (2013) Regulation of p53 by reversible post-transcriptional and post-translational mechanisms in liver and skeletal muscle of an anoxia tolerant turtle, Trachemys scripta elegans. Gene 513(1):147–155

    Article  CAS  PubMed  Google Scholar 

  58. Zhou S, Gu L, He J, Zhang H, Zhou M (2011) MDM2 regulates vascular endothelial growth factor mRNA stabilization in hypoxia. Mol Cell Biol 31(24):4928–4937

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Zhu Y, Mao XO, Sun Y, Xia Z, Greenberg DA (2002) p38 mitogen-activated protein kinase mediates hypoxic regulation of Mdm2 and p53 in neurons. J Biol Chem 277(25):22909–22914

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

E. Douglas Robertson is a recipient of an INCa (HypoNet project) post-doctoral fellowship, and Kostyantyn Semenchenko PhD fellowships from the FP7 Marie Curie ITN Cancure and the Association pour la Recherche sur le Cancer. Research in the laboratory of B. Wasylyk is supported by the CNRS, INSERM, the Association pour la Recherche sur le Cancer, the University of Strasbourg, the Institut National du Cancer (INCa), the Ligue Nationale contre le Cancer and the Conférence de Coordination Interrégionale du Grand Est de la Ligue contre le Cancer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bohdan Wasylyk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Robertson, E.D., Semenchenko, K., Wasylyk, B. (2014). Crosstalk Between Mdm2, p53 and HIF1-α: Distinct Responses to Oxygen Stress and Implications for Tumour Hypoxia. In: Deb, S., Deb, S. (eds) Mutant p53 and MDM2 in Cancer. Subcellular Biochemistry, vol 85. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9211-0_11

Download citation

Publish with us

Policies and ethics