Skip to main content

Diagnosing Diabetic Retinopathy by Using a Blood Vessel Extraction Technique and a Convolutional Neural Network

  • Chapter
  • First Online:
Deep Learning for Medical Decision Support Systems

Part of the book series: Studies in Computational Intelligence ((SCI,volume 909))

Abstract

As a critical relation with image processing and deep learning, it is a remarkable research way to work on medical images. As an important disease, diabetic retinopathy has the potential of being analyzed over medical images. Among adverse events associated with diabetes, there is the diabetic retinopathy as resulting to visual impairment if treatment deficiencies are not solved in long-term. Diabetic retinopathy (DR) is a critical eye disease as a result of the diabetes and is the most widely-seen factor of blindness for the countries in the developed-state.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ö. Deperlıoğlu, U. Köse, Diagnosis of diabetic retinopathy by using image processing and convolutional neural network, in 2018 2nd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), Oct 2018 (IEEE), pp. 1–5

    Google Scholar 

  2. B. Antal, A. Hajdu, An ensemble-based system for microaneurysm detection and diabetic retinopathy grading. IEEE Trans. Biomed. Eng. 59(6), 1720–1726 (2012)

    Article  Google Scholar 

  3. M. Islam, A.V. Dinh, K.A. Wahid, Automated diabetic retinopathy detection using bag of words approach. J. Biomed. Sci. Eng. 10, 86–96 (2017)

    Article  Google Scholar 

  4. World Health Organization and International Diabetes Federation, Definition and diagnosis of diabetes mellitus and intermediate hyperglycemia [Report of World Health Organization and International Diabetes Federation] (2005)

    Google Scholar 

  5. International Diabetes Federation, Diabetes Atlas, 6th edn. (Brussels, Belgium, 2013), https://www.idf.org/sites/default/files/EN_6E_Atlas_Full_0.pdf. Son erişim 23 Ocak 2018

  6. International Diabetes Federation, Diabetes Atlas, 4th edn. (Brussels, Belgium, 2009), Available from https://www.idf.org/sites/default/files/IDF-Diabetes-Atlas-4th-edition.pdf. Cited 23 June 2018

  7. S. Wild, G. Roglic, A. Green, R. Sicree, H. King, Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 27(5), 1047–1053 (2004)

    Article  Google Scholar 

  8. A.I. Veresiu, C.I. Bondor, B. Florea, E.J. Vinik, A.I. Vinik, N.A. Gâvan, Detection of undisclosed neuropathy and assessment of its impact on quality of life: a survey in 25,000 Romanian patients with diabetes. J. Diabetes Complicat. 29, 644–649 (2015)

    Google Scholar 

  9. W. Luangruangrong, P. Kulkasem, S. Rasmequan, A. Rodtook, K. Chinnasarn, Automatic exudates detection in retinal images using efficient integrated approaches, in Signal and Information Processing Association Annual Summit and Conference (APSIPA), 2014 Asia-Pacific, Dec 2014 (IEEE), pp. 1–5

    Google Scholar 

  10. M.R.K. Mookiah et al., Computer-aided diagnosis of diabetic retinopathy: a review. Comput. Biol. Med. 43(12), 2136–2155 (2013)

    Google Scholar 

  11. J. Sahlsten, J. Jaskari, J. Kivinen, L. Turunen, E. Jaanio, K. Hietala, K. Kaski, Deep learning fundus image analysis for diabetic retinopathy and macular edema grading (2019). arXiv preprint arXiv:1904.08764

  12. F. Arcadu, F. Benmansour, A. Maunz, J. Willis, Z. Haskova, M. Prunotto, Deep learning algorithm predicts diabetic retinopathy progression in individual patients. NPJ Digit. Med. 2(1), 1–9 (2019)

    Article  Google Scholar 

  13. T. Chandrakumar, R. Kathirvel, Classifying diabetic retinopathy using deep learning architecture. Int. J. Eng. Res. Technol. 5(6), 19–24 (2016)

    Google Scholar 

  14. Z. Gao, J. Li, J. Guo, Y. Chen, Z. Yi, J. Zhong, Diagnosis of diabetic retinopathy using deep neural networks. IEEE Access 7, 3360–3370 (2018)

    Article  Google Scholar 

  15. O. Deperlıoglu, U. Kose, Diagnosis of diabetic retinopathy by using image processing and convolutional neural network, in 2nd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT) (IEEE, 2018)

    Google Scholar 

  16. D.J. Hemanth, O. Deperlioglu, U. Kose, An enhanced diabetic retinopathy detection and classification approach using deep convolutional neural network. Neural Comput. Appl. (2019). https://doi.org/10.1007/s00521-018-03974-0

  17. H. Pratt et al., Convolutional neural networks for diabetic retinopathy. Procedia Comput. Sci. 90, 200–205 (2016)

    Article  Google Scholar 

  18. S. Dutta, B.C. Manideep, S.M. Basha, R.D. Caytiles, N.C.S.N. Iyengar, Classification of diabetic retinopathy images by using deep learning models. Int. J. Grid Distrib. Comput. 11(1), 89–106 (2018)

    Article  Google Scholar 

  19. C. Lam, D. Yi, M. Guo, T. Lindsey, Automated detection of diabetic retinopathy using deep learning. AMIA Summits Transl. Sci. Proc. 2018, 147 (2018)

    Google Scholar 

  20. MESSIDOR, Methods to evaluate segmentation and indexing techniques in the field of retinal ophthalmology. TECHNO-VISION Project. [Online]. Available: http://messidor.crihan.fr/

  21. E. Decencière, Feedback on a publicly distributed image database: the Messidor database. Image Anal. Stereol. 33, 231–234 (2014). https://doi.org/10.5566/ias.1155

    Article  MATH  Google Scholar 

  22. The Messidor Database, http://www.adcis.net/en/third-party/messidor/. Last access 15 Jan 2020

  23. L. Seoud, J. Chelbi, F. Cheriet, Automatic grading of diabetic retinopathy on a public database, in Proceedings of the Ophthalmic Medical Image Analysis Second International Workshop, OMIA 2015, ed. by X. Chen, M.K. Garvin, J.J. Liu, E. Trusso, Y. Xu, MICCAI 2015, Munich, Germany, 9 Oct 2015, pp. 97–104. Available from https://doi.org/10.17077/omia.1032

  24. C. Agurto, V. Murray, E. Barriga, S. Murillo, M. Pattichis, H. Davis, P. Soliz, Multiscale AM-FM methods for diabetic retinopathy lesion detection. IEEE Trans. Med. Imaging 29(2), 502–512 (2010)

    Article  Google Scholar 

  25. H. Li, O. Chutatape, Fundus image features extraction, in Proceedings of the 22nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (Cat. No. 00CH37143), vol. 4, July 2000 (IEEE), pp. 3071–3073

    Google Scholar 

  26. R.A. Kirsch, Computer determination of the constituent structure of biological images. Comput. Biomed. Res. 4(3), 315–328 (1971)

    Article  Google Scholar 

  27. P. Gao, X. Sun, W. Wang, Moving object detection based on Kirsch operator combined with optical flow, in 2010 International Conference on Image Analysis and Signal Processing, Apr 2010 (IEEE), pp. 620–624

    Google Scholar 

  28. A. Venmathi, E. Ganesh, N. Kumaratharan, Kirsch compass Kernel edge detection algorithm for micro calcification clusters in mammograms. Middle-East J. Sci. Res. 24(4), 1530–1535 (2016)

    Google Scholar 

  29. Convolutional Neural Networks (LeNet), http://deeplearning.net/tutorial/lenet.html. Last accessed 10.01.2018

  30. W. Zhang, J. Han, S. Deng, Heart sound classification based on scaled spectrogram and tensor decomposition. Biomed. Signal Process. Control 32, 20–28 (2017)

    Article  Google Scholar 

  31. R.P. Espíndola, N.F.F. Ebecken, On extending f-measure and g-mean metrics to multi-class problems. WIT Trans. Inf. Commun. Technol. 35 (2005)

    Google Scholar 

  32. O. Deperlioglu, Classification of phonocardiograms with convolutional neural networks. BRAIN Broad Res. Artif. Intell. Neurosci. 9(2), 23–33 (2018)

    Google Scholar 

  33. Q.-A. Mubarak, M.U. Akram, A. Shaukat, F. Hussain, S.G. Khawaja, W.H. Butt, Analysis of PCG signals using quality assessment and homomorphic filters for localization and classification of heart sounds. Comput. Methods Programs Biomed. (2018). https://doi.org/10.1016/j.cmpb.2018.07.006

    Article  Google Scholar 

  34. L.R. Sudha, S. Thirupurasundari, Analysis and detection of haemorrhages and exudates in retinal images. Int. J. Sci. Res. Publ. 4(3), 1–5 (2014)

    Google Scholar 

  35. N. Ramachandran, S.C. Hong, M.J. Sime, G.A. Wilson, Diabetic retinopathy screening using deep neural network. Clin. Exp. Ophthalmol. 46, 412–416 (2018)

    Article  Google Scholar 

  36. K.S. Sreejini, V.K. Govindan, Severity grading of DME from retina images: a combination of PSO and FCM with Bayes classifier. Int. J. Comput. Appl. 81(16), 11–17 (2013)

    Google Scholar 

  37. D.W. Safitri, D. Juniati, Classification of diabetic retinopathy using fractal dimension analysis of eye fundus image. AIP Conf. Proc. 1867, 020011-1–020011-11 (2017). https://doi.org/10.1063/1.4994414

  38. U.R. Acharya, E.Y.K. Ng, J.H. Tan et al., An integrated index for the identification of diabetic retinopathy stages using texture parameters. J. Med. Syst. 36(3), 2011–2020 (2012). https://doi.org/10.1007/s10916-011-9663-8

    Article  Google Scholar 

  39. S.T. Lim, W.M.D.W. Zaki, A. Hussain, S.L. Lim, S. Kusavalan, Automatic classification of diabetic macular edama in fundus image. IEEE Colloq. Human. Sci. Eng. 5–6, 1–4 (2011)

    Google Scholar 

  40. M.U. Akram, S. Khalid, A. Tariq, S.A. Khan, F. Azam, Detection and classification of retinal lesions for grading of diabetic retinopathy. Comput. Biol. Med. 45, 161–171 (2014)

    Article  Google Scholar 

  41. M.R.K. Mookiah, U.R. Acharya, C.K. Chua, C.M. Lim, E.Y.K. Ng, A. Laude, Computer-aided diagnosis of diabetic retinopathy: a review. Comput. Biol. Med. 43(12), 2136–2155 (2013)

    Article  Google Scholar 

  42. S. Badsha, A.W. Reza, K.G. Tan, K. Dimyati, A new blood vessel extraction technique using edge enhancement and object classification. J. Digit. Imaging 26(6), 1107–1115 (2013)

    Article  Google Scholar 

  43. A. Banumathi, R.K. Devi, V.A. Kumar, Performance analysis of matched filter techniques for automated detection of blood vessels in retinal images, in TENCON 2003. Conference on Convergent Technologies for Asia-Pacific Region, vol. 2, Oct 2003 (IEEE), pp. 543–546

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Utku Kose .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kose, U., Deperlioglu, O., Alzubi, J., Patrut, B. (2021). Diagnosing Diabetic Retinopathy by Using a Blood Vessel Extraction Technique and a Convolutional Neural Network. In: Deep Learning for Medical Decision Support Systems. Studies in Computational Intelligence, vol 909. Springer, Singapore. https://doi.org/10.1007/978-981-15-6325-6_4

Download citation

Publish with us

Policies and ethics