Skip to main content

Nanoparticles in Pest Incidences and Plant Disease Control

  • Chapter
  • First Online:
Nanotechnology for Agriculture: Crop Production & Protection

Abstract

Plant disease is a major problem for production, and the decrease in crop yield is the worst outcome of these diseases. Some environmental factors can help relieve the effect of disease directly or indirectly. Growing research in nanotechnology has resulted in development of several nanomaterials that can be applied in various fields of industry. With joining the nanotechnology train, micronutrients, pesticide degradation, and nanosensors can be used more efficiently in plant protection and nutrition, as well as pesticide delivery. Using nanoparticles for plant disease prevention and control is an important topic, since their increased efficiency, durability, and especially, their higher surface-to-volume ratio can stimulate interactions with living cells, unique nanosize structure properties, and uncommon superior physicochemical characteristic, which has caused several hybrid nanomaterials, and several organic and inorganic metal oxide nanomaterials, such as silver, nanoforms of carbon, silica, and alumina-silicates CuO, TiO2, ZnO, and Fe3O4-Ag core shell magnetic nanoparticles. Metal nanoparticles suppress movement of substrates witting the microbial cell membrane, basal metabolism of electron transfer systems, and respiration. If autonomous nanosensors linked with the GPS system for the purpose of real-time monitoring are distributed across the field to control crop conditions, a farmer can use nanotechnology to detect plant diseases. There is lack of information regarding plant pathogens, but we found out that nanoparticle can be used effectively for pathogen control due to their easy preparation and affordability which are suitable for formation of new herbicidal materials and new types of fungicidal materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdullayev E, Lvov Y (2011) Halloysite clay nanotubes for controlled release of protective agents. J Nanosci Nanotechnol 11(11):10007–10026

    Article  PubMed  CAS  Google Scholar 

  • Adetunji C, Oloke J, Kumar A, Swaranjit S, Akpor B (2017) Synergetic effect of rhamnolipid from Pseudomonas aeruginosa C1501 and phytotoxic metabolite from Lasiodiplodia pseudotheobromae C1136 on Amaranthushybridus L. and Echinochloa crus-galli weeds. Environ Sci Pollut Res 24(15):13700–13709

    Article  CAS  Google Scholar 

  • Ahmed AIS, Lee YS (2015) Nanoparticles as alternative fungicides: manufacturing, concept, and activities. Korean J Mycol 43:207–215

    Google Scholar 

  • Ajayan PM, Schadler LS, Braun PV (eds) (2003) Nanocomposite science and technology. Weinheim, Wiley-VCH Verlag GmbH and Co, KGaA

    Google Scholar 

  • Amiri-Besheli B, Khambay B, Cameron S, Deadman MI, Butt TM (2000) Inter- and intra-specific variation in destruxin production by insect pathogenic Metarhizium sp. and its significance to pathogenesis. Mycol Res 104:447–452

    Article  CAS  Google Scholar 

  • Anderson CB (2009) Regulating nanosilver as a pesticide. Environmental Defense Fund, February 12

    Google Scholar 

  • Balakumaran MD, Ramachandran R, Balashanmugam P, Mukeshkumar DJ, Kalaichelvan PT (2016) Mycosynthesis of silver and gold nanoparticles: optimization, characterization and antimicrobial activity against human pathogens. Microbiol Res 182:8–20

    Article  PubMed  CAS  Google Scholar 

  • Barik T, Sahu B, Swain V (2008) Nanosilica—from medicine to pest control. Parasitol Res 103(2):253–258

    Article  PubMed  CAS  Google Scholar 

  • Baik BK, Ullrich SE (2008) Barley for food: characteristics, improvement, and renewed interest. J Cereal Sci 48(2):233–242

    Article  CAS  Google Scholar 

  • Benitez T, Ricon AM, Limon MC, Codon AC (2004) Biocontrol mechanisms of Trichoderma strains. Int Microbiol 7:249–260

    PubMed  CAS  Google Scholar 

  • Bhagat D, Samanta SK, Bhattacharya S (2013) Efficient management of fruit pests by pheromone nanogels. Sci Rep 3:12–94

    Article  CAS  Google Scholar 

  • Bhattacharyya A (2009) Nanoparticles from drug delivery to insect pest control. Akshar 1(1):1–7

    Google Scholar 

  • Bhattacharyya A, Gosh M, Chinnaswamy KP, Sen P, Barik B, Kundu P, Mandal S (2008) Nanoparticle (allelochemicals) and silkworm physiology. In: Chinnaswamy KP, VijayaBhaskar Rao A (eds) Recent trends in seribiotechnology. Bangalore, India, pp 58–63

    Google Scholar 

  • Bhattacharyya A, Bhaumik A, Pathipati UR, Mandal S, Epidi TT (2010) Nanoparticles – a recent approach to insect pest control. Afr J Biotechnol 9(24):3489–3493

    CAS  Google Scholar 

  • Bin Hussein MZ, Zainal Z, Yahaya AH, Foo DW (2002) Controlled release of a plant growth regulator, alpha-naphthaleneacetate from the lamella of Zn–Al-layered double hydroxide nanocomposite. J Control Release 82:417–427

    Article  PubMed  CAS  Google Scholar 

  • Boehm AL, Martinon I, Zerrouk R, Rump E, Fessi H (2003) Nanoprecipitation technique for the encapsulation of agrochemical active ingredients. J Microencapsul 20:433–441

    Article  CAS  PubMed  Google Scholar 

  • Borkow G, Gabbay J (2005) Copper as a biocidal tool. Curr Med Chem 12:2163–2175

    Article  PubMed  CAS  Google Scholar 

  • Brecht M, Datnoff L, Nagata R, Kucharek T (2003) The role of silicon in suppressing tray leaf spot development in St. Augustine grass. Publication in University of Florida, pp 1–4

    Google Scholar 

  • Brunel F, ElGueddari NE, Moerschbacher BM (2013) Complexation of copper (II) with chitos an nanogels: toward control of microbial growth. Carbohydr Polym 92:1348–1356

    Article  PubMed  CAS  Google Scholar 

  • Caboni P, Sammelson RE, Casida JE (2003) Phenylpyrazole insecticide photochemistry, metabolism and GABAergic action: ethiprole compared with fipronil. J Agric Food Chem 51:7055–7061

    Article  PubMed  CAS  Google Scholar 

  • Cao XD, Chen Y, Chang PR, Muir AD, Falk G (2008) Starch-based nanocomposites reinforced with flax cellulose nanocrystals. Express Polym Lett 2(7):502–510

    Article  CAS  Google Scholar 

  • Carris LM, Little CR, Stiles CM (2012) Introduction to fungi. Plant Health Instructor. https://doi.org/10.1094/PHI-I-2012-0426-01

  • Chavan S (2009) Biocontrol of insect pests in agriculture using chitinolytic enzyme complex of Myrothecium verrucaria. University of Pune, Pune

    Google Scholar 

  • Chen H, Seiber JN, Hotze M (2014) ACS select on nanotechnology in food and agriculture: a perspective on implications and applications. J Agric Food Chem 62:1209–1212

    Article  PubMed  CAS  Google Scholar 

  • Choy JH, Choi SJ, Oh JM, Park T (2007) Clay minerals and layered double hydroxides for novel biological applications. Appl Clay Sci 36:122–132

    Article  CAS  Google Scholar 

  • Cioffi N, Torsi L, Ditaranto N, Tantillo G, Ghibelli L, Sabbatini L, Bleve-Zacheo T, D’Alessio M, Zambonin PG, Traversa E (2005) Copper nanoparticle/polymer composites with antifungal and bacteriostatic properties. Chem Mater 17:5255–5262

    Article  CAS  Google Scholar 

  • Clemants M (2009) Pullet production gets silver lining. Poultry International, April 2009. http://www.wattagnet.com/Poultry_International/4166.html

  • Corredor E, Testillano PS, Coronado MJ, GonzalezMelendi P, Fernandez Pacheco R, Marquina C, Ibarra MR, de la Fuente JM, Rubiales D, Perez-de-Luque A, Risueno MC (2009) Nanoparticle penetration and transport in living pumpkin plants: in situ subcellular identification. BMC Plant Biol 9:45

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De Silva LCD, Oliva MA, Azevedo AA, De Araujo JM (2006) Responses of restinga plant species to pollution from an iron pelletization factory. Water Air Soil Pollut 175:241–256

    Article  CAS  Google Scholar 

  • De Lucca AJ (2007) Harmful fungi in both agriculture and medicine. Revista Iberoamericana de Micologia 24:3–13

    Article  PubMed  Google Scholar 

  • Deshpande MV (1998) Cuticle degrading and mycolytic enzymes with special reference to chitinases as biopesticides: status, potential and challenges. Proceeding of Biotechnology a challenge for 2005 New Delhi, All India Biotech Association, pp 1–4

    Google Scholar 

  • Deshpande MV (1999) Mycopesticide production by fermentation: potential and challenges. Crit Rev Microbiol 25:229–243

    Article  PubMed  CAS  Google Scholar 

  • Deshpande MV (2005) Formulations and applications of mycopathogens. In: Rabindra RJ, Hussaini SS, Ramanujam B (eds) Microbial biopesticide formulations and application. Bangalore, PDBC 150–8. Tech. Document No. 55

    Google Scholar 

  • Devakumar C, Parmar BS (1993) Pesticides of higher plant and microbial origin. SPS publication no. 4. In: Devakumar C, Parmar BS (eds) Botanicals and biopesticides. Society of Pesticide Science, India and Westvill Publishing House, New Delhi, pp 1–73

    Google Scholar 

  • Dinesh R, Anandaraj M, Srinivasan V, Hamza S (2012) Engineered nanoparticles in the soil and their potential implications to microbial activity. Geoderma 173:19–27

    Article  CAS  Google Scholar 

  • Dorn B, Musa T, Krebs H, Fried PM, Forrer HR (2007) Control of late blight in organic potato production: evaluation of copper-free preparations under field, growth chamber and laboratory conditions. Eur J Plant Pathol 119:217–240

    Article  Google Scholar 

  • El-Hadrami A, Adam LR, El Hadrami I, Daayf F (2010) Chitosan in plant protection. Mar Drugs 8:968–987

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • El-Nahhal Y, Nir S, Margulies L, Rubin B (1999) Reduction of photodegradation and volatilization of herbicides in organo-clay formulations. Appl Clay Sci 14:105–119

    Article  CAS  Google Scholar 

  • Emami T, Madani R, Rezayat SM, Golchinfar F, Sarkar S (2012) Applying of gold nanoparticle to avoid diffusion of the conserved peptide of avian influenza nonstructural protein from membrane in Western blot. J Appl Poult Res 21(3):563–566

    Article  CAS  Google Scholar 

  • Espitia PJ, Soares Nde F, Teófilo RF (2013) Physical-mechanical and antimicrobial properties of nanocomposite films with pediocin and ZnO nanoparticles. Carbohydr Polym 94(1):199–208

    Article  PubMed  CAS  Google Scholar 

  • Esteban-Tejeda L, Malpartida F, Esteban-Cubillo A, Pecharromán C, Moya JS (2009) The antibacterial and antifungal activity of a soda-lime glass containing silver nanoparticles. Nanotechnology 20(8):085103

    Article  PubMed  CAS  Google Scholar 

  • Fessi H, Puisieux F, Devissaguet JP, Ammoury N, Benita S (1989) Nanocapsule formation by interfacial polymer deposition following solvent displacement. Int J Pharm 55:R1–R4

    Article  CAS  Google Scholar 

  • Fleischer MA, O’Neill R, Ehwald (1999) The pore size of non-graminaceous plant cell wall is rapidly decreased by borate ester cross-linking of the pectic polysaccharide rhamnogalacturon II. Plant Physiol 121:829–838

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Frederiksen HK, Kristensen HG, Pedersen M (2003) Solid lipid microparticle formulations of the pyrethroid gammacyhalothrin-incompatibility of the lipid and the pyrethroid and biological properties of the formulations. J Control Release 86:243–252

    Article  PubMed  CAS  Google Scholar 

  • Fisher MC, Henk DA, Briggs CJ, Brownstein JS, Madoff LC, McCraw SL, Gurr SJ (2012) Emerging fungal threats to animal, plant and ecosystem health. Nature 484:186–194

    Article  PubMed  CAS  Google Scholar 

  • Gajbhiye M, Kesharwani J, Ingle A, Gade A, Rai M (2009) Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomed Nanotechnol Biol Med 5(4):382–386

    Article  CAS  Google Scholar 

  • Galbraith DW (2007) Nanobiotechnology: silica breaks through in plants. Nat Nanotechnol 2(5):272–273

    Article  PubMed  CAS  Google Scholar 

  • García-Rincón J, Vega-Pérez J, Guerra-Sánchez M, Hernández-Lauzardo AN, Peña-Díaz A, Velázquez Del Valle MG (2010) Effect of chitosan on growth and plasma membrane properties of Rhizopus stolonifer(Ehrenb.:Fr.) Vuill. Pest Biochem Physiol 97:275–278

    Article  CAS  Google Scholar 

  • Gauthier T (2013) Trypacidin, a spore-borne toxin from Aspergillus fumigatus, is cytotoxic to lung cells. PLoS One 7:e29906

    Article  CAS  Google Scholar 

  • Ghormade V, Deshpande MV, Paknikar KM (2011) Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnol Adv 29(6):792–803

    Article  PubMed  CAS  Google Scholar 

  • Girilal M, Krishnakumar V, Poornima P, Fayaz AM, Kalaichelvan PT (2015) A comparative study on biologically and chemically synthesized silver nanoparticles induced heat shock proteins on fresh water fish Oreochromis niloticus. Chemosphere 139:461–468

    Article  PubMed  CAS  Google Scholar 

  • Gogoi R, Dureja P, Singh PK (2009) Nanoformulationsa safer and effective option for agrochemicals. Indian Farming 59(8):7–12

    Google Scholar 

  • Goldwasser Y, Eizenberg H, Golan S, Kleifeld Y (2003) Control of Orobanche crenata and Orobanche aegyptiaca in parsley. Crop Prot 22:295–305

    Article  Google Scholar 

  • González-Melendi P, Fernández-Pacheco R, Coronado MJ, Corredor E, Testillano PS, Risueño MC, Marquina C, Ibarra MR, Rubiales D, Perez-de luque A (2008) Nanoparticles as smart treatment delivery systems in plants: assessment of different techniques of microscopy for their visualization in plant tissues. Ann Bot 101:187–195

    Article  PubMed  Google Scholar 

  • Goodsell DS (2004) Bionanotechnology: lessons from nature. Wiley-Liss, Hoboken

    Book  Google Scholar 

  • Goswami A, Roy I, Sengupta S, Debnath N (2010) Novel applications of solid and liquid formulations of nanoparticles against insect pests and pathogens. Thin Solid Films 519(3):1252–1257

    Article  CAS  Google Scholar 

  • Green JM, Beestman GB (2007) Recently patented and commercialized formulation and adjuvant technology. Crop Prot 26(3):320–327

    Article  CAS  Google Scholar 

  • Gressel J, Levy AA (2006) Agriculture: the selector of improbable mutations. Proc Natl Acad Sci U S A 103:12215–12216

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guo YR, Liu SH, Gui WJ, Zhu GN (2009) Gold immunochromatographic assay for simultaneous detection of carbofuran and triazophos in water samples. Anal Biochem 389:32–39

    Article  PubMed  CAS  Google Scholar 

  • Hamamouch N, Westwood JH, Banner I, Cramer CL, Gepstein S, Aly R (2005) A peptide from insects protects transgenic tobacco from a parasitic weed. Transgenic Res 14:227–236

    Article  PubMed  CAS  Google Scholar 

  • Hänschand M, Emmerling C (2010) Effects of silver nanoparticles on the microbiota and enzyme activity in soil. J Plant Nutr Soil Sci 173:554–558

    Article  CAS  Google Scholar 

  • Harish Prashanth KV, Tharanathan RN (2007) Chitin/chitosan: modifications and their unlimited application potential – an overview. Trends Food Sci Technol 18:117–131

    Article  CAS  Google Scholar 

  • He L, Liu Y, Mustapha A, Lin M (2011) Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiol Res 166:207–215

    Article  PubMed  CAS  Google Scholar 

  • Henrici AT, Johnson DE (1935) Studies of freshwater bacteria: II. stalked bacteria, a new order of schizomycetes. J Bacteriol 30(1):61–93

    PubMed  PubMed Central  CAS  Google Scholar 

  • He S, Feng Y, Ni J, Sun Y, Xue L, Feng Y, Yu Y, Lin X, Yang L (2016) Different responses of soil microbial metabolic activity to silver and iron oxide nanoparticles. Chemosphere 147:195–202

    Article  CAS  PubMed  Google Scholar 

  • Himmelweit F (ed) (1960) The collected papers of Paul Ehrlich, vol 3. Pergamon Press, London

    Google Scholar 

  • Hoglund S (1968) Some electron microscopic studies on the satellite tobacco necrosis virus and its IgG antibody. J Gen Virol 2:427–436

    Article  PubMed  CAS  Google Scholar 

  • Holister P, Roman Vas C, Harper T (2008) Nanocapsules. Technology White Papers 10. [Online]. Available: http://www.nanorenac.com/webgestion/intercambio/descargas/Nanocapsules.pdf

  • Horiuchi A, Satou T, Akao N, Koike K, Fujita K, Nikaido T (2005) The effect of free and polyethylene glycol–liposome-entrapped albendazole on larval mobility and number in Toxocara canis infected mice. Vet Parasitol 129:83–87

    Article  PubMed  CAS  Google Scholar 

  • Hosseini F, Mosaddeghi MR, Hajabbasi MA, Mamedov AI (2017) Effects of endophyte-infected and non-infected tall fescue residues on aggregate stability in four texturally different soils. Geoderma 285:195–205

    Article  CAS  Google Scholar 

  • Ignatova LV, Brazhnikov YV, Berzhanova RZ, Mukasheva TD (2015) Plant growth-promoting and antifungal activity of yeasts from dark chestnut soil. Microbiol Res 175:78–83

    Article  PubMed  CAS  Google Scholar 

  • Ivo I, Veruscka L, Donald HB, Anna AS (2017) Nanotechnology in agriculture: opportunities, toxicological implications, and occupational risks. Toxicol Appl Pharmacol 329:96–111

    Article  CAS  Google Scholar 

  • Jia G (2005) Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene. Environ Sci Technol 39:1378–1383

    Article  PubMed  CAS  Google Scholar 

  • Janse JD (2007) Phytobacteriology: principles and practice. Plant Pathol 25:198–198

    Google Scholar 

  • Jia B, Mei Y, Cheng L, Zhou J, Zhang L (2012) Preparation of copper nanoparticles coated cellulose films with antibacterial properties through one-step reduction. ACS Appl Mater Interfaces 4:2897–2902

    Article  PubMed  CAS  Google Scholar 

  • Jo YK, Kim BH, Jung G (2009) Antifungal activity of silver ions and nano-particles on phytopathogenic fungi. Plant Dis 93(10):1037–1043

    Article  CAS  PubMed  Google Scholar 

  • Joel DM (2000) The long-term approach to parasitic weeds control: manipulation of specific developmental mechanisms of the parasite. Crop Prot 19:753–758

    Article  Google Scholar 

  • Joel DM, Hershenhorn J, Eizenberg H, Aly R, Ejeta G, Rich PJ (2007) Biology and management of weedy root parasites. Hort Rev 33:267–349

    CAS  Google Scholar 

  • Joseph S, Graber ER, Chia C (2013) Shifting paradigms: development of high-efficiency biochar fertilizers based on nano-structures and soluble components. Carbon Manag 4(3):323–343

    Article  CAS  Google Scholar 

  • Jurado-Exposito M, Garcıa-Torres L, Castejon-Munoz M (1997) Broad-bean and lentil seed treatments with imidazolines for the control of broomrape (Orobanche crenata). J Agric Sci 129:307–314

    Article  CAS  Google Scholar 

  • Jampilek J (2016) Design of antimalarial agents based on natural products. Curr Org Chem 21(999):1–1

    Google Scholar 

  • Kabiri K, Omidian H, Zohuriaan-Mehr MJ, Doroudiani S (2011) Superabsorbent hydrogel composites and nanocomposites: a review. Polym Compos 32(2):277–289

    Article  CAS  Google Scholar 

  • Kah M, Beulke S, Tiede K, Hofmann T (2013) Nanopesticides: state of knowledge, environmental fate, and exposure modeling. Crit Rev Environ Sci Technol 43(16):1823–1867

    Article  CAS  Google Scholar 

  • Kalpana Sastry R, Rashmi HB, Rao NH (2010) Nanotechnology patents as R&D indicators for disease management strategies in agriculture. J Intellect Prop Rights 15:197–205

    Google Scholar 

  • Kamat PV (1993) Photochemistry on nonreactive and reactive (semiconductor) surfaces. Chem Rev 93:267–300

    Article  CAS  Google Scholar 

  • Kanto T, Miyoshi A, Ogawa T, Maekawa K, Aino M (2004) Suppressive effect of potassium silicate on powdery mildew of strawberry in hydroponics. J Gen Plant Pathol 70:207–211

    Article  CAS  Google Scholar 

  • Kent JA, Reigel ER (2003) In: Kent JA (ed) Handbook of industrial chemistry and biotechnology. Kluwer Academic, New York

    Google Scholar 

  • Khodakovskaya MV, Lahiani MH (2014) Nanoparticles and plants: from toxicity to activation of growth. In: Sahu SC, Casciano DA (eds) Handbook of nanotoxicology, nanomedicine and stem cell use in toxicology. Wiley, pp 121–130

    Google Scholar 

  • Kim TN, Feng QL, Kim JO, Wu J, Wang H, Chen GC, Cui FZ (1998) Antimicrobial effects of metal ions (Ag+, Cu2+, Zn2+) in hydroxyapatite. J Mater Sci Mater Med 9:129–134

    Article  PubMed  Google Scholar 

  • Kim K-J, Sung W, Suh B, Moon S-K, Choi J-S, Kim J, Lee D (2009) Antifungal activity and mode of action of silver nano-particles on Candida albicans. Biometals 22(2):235–242

    Article  PubMed  CAS  Google Scholar 

  • Kirby CJ, Whittle CJ, Rigby N, Coxon DT, Law BA (1991) Stabilization of ascorbic acid by microencapsulation in liposomes. Internat J Food Sci Technol 26:437–449

    Article  CAS  Google Scholar 

  • Kovalchuk I, Ziemienowicz A, Eudes F (2012) Inventors. Plantbiosis Ltd, assignee. T-DNA/protein nano-complexes for plant transformation. US patent US 20120070900 A1. 22 March 2012

    Google Scholar 

  • Kukowska-Latallo JF, Candido KA, Cao Z, Nigavekar SS, Majoros IJ, Thomas TP, Balogh LP, Khan MK, Baker JR Jr (2005) Nanoparticle targeting of anticancer drug improves therapeutic response in animal model of human epithelial cancer. Cancer Res 65:5317–5324

    Article  PubMed  CAS  Google Scholar 

  • Kulkarni SA, Ghormade V, Kulkarni G, Kapoor M, Chavan SB, Rajendran A (2008) Comparison of Metarhizium isolates for biocontrol of Helicoverpa armigera (Lepidoptera: Noctuidae) in chickpea. Biocontrol Sci Tech 18:809–828

    Article  Google Scholar 

  • Kumar R, Sharon M, Choudhary AK (2010) Nanotechnology in agricultural diseases and food safety. J Phytology 2(4):83–92

    Google Scholar 

  • Kumari S, Khan S (2017) Synthesis and applications of nanofungicides: a next-generation fungicide. In: Prasad R (ed) Fungal nanotechnology. Fungal biology. Springer, Cham, pp 103–118

    Chapter  Google Scholar 

  • Kumari M, Mishra A, Pandey S, Singh SP, Chaudhry V, Mudiam MKR, Shukla S, Kakkar P, Nautiyal CS (2016) PhysicoChemical condition optimization during biosynthesis lead to development of improved and catalytically efficient gold nanoparticles. Sci Rep 6:27575

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lakraimi M, Legrouri A, Barroug A, De Roy A, Besse JP (2000) Preparation of a new stable hybrid material by chloride-2,4-dichlorophenoxyacetate ion exchange into the zinc–aluminium–chloride layered double hydroxide. J Mater Chem 10:1007–1011

    Article  CAS  Google Scholar 

  • Latin R (2006) Residual efficacy of fungicides for control of dollar spot on creeping bentgrass. Plant Dis 50:571–575

    Article  CAS  Google Scholar 

  • Lee WF, Fu YT (2003) Effect of montmorillonite on the swelling behavior and drug-release behavior of nanocomposite hydrogels. J Appl Polym Sci 89:3652–3660

    Article  CAS  Google Scholar 

  • Li A, Zhang JP, Wang AQ (2007) Utilization of starch and clay for the preparation of superabsorbent composite. Bioresour Technol 98:327–332

    Article  PubMed  CAS  Google Scholar 

  • Liolios CC, Gortzi O, Lalas S, Tsaknis J, Chinou I (2008) Liposomal incorporation of carvacol and thymol isolated from the essential oil of Origanum dictamnus L. and in vitro antimicrobial activity. Food Chem 112:77–83

    Article  CAS  Google Scholar 

  • Lisa M, Chouhan RS, Vinayaka AC, Manonmani HK, Thakur MS (2009) Gold nanoparticles based dipstick immuno-assay for the rapid detection of dichlorodiphenyltrichloroethane: an organochlorine pesticide. Biosens Bioelectron 25:224–227

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Yan I, Heiden P, Laks P (2001) Use of nanoparticles for controlled release of biocides insolid wood. J Appl Polym Sci 79:458–465

    Article  CAS  Google Scholar 

  • Liu F, Wen L-X, Li Z-Z, Yu W, Sun H-Y, Chen J-F (2006) Porous hollow silica nanoparticles as controlled delivery system for water-soluble pesticide. Mater Res Bull 41(12):2268–2275

    Article  CAS  Google Scholar 

  • Lodriche SS, Soltani S, Mirzazadeh R (2013) Silicon nanocarrier for delivery of drug, pesticides and herbicides, and for waste water treatment. US patent US 20130225412 A1. 29 August 2013

    Google Scholar 

  • Loo L, Guenther RH, Lommel SA, Franzen S (2007) Encapsidation of nanoparticles by red clover necrotic mosaic virus. J Am Chem Soc 129:11111–11117

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Raez JA, Matusova R, Cardoso C, Jamil M, Charnikhova T, Kohlen W (2009) Strigolactones: ecological significance and use as a target for parasitic plant control. Pest Manag Sci 65(5):471–477

    Article  PubMed  CAS  Google Scholar 

  • Ma X, Wang Q, Rossi L, Zhang W (2015) Cerium oxide nanoparticles and bulk cerium oxide leading to different physiological and biochemical responses in Brassica rapa. Environ Sci Technol 50:6793–6802

    Article  PubMed  CAS  Google Scholar 

  • Maliszewska I (2016) Effects of the biogenic gold nanoparticles on microbial community structure and activities. Ann Microbiol 66:785–794

    Article  Google Scholar 

  • Mandal D, Bolander ME, Mukhopadhyay D, Sarkar G, Mukherjee P (2006) The use of microorganisms for the formation of metal nanoparticles and their application. Appl Microbiol Biotechnol 69(5):485–492

    Article  PubMed  CAS  Google Scholar 

  • Mansoori GA (2005) Principles of nanotechnology—Molecular based study of condensed matter in small systems. World Scientific Pub. Co., Hackensack

    Book  Google Scholar 

  • Masarovicova E, Kralovai K (2013) Metal nanoparticles and plant. Ecol Chem Eng 20(1):9–22

    CAS  Google Scholar 

  • Massalimov I, Medvedev Y, Urakaev F, Ahmed AIS, Muhambetkali B et al (2016) Antifungal activity of inorganic micro-and nanoparticles against pathogenic fungi compared with some traditional organic drugs. Am-Eurasian J Agric Environ Sci 16:255–265

    Google Scholar 

  • Millardet A (1886) Treatment of late blight and durot by mixing lime and copper sulphate. Masson, Feretetfils

    Google Scholar 

  • Mishra S, Singh HB (2014) Biosynthesized silver nanoparticles as a nanoweapon against phytopathogens: exploring their scope and potential in agriculture. Appl Microbiol Biotechnol 99(3):1097–1107

    Article  PubMed  CAS  Google Scholar 

  • Mishra S, Singh A, Keswani C, Singh HB (2014) Nanotechnology: exploring potential application in agriculture and its opportunities and constraints. Biotech Today 4:9–14

    Article  Google Scholar 

  • Murphy K (ed) (2008) Nanotechnology: Agriculture’s next “industrial” revolution. Financial Partner, Yankee Farm Credit, ACA, Williston, pp 3–5

    Google Scholar 

  • Nair B, Pradeep T (2002) Coalescence of nanoclusters and formation of submicron crystallites assisted by Lactobacillus strains. Cryst Growth Des 2:293–298

    Article  CAS  Google Scholar 

  • Navarro E, Piccapietra F, Wagner B, Marconi F, Kaegi R, Odzak N (2008) Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. Environ Sci Technol 42:8959–8964

    Article  PubMed  CAS  Google Scholar 

  • Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627

    Article  PubMed  CAS  Google Scholar 

  • Nugaeva N, Gfeller KY, Backmann N, Lang HP, Duggelin M, Hegner M (2005) Micromechanical cantilever array sensors for selective fungal immobilization and fast growth detection. Biosens Bioelectron 21:849–856

    Article  PubMed  CAS  Google Scholar 

  • Ocsoy I, Paret ML, Ocsoy MA, Kunwar S, Chen T, You M, Tan W (2013) Nanotechnology in plant disease management: DNAdirected silver nanoparticles on graphene oxide as an antibacterial against Xanthomonas perforans. ACS Nano 7(10):8972–8980

    Article  PubMed  CAS  Google Scholar 

  • Owolade OF, Ogunleti DO, Adenekan MO (2008) Titanium dioxide affects diseases, development and yield of edible cowpea. EJEAFChe 7(5):2942–2947

    CAS  Google Scholar 

  • Pandey S, Zaidib MGH, Gururani SK (2013) Recent developments in clay-polymer nano composites. Sci J Rev 2(11):296–328

    Google Scholar 

  • Panpatte DG, Jhala YK, Shelat HN, Vyas RV (2016) Nanoparticles – the next generation technology for sustainable agriculture. In: Singh DP, Singh HB, Prabha R (eds) Microbial inoculants in sustainable agricultural productivity. Volume 2: Functional applications. Springer, New Delhi, pp 289–300

    Chapter  Google Scholar 

  • Park HJ, Kim SH, Kim HJ, Choi SH (2006) A new composition of nanosized silica-silver for control of various plant diseases. Plant Pathol J 22(3):295–302

    Article  Google Scholar 

  • Patra P, Goswami A (2012) Zinc nitrate derived nano ZnO: fungicide for disease management of horticultural crops. Int J Innov Hort 1:79–84

    Google Scholar 

  • Pelaez M, Nolan NT, Pillai SC, Seery MK, Falaras P, Kontos AG, Dunlop PSM, Hamilton JWJ, Byrne JA, O’Shea K, Entezari MH, Dionysiou DD (2012) A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl Catal B Environ 125:331–349

    Article  CAS  Google Scholar 

  • Peterson SC, Jackson MA, Appell M (2013) Biochar: sustainable and versatile. In: Park B, Appell M (eds) Advances in applied nanotechnology for agriculture. American Chemical Society, Washington, DC, pp 193–205

    Chapter  Google Scholar 

  • Pérez-de-Luque A, Rubiales D (2009) Nanotechnology for parasitic plant control. Pest Manag Sci 65(5):540–545

    Article  CAS  PubMed  Google Scholar 

  • Peyrot C, Wilkinson KJ, Desrosiers M, Sauve S (2014) Effects of silver nanoparticles on soil enzyme activities with and without added organic matter. Environ Toxicol Chem 33(1):115–125

    Article  PubMed  CAS  Google Scholar 

  • Phaechamud T, Ritthidej GC (2008) Formulation variables influencing drug release from layered matrix system comprising chitosan and xanthan gum. AAPS Pharm SciTech 9:870–877

    Article  CAS  Google Scholar 

  • Pignatello JJ, White JC, Uchimiya M (2013) Nanoscale interactions between engineered nanomaterials and black carbon (biochar) in soil, NSF Nanoscale Science and Engineering Grantees Conference, 4–6 December 2013

    Google Scholar 

  • Pons M, Estelrich J (1996) Liposomes as an agrochemical tool: optimization of their production. Ind Crop Prod 5:203–208

    Article  CAS  Google Scholar 

  • Pulit J, Banach M, Szczyg OR, Bryk M (2013) Nanosilver against fungi. Silver nanoparticles as an effective biocidal factor. Acta Biochim Pol 60:795–798

    PubMed  Google Scholar 

  • Rabea EI, Badawy MET, Stevens CV, Smagghe G, Steurbaut W (2003) Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules 4:1457–1465

    Article  PubMed  CAS  Google Scholar 

  • Racke KD (2003) Development and registration of pesticides with reduced risk charachteristics. In: Voss G, Ramos G (eds). Wiley-VCH, Weinheim, Germany, pp 322–330

    Google Scholar 

  • Rabea EI, El Badawy M, Rogge TM, Stevens CV, Hofte M, Steurbaut W (2005) Insecticidal and fungicidal activity of new synthesized chitosan derivatives. Pest Manag Sci 61:951–960

    Article  PubMed  CAS  Google Scholar 

  • Raffi M, Mehrwan S, Bhatti TM, Akhter JI, Hameed A, Yawar W, UlHasan MM (2010) Investigations into the antibacterial behavior of copper nanoparticles against Escherichia coli. Ann Microbiol 60(1):75–80

    Article  CAS  Google Scholar 

  • Rajakumar G, Abdul Rahuman A, Priyamvada B, Gopiesh Khanna V, Kishore Kumar D, Sujin PJ (2012) Eclipta prostrate leaf aqueous extract mediated synthesis of titanium dioxide nanoparticles. Mater Lett 68:115–117

    Article  CAS  Google Scholar 

  • Ray SS (2013) Environmentally friendly polymer nanocomposites: types, processing and properties. Woodhead Publishing, Cambridge

    Book  Google Scholar 

  • Rahmatpour S, Shirvani M, Mosaddeghi RM, Nourbakhsh F, Bazarganipourb M (2017) Dose–response effects of silver nanoparticles and silver nitrate on microbial and enzyme activities in calcareous soils. Geoderma 285:313–322

    Article  CAS  Google Scholar 

  • Rizwan M, Ali S, Ibrahim M, Farid M, Adrees M, Bharwana SA, Rehman MZ, Qayyum MF, Abbas F (2015) Mechanisms of silicon-mediated alleviation of drought and salt stress in plants: a review. Environ Sci Pollut Res 22:15416–15431

    Article  CAS  Google Scholar 

  • Roller S, Covill N (1999) The antifungal properties of chitosan in laboratory media and apple juice. Int J Food Microbiol 47:67–77

    Article  PubMed  CAS  Google Scholar 

  • Rosenthal JA, Chen L, Baker JL, Putnam D, DeLisa MP (2014) Pathogen-like particles: biomimetic vaccine carriers engineered at the nanoscale. Curr Opin Biotechnol 28:51–58

    Article  PubMed  CAS  Google Scholar 

  • Sang L, Zhao Y, Burda C (2014) TiO2 nanoparticles as functional building blocks. Chem Rev 114:9283–9318

    Article  PubMed  CAS  Google Scholar 

  • Santhoshkumar T, Rahuman AA, Jayaseelan C, Rajakumar G, Marimuthu S, Kirthi AV, Velayutham K, Thomas J, Venkatesan J, Kim SK (2014) Green synthesis of titanium dioxide nanoparticles using Psidium guajava extract and its antibacterial and antioxidant properties. Asian Pac J Trop Med 7(12):968–976

    Article  PubMed  CAS  Google Scholar 

  • Sasson Y, Levy-Ruso G, Toledano O, Ishaaya I (2007) Nanosuspensions: emerging novel agrochemical formulations. In: Ishaaya I, Nauen R, Horowitz AR (eds) Insecticides design using advanced technologies. Springer, Dordrecht, pp 1–32

    Google Scholar 

  • Scrinis G, Lyons K (2007) The emerging nano-corporate paradigm: nanotechnology and the transformation of nature, food and agri-food systems. IJAFR 15(2):22–44

    Google Scholar 

  • Scrinis G (2007) The Emerging nano-corporate paradigm: nanotechnology and the transformation of nature, food and agri-food systems. Int J Sociol Food Agric 15:0798–1759

    Google Scholar 

  • Sharon M, Sharon M (2008) Carbon nanomaterials: applications in physico-chemical and bio-systems. Def Sci J 58(4):5491–5516

    Article  Google Scholar 

  • Sharon M, Choudhary AK, Kumar R (2010) Nanotechnology in agricultural diseases and food safety. J Phytology 2(4):83–92

    Google Scholar 

  • Shi YH, Xu ZR, Feng JL, Wang CZ (2006) Efficacy of modified montmorillonite nanocomposite to reduce the toxicity of aflatoxin in broiler chicks. Anim Feed Sci Technol 129:138–148

    Article  CAS  Google Scholar 

  • Shrestha S, Yeung CMY, Nunnerley C, Tsang SC (2007) Comparison of morphology and electrical conductivity of various thin films containing nano-crystalline praseodymium oxide particles. Sens Actuators A Phys 136:191–198

    Article  CAS  Google Scholar 

  • Siddiqi KS, Husen A (2017) Recent advances in plant-mediated engineered gold nanoparticles and their application in biological system. J Trace Elem Med Biol 40:10–23

    Article  CAS  PubMed  Google Scholar 

  • Sillen WMA, Thijs S, Abbamondi RG, Janssen J, Weyens N, White JC, Vangronsveld J (2015) Effects of silver nanoparticles on soil microorganisms and maize biomass are linked in the rhizosphere. Soil Biol Biochem 91:14–22

    Article  CAS  Google Scholar 

  • Singh P, Prasuhn D, Yeh RM, Destito G, Rae CS, Osborn K (2007) Biodistribution, toxicity and pathology of cowpea mosaic virus nanoparticles in vivo. J Control Release 120:41–50

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Singh DJ, Kumar R, Kumar N, Kaur P, Nehra K, Duhan S (2017) Nanotechnology: the new perspective in precision agriculture. Biotechnol Rep 15:11–23

    Article  Google Scholar 

  • Smith K, Evans DA, El-Hiti GA (2008) Role of modern chemistry in sustainable arable crop protection. Phil Trans R Soc B 363:623–637

    Article  PubMed  CAS  Google Scholar 

  • Solanki K, Grover N, Downs P (2013) Enzyme-based listericidal nanocomposites. Sci Rep 3:1584

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sozer N, Kokini JL (2009) Nanotechnology and its applications in the food sector. Trends Biotechnol 27(2):82–89

    Article  PubMed  CAS  Google Scholar 

  • Stadler T, Buteler M, Weaver DK (2010) Novel use of nanostructured alumina as an insecticide. Pest Manag Sci 66(6):577–579

    PubMed  CAS  Google Scholar 

  • Stadler T, Buteler M, Weaver DK, Sofie S (2012) Comparative toxicity of nanostructured alumina and a commercial inert dust for Sitophilus oryzae (L.) and Rhyzopertha dominica (F.) at varying ambient humidity levels. J Stored Product Res 48:81–90

    Article  Google Scholar 

  • Steinmetz NF, Evans DJ (2007) Utilisation of plant viruses in bionanotechnology. Org Biomol Chem 5:2891–2902

    Article  PubMed  CAS  Google Scholar 

  • Storm RM, Price DC, Lubetkin SD (2001) Aqueous dispersion of agricultural chemicals. US Patent 20010051175

    Google Scholar 

  • Syngenta (2003) Base-triggered release microcapsules. US Patent 6544540

    Google Scholar 

  • Tan Y, Cui Y, Li H, Kuang A, Li X, Wei Y, Ji X (2017) Rhizospheric soil and root endogenous fungal diversity and composition in response to continuous Panax notoginseng cropping practices. Microbiol Res 194:10–19

    Article  PubMed  Google Scholar 

  • Taylor TM, Davidson PM, Bruce BD, Weiss J (2005) Liposomal nanocapsules in food science and agriculture. Crit Rev Food Sci Nutr 45:587–605

    Article  PubMed  CAS  Google Scholar 

  • Teodoro S, Micaela B, ButelerDavid K, WeaverDavid KW (2010) Novel use of nanostructured alumina as an insecticide. Pest Manag Sci 66(6):577–579

    Google Scholar 

  • Thomas S, McCubin P (2003) A comparison of the antimicrobial effects of four silver containing dressings on three organisms. J Wound Care 12(101):107

    Google Scholar 

  • Torney F, Trewyn BG, Lin VS, Wang K (2007) Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat Nanotechnol 2:295–300

    Article  CAS  PubMed  Google Scholar 

  • Tsuji K (2001) Microencapsulation of pesticides and their improved handling safety. J Microencapsul 18:137–147

    Article  PubMed  CAS  Google Scholar 

  • Ulrichs C, Mewis I, Goswami A (2005) Crop diversification aiming nutritional security in West Bengal: biotechnology of stinging capsules in nature’s water-blooms. Ann Tech Issue State Agri Technol Serv Assoc:1–18

    Google Scholar 

  • Uzu G, Sobanska S, Sarret G, Munoz M, Dumat C (2010) Foliar lead uptake by lettuce exposed to atmospheric pollution. Environ Sci Technol 44:1036–1042

    Article  PubMed  CAS  Google Scholar 

  • Verma AK, Singh VP, Vikas P (2012) Application of nanotechnology as a tool in animal products processing and marketing: an overview. Am J Food Toxicol 7(8):445–451

    Google Scholar 

  • Vidyalakshmi R, Bhakyaraj R, Subhasree RS (2009) Encapsulation “the future of probiotics” – a review. Adv Biol Res 3(3–4):96–103

    Google Scholar 

  • Vigneshwaran N, Ashtaputre NM, Varadarajan PV, Nachane RP, Panikar KM, Balasubrahmanya RH (2007) Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus. Mater Lett 61(6):1413–1418

    Article  CAS  Google Scholar 

  • Vijayakumar PS, Abhilash OU, Khan BM, Prasad BLV (2010) Nanogold-loaded sharp-edged carbon bullets as plant-gene carriers. Adv Funct Mater 20:2416–2423

    Article  CAS  Google Scholar 

  • Vurro M, Boari A, Evidente A, Andolfi A, Zermane N (2009) Natural metabolites for parasitic weed management. Pest Manag Sci 65(5):566–571

    Article  PubMed  CAS  Google Scholar 

  • Wang YA, Li JJ, Chen HY, Peng XG (2002) Stabilization of inorganic nanocrystals by organic dendrons. J Am Chem Soc 124:2293–2298

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Wang Y, Xiong X, Li T, Liang J, Chen J (2004) Aqueous nano insecticide suspension and its preparation process. CN1486606. Chem Abs 142:213751

    Google Scholar 

  • Wang LY, Ma GH, Su ZG (2006) Preparation of uniform sized chitosan microspheres by membrane emulsification technique and application as a carrier of protein drug. J Control Release 106:62–75

    Article  CAS  Google Scholar 

  • Wang L, Li X, Zhang G, Dong J, Eastoe J (2007) Oil-in-water nanoemulsions for pesticide formulations. J Colloid Interface Sci 314(1):230–235

    Article  PubMed  CAS  Google Scholar 

  • Wiesman Z, Ben Dom N, Sharvit E, Grinberg S, Linder C, Heldman E (2007) Novel cationic vesicle platform derived from Vernonia oil for efficient delivery of DNA through plant cuticle membranes. J Biotechnol 130:85–94

    Article  PubMed  CAS  Google Scholar 

  • Yang F-L, Li X-G, Zhu F, Lei C-L (2009) Structural characterization of nanoparticles loaded with garlic essential oil and their insecticidal activity against Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). J Agric Food Chem 57(21):10156–10162

    Article  PubMed  CAS  Google Scholar 

  • Yao SJKS, Li KC, Tzeng TC, Cheng CY, Chang CY, Chiu CY, Liao JJ, Lin Hsu ZP (2009) Fluorescence silica nanoprobe as a biomarker for rapid detection of plant pathogens Y. Yin, X. Wang, Multi-functional materials and structures II. Adv Mater Res 79:513–516

    Article  CAS  Google Scholar 

  • Yoon K, Byeon JH, Park J, Hwang J (2007) Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and CuNPs. Sci Total Environ 373:572–575

    Article  CAS  PubMed  Google Scholar 

  • Young M, Willits D, Uchida M, Douglas T (2008) Plant viruses as biotemplates for materials and their use in nanotechnology. Annu Rev Phytopathol 46:361–384

    Article  PubMed  CAS  Google Scholar 

  • Zheng H, Shang Q (2005) Water suspension acetamiprid nano capsule preparation and its reparing method. CN1491558. Chem Abs 143:73729

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ramezani, M., Ramezani, F., Gerami, M. (2019). Nanoparticles in Pest Incidences and Plant Disease Control. In: Panpatte, D., Jhala, Y. (eds) Nanotechnology for Agriculture: Crop Production & Protection. Springer, Singapore. https://doi.org/10.1007/978-981-32-9374-8_12

Download citation

Publish with us

Policies and ethics