Skip to main content

Nanotechnology: A Promising Alternative for the Control of Postharvest Pathogens in Fruits

  • Chapter
  • First Online:
Nanotechnology for Agriculture: Crop Production & Protection

Abstract

The efficacy of different nanomaterials on several fungi is summarized in this chapter. The results of research demonstrate that this novel technology can control several phytopathogens isolated from various fruits. Nowadays, postharvest losses due to an inefficient postharvest management of fruits and vegetables are a serious problem in several countries. Traditionally, postharvest disease control is achieved by fungicide application not only at postharvest stage but also at field. However, several cases of pathogen resistance as well as consumer awareness with the presence of chemical residues on fruits and vegetables lead to the search of alternatives of postharvest treatments instead of fungicide use. In this sense, an alternative and effective approach for controlling diseases is the use of nanomaterials, which due to their size easily penetrate fungal structures affecting their development and avoiding the process of infection. An enhancement in the nanomaterial activity is achieved when they are combined with other substances like chitosan. Thus, nanotechnology is an alternative for controlling postharvest pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelmalek GAM, Salaheldin TA (2016) Silver nanoparticles as a potent fungicide for citrus phytopathogenic fungi. J Nanomed Res 3:65

    Google Scholar 

  • Acevedo-Fani A, Salvia-Trujillo L, Rojas-Graü MA, Martín-Belloso O (2015) Edible films from essential-oil-loaded nanoemulsions: physicochemical characterization and antimicrobial properties. Food Hydrocoll 47:168–177

    Article  CAS  Google Scholar 

  • Al-Othman MR, El-Aziz AR, Mahmoud MA, Eifan SA, El-Shikh MS, Majrashi M (2014) Application of silver nanoparticles as antifungal and antiaflatoxin B1 produced by Aspergillus flavus. Dig J Nanomater Bios 9:151–157

    Google Scholar 

  • Aloui H, Khwaldia K (2016) Natural antimicrobial edible coatings for microbial safety and food quality enhancement. Compr Rev Food Sci Food Saf 15:1080–1103

    Article  CAS  PubMed  Google Scholar 

  • Ayón-Reyna LE, González-Robles A, Rendón-Maldonado JG, Báez-Flores ME, López-López ME, Vega-García MO (2017) Application of a hydrothermal-calcium chloride treatment to inhibit postharvest anthracnose development in papaya. Postharvest Biol Technol 124:85–90

    Article  CAS  Google Scholar 

  • Barkai-Golan R (2001) Chapter 9: Chemical control. BARKAI-GOLAN RBT-PD of F and V (ed). Elsevier, Amsterdam, 147–188

    Chapter  Google Scholar 

  • Basavaraj U, Praveenkumar N, Sabiha TS, Rupali S, Samprita B (2012) Synthesis and characterization of silver nanoparticles. Int J Pharm Bio Sci 2:10–14

    Google Scholar 

  • Berger S, El Chazli Y, Babu AF, Coste AT (2017) Azole resistance in Aspergillus fumigatus: a consequence of antifungal use in agriculture? Front Microbiol 8:1024

    Article  PubMed  PubMed Central  Google Scholar 

  • Blacharski RW, Bartz JA, Xiao CL, Legard DE (2001) Control of postharvest Botrytis fruit rot with preharvest fungicide applications in annual strawberry. Plant Dis 85:597–602

    Article  CAS  PubMed  Google Scholar 

  • Campos-Martínez A, Velázquez-del Valle MG, Flores-Moctezuma HE, Suárez-Rodríguez R, Ramírez-Trujillo JA, Hernández-Lauzardo AN (2016) Antagonistic yeasts with potential to control Colletotrichum gloeosporioides (Penz.) Penz. & Sacc. and Colletotrichum acutatum JH Simmonds on avocado fruits. Crop Prot 89:101–104

    Article  Google Scholar 

  • Carbó A, Torres R, Usall J, Marín A, Chiralt A, Teixidó N (2018) Novel film-forming formulations of the biocontrol agent Candida sake CPA-1: biocontrol efficacy and performance at field conditions in organic wine grapes. Pest Manag Sci

    Google Scholar 

  • Carlile MJ, Watkinson SC, Gooday GW (2001) The fungi. Gulf Professional Publishing

    Google Scholar 

  • Chávez-Magdaleno ME, Luque-Alcaraz AG, Gutiérrez-Martínez P, Cortez-Rocha MO, Burgos-Hernández A, Lizardi-Mendoza J, Plascencia-Jatomea M (2017) Effect of chitosan-pepper tree (Schinus molle) essential oil biocomposites on the growth kinetics, viability and membrane integrity of Colletotrichum gloeosporioides. Rev Mex Ing Química 17:29–45

    Article  Google Scholar 

  • Chávez-Magdaleno ME, González-Estrada RR, Ramos-Guerrero A, Plascencia-Jatomea M, Gutiérrez-Martínez P (2018a) Effect of pepper tree (Schinus molle) essential oil-loaded chitosan bio-nanocomposites on postharvest control of Colletotrichum gloeosporioides and quality evaluations in avocado (Persea americana) cv. Hass. Food Sci Biotechnol 27:1871–1875

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chávez-Magdaleno ME, González-Estrada RR, Maribel AR, Gutie PP (2018b) Effect of pepper tree (Schinus molle) essential oil-loaded chitosan bio-nanocomposites on postharvest control of Colletotrichum gloeosporioides and quality evaluations in avocado (Persea americana) cv. Hass. https://doi.org/10.1007/s10068-018-0410-5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Droby S, Wisniewski M, El-Ghaouth A, Wilson C (2002) Biological control of postharvest diseases of fruit and vegetables: current achievements and future challenges. In: XXVI International Horticultural Congress: Issues and Advances in Postharvest Horticulture 628. pp 703–713

    Google Scholar 

  • Duncan TV (2011) Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors. J Colloid Interface Sci 363:1–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dutra JB, Blum LEB, Lopes LF, Cruz AF, Uesugi CH (2018) Use of hot water, combination of hot water and phosphite, and 1-MCP as post-harvest treatments for passion fruit (Passiflora edulis f. flavicarpa) reduces anthracnose and does not alter fruit quality. Hortic Environ Biotechnol:1–10

    Google Scholar 

  • El Ghaouth A, Arul J, Grenier J, Asselin A (1992) Antifungal activity of chitosan on two postharvest pathogens of strawberry fruits. Phytopathology 82:398–402

    Article  CAS  Google Scholar 

  • El-Ghaouth A, Smilanick JL, Wilson CL (2000) Enhancement of the performance of Candida saitoana by the addition of glycolchitosan for the control of postharvest decay of apple and citrus fruit. Postharvest Biol Technol 19:103–110

    Article  CAS  Google Scholar 

  • Eshghi S, Hashemi M, Mohammadi A, Badii F, Mohammadhoseini Z, Ahmadi K (2014) Effect of nanochitosan-based coating with and without copper loaded on physicochemical and bioactive components of fresh strawberry fruit (Fragaria x ananassa Duchesne) during storage. Food Bioprocess Technol 7:2397–2409

    Article  CAS  Google Scholar 

  • Esteban-Tejeda L, Malpartida F, Esteban-Cubillo A, Pecharromán C, Moya JS (2009) Antibacterial and antifungal activity of a soda-lime glass containing copper nanoparticles. Nanotechnology 20:505701

    Article  CAS  PubMed  Google Scholar 

  • Food and Agriculture Organization of the United Nations (2018). Food loss food waste. http://www.fao.org/food-loss-and-food-waste/en/. Accessed 22 Feb 2018

  • González-Estrada RR, Carvajal-Millán E, Ragazzo-Sánchez JA, Bautista-Rosales PU, Calderón-Santoyo M (2017a) Control of blue mold decay on Persian lime: application of covalently cross-linked arabinoxylans bioactive coatings with antagonistic yeast entrapped. LWT-Food Sci Technol 85:187–196. https://doi.org/10.1016/j.lwt.2017.07.019

    Article  CAS  Google Scholar 

  • González-Estrada RR, de Jesus Ascencio-Valle F, Ragazzo-Sánchez JA, Santoyo MC (2017b) Use of a marine yeast as a biocontrol agent of the novel pathogen Penicillium citrinum on Persian lime Emirates. J Food Agric 29:114–122. https://doi.org/10.9755/ejfa.2016-09-1273

    Article  Google Scholar 

  • Gouda S, Kerry RG, Das G, Paramithiotis S, Shin H-S, Patra JK (2017) Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture. Microbiol Res

    Google Scholar 

  • Guimarães A, Abrunhosa L, Pastrana LM, Cerqueira MA (2018) Edible films and coatings as carriers of living microorganisms: a new strategy towards biopreservation and healthier foods. Compr Rev Food Sci Food Saf 17:594–614

    Article  PubMed  Google Scholar 

  • Gustauson J, Ch C, Sonneson U, Van Otterdijk R, Meybeck A (2012) Perdida y desperdicio de alimentos en el mundo: Alcance, causas y prevencion. FAO, Roma (Italia). Swedish Institute for Food and Biotechnology, Gothenburg

    Google Scholar 

  • Gutiérrez-Martínez P, Osuna-López SG, Calderón-Santoyo M, Cruz-Hernández A, Bautista-Baños S (2012) Influence of ethanol and heat on disease control and quality in stored mango fruits. LWT-Food Sci Technol 45:20–27

    Article  CAS  Google Scholar 

  • Gutiérrez-Martínez P, Ledezma-Morales A, del Carmen Romero-Islas L, Ramos-Guerrero A, Romero-Islas J, Rodríguez-Pereida C, Casas-Junco P, Coronado-Partida L, González-Estrada R (2018a) Antifungal activity of chitosan against postharvest fungi of tropical and subtropical fruits. In: Chitin-chitosan-myriad functionalities in science and technology. IntechOpen

    Google Scholar 

  • Gutiérrez-Martínez P, Ramos-Guerrero A, Rodríguez-Pereida C, Coronado-Partida L, Angulo-Parra J, González-Estrada R (2018b) Chapter 12- chitosan for postharvest disinfection of fruits and vegetables. In: Siddiqui MWBT-PD of F and V (ed). Academic Press, pp 231–241

    Google Scholar 

  • He L, Liu Y, Mustapha A, Lin M (2011) Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiol Res 166:207–215

    Article  CAS  PubMed  Google Scholar 

  • Hernandez Montiel LG, Zulueta Rodriguez R, Angulo C, Rueda Puente EO, Quiñonez Aguilar EE, Galicia R (2017) Marine yeasts and bacteria as biological control agents against anthracnose on mango. J Phytopathol 165:833–840

    Article  CAS  Google Scholar 

  • Hewett EW (2012) Postharvest innovation: current trends and future challenges in the global market. In: Southeast Asia Symposium on Quality Management in Postharvest Systems and Asia Pacific Symposium on Postharvest Quality 989. pp 25–37

    Google Scholar 

  • Hong P, Hao W, Luo J, Chen S, Hu M, Zhong G (2014) Combination of hot water, Bacillus amyloliquefaciens HF-01 and sodium bicarbonate treatments to control postharvest decay of mandarin fruit. Postharvest Biol Technol 88:96–102

    Article  CAS  Google Scholar 

  • Ismail A-WA, Sidkey NM, Arafa RA, Fathy RM, El-Batal AI (2016) Evaluation of in vitro antifungal activity of silver and selenium nanoparticles against Alternaria solani caused early blight disease on potato. Br Biotechnol J 12(3):1–11

    Article  Google Scholar 

  • Janisiewicz WJ, Korsten L (2002) Biological control of postharvest diseases of fruits. Annu Rev Phytopathol 40:411–441

    Article  CAS  PubMed  Google Scholar 

  • Kader AA (2003) A perspective on postharvest horticulture (1978–2003). Hort Science 38:1004–1008

    Article  Google Scholar 

  • Kim SW, Jung JH, Lamsal K, Kim YS, Min JS, Lee YS (2012) Antifungal effects of silver nanoparticles (AgNPs) against various plant pathogenic fungi. Mycobiology 40:53–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kong Q (2018) Marine microorganisms as biocontrol agents against fungal phytopathogens and mycotoxins. Biocontrol Sci Tech 28:77–93

    Article  Google Scholar 

  • Kong M, Chen XG, Xing K, Park HJ (2010) Antimicrobial properties of chitosan and mode of action: a state of the art review. Int J Food Microbiol 144:51–63

    Article  CAS  PubMed  Google Scholar 

  • Kotzybik K, Gräf V, Kugler L, Stoll DA, Greiner R, Geisen R, Schmidt-Heydt M (2016) Influence of different nanomaterials on growth and mycotoxin production of Penicillium verrucosum. PloS one 11(3):1–16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kreyling WG, Semmler-Behnke M, Möller W (2006) Health implications of nanoparticles. J Nanopart Res 8:543–562

    Article  CAS  Google Scholar 

  • la Rosa-García D, Susana C, Martínez-Torres P, Gómez-Cornelio S, Corral-Aguado MA, Quintana P, Gómez-Ortíz NM (2018) Antifungal activity of ZnO and MgO nanomaterials and their mixtures against Colletotrichum gloeosporioides strains from tropical fruit. J Nanomater 2018

    Google Scholar 

  • Lamsal K, Kim SW, Jung JH, Kim YS, Kim KS, Lee YS (2011) Application of silver nanoparticles for the control of Colletotrichum species in vitro and pepper anthracnose disease in field. Mycobiology 39:194–199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim L (2018) Applications of nanostructured and microstructured materials in postharvest packaging of fresh fruits and vegetables. Postharvest Biol Nanotechnol 301–325

    Google Scholar 

  • Liu J, Sui Y, Wisniewski M, Droby S, Tian S, Norelli J, Hershkovitz V (2012) Effect of heat treatment on inhibition of Monilinia fructicola and induction of disease resistance in peach fruit. Postharvest Biol Technol 65:61–68

    Article  CAS  Google Scholar 

  • Liu J, Sui Y, Wisniewski M, Xie Z, Liu Y, You Y, Zhang X, Sun Z, Li W, Li Y (2018) The impact of the postharvest environment on the viability and virulence of decay fungi. Crit Rev Food Sci Nutr 58:1681–1687

    Article  PubMed  Google Scholar 

  • Lydakis D, Aked J (2003) Vapour heat treatment of Sultanina table grapes. I: control of Botrytis cinerea. Postharvest Biol Technol 27:109–116

    Article  Google Scholar 

  • Manasa B, Jagadeesh SL, Thammaiah N, Jagadeesh RC, Nethravathi PMG (2018) Pre-harvest application of azoxystrobin minimised anthracnose of mango (cv.‘Alphonso’) both at field and postharvest level enhancing yield and quality of fruits. J Pharmacogn Phytochem 7:2962–2967

    CAS  Google Scholar 

  • Marín A, Cháfer M, Atarés L, Chiralt A, Torres R, Usall J, Teixidó N (2016) Effect of different coating-forming agents on the efficacy of the biocontrol agent Candida sake CPA-1 for control of Botrytis cinerea on grapes. Biol Control 96:108–119

    Article  CAS  Google Scholar 

  • Marín A, Atarés L, Chiralt A (2017) Improving function of biocontrol agents incorporated in antifungal fruit coatings: a review. Biocontrol Sci Tech 27:1220–1241

    Article  Google Scholar 

  • Maxin P, Weber RWS, Pedersen HL, Williams M (2012) Control of a wide range of storage rots in naturally infected apples by hot-water dipping and rinsing. Postharvest Biol Technol 70:25–31

    Article  Google Scholar 

  • Medeiros BG de S, Pinheiro AC, Carneiro-da-Cunha MG, Vicente AA (2012) Development and characterization of a nanomultilayer coating of pectin and chitosan–evaluation of its gas barrier properties and application on ‘Tommy Atkins’ mangoes. J Food Eng 110:457–464

    Article  CAS  Google Scholar 

  • Meier MS, Stoessel F, Jungbluth N, Juraske R, Schader C, Stolze M (2015) Environmental impacts of organic and conventional agricultural products–are the differences captured by life cycle assessment? J Environ Manag 149:193–208

    Article  Google Scholar 

  • Mohamed Z, AbdLatif I, Mahir Abdullah A (2011) 1- economic importance of tropical and subtropical fruits. In: Yahia EMBT-PB and T of T and SF (ed) Woodhead publishing series in food science, Technology and Nutrition. Woodhead Publishing, pp 1–20

    Google Scholar 

  • Mohammadi A, Hashemi M, Hosseini SM (2015a) Chitosan nanoparticles loaded with Cinnamomum zeylanicum essential oil enhance the shelf life of cucumber during cold storage. Postharvest Biol Technol 110:203–213

    Article  CAS  Google Scholar 

  • Mohammadi A, Hashemi M, Hosseini SM (2015b) Nanoencapsulation of Zataria multiflora essential oil preparation and characterization with enhanced antifungal activity for controlling Botrytis cinerea, the causal agent of gray mould disease. Innov Food Sci Emerg Technol 28:73–80

    Article  CAS  Google Scholar 

  • Nejad MS, Bonjar GHS, Khatami M, Amini A, Aghighi S (2016) In vitro and in vivo antifungal properties of silver nanoparticles against Rhizoctonia solani, a common agent of rice sheath blight disease. IET Nanobiotechnol 11:236–240

    Article  Google Scholar 

  • Organization WH (2003) Diet, nutrition, and the prevention of chronic diseases: report of a joint WHO/FAO expert consultation. World Health Organization

    Google Scholar 

  • Organization WH (2012) World health statistics 2012. World Health Organization

    Google Scholar 

  • Ouda SM (2014) Antifungal activity of silver and copper nanoparticles on two plant pathogens, Alternaria alternata and Botrytis cinerea. Res J Microbiol 9:34–42

    Article  CAS  Google Scholar 

  • Panebianco A, Castello I, Cirvilleri G, Perrone G, Epifani F, Ferrara M, Polizzi G, Walters DR, Vitale A (2015) Detection of Botrytis cinerea field isolates with multiple fungicide resistance from table grape in Sicily. Crop Prot 77:65–73

    Article  Google Scholar 

  • Panpatte DG, Jhala YK, Shelat HN, Vyas RV (2016) Nanoparticles-the next generation technology for sustainable agriculture. In: Singh DP, Singh HB, Prabha R (eds) Microbial inoculants in sustainable agricultural productivity volume 2: functional applications. Springer, India, pp 289–300

    Chapter  Google Scholar 

  • Patra P, Choudhury SR, Mandal S, Basu A, Goswami A, Gogoi R, Srivastava C, Kumar R, Gopal M (2013) Effect sulfur and ZnO nanoparticles on stress physiology and plant (Vigna radiata) nutrition. In: Advanced Nanomaterials and Nanotechnology. Springer, pp 301–309

    Google Scholar 

  • Pavoncello D, Lurie S, Droby S, Porat R (2001) A hot water treatment induces resistance to Penicillium digitatum and promotes the accumulation of heat shock and pathogenesis-related proteins in grapefruit flavedo. Physiol Plant 111:17–22

    Article  CAS  Google Scholar 

  • Rabari VP, Chudashama KS, Thaker VS (2018) In vitro screening of 75 essential oils against Colletotrichum gloeosporioides: a causal agent of anthracnose disease of mango. Int J Fruit Sci 18:1–13

    Article  Google Scholar 

  • Romanazzi G, Sanzani SM, Bi Y, Tian S, Martínez PG, Alkan N (2016) Induced resistance to control postharvest decay of fruit and vegetables. Postharvest Biol Technol 122:82–94

    Article  CAS  Google Scholar 

  • Sarkhosh A, Schaffer B, Vargas AI, Palmateer AJ, Lopez P, Soleymani A, Farzaneh M (2018) Antifungal activity of five plant-extracted essential oils against anthracnose in papaya fruit. Biol Agric Hortic 34:18–26

    Article  Google Scholar 

  • Serey RA, Torres R, Latorre BA (2007) Pre-and post-infection activity of new fungicides against Botrytis cinerea and other fungi causing decay of table grapes. Cienc e Investig Agrar 34:215–224

    Google Scholar 

  • Sharma RR, Singh D, Singh R (2009) Biological control of postharvest diseases of fruits and vegetables by microbial antagonists: a review. Biol Control 50:205–221

    Article  Google Scholar 

  • Singh G, Rattanpal H (2014) Use of nanotechnology in horticulture: a review. Int J Agric Sc Vet Med 2:34–42

    Google Scholar 

  • Singh D, Sharma RR (2018) Postharvest diseases of fruits and vegetables and their management. In: Postharvest disinfection of fruits and vegetables. Elsevier, pp 1–52

    Google Scholar 

  • Singh D, Thakur AK (2005) Effect of fungicides on spoilage caused by mycoflora in kinnow (Citrus reticulata Blanco.) fruits during storage. J Mycol Pl Pathol 35:125–127

    Google Scholar 

  • Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for gram-negative bacteria. J Colloid Interface Sci 275:177–182

    Article  CAS  PubMed  Google Scholar 

  • Spadaro D, Garibaldi A, Gullino ML (2004) Control of Penicillium expansum and Botrytis cinerea on apple combining a biocontrol agent with hot water dipping and acibenzolar-S-methyl, baking soda, or ethanol application. Postharvest Biol Technol 33:141–151

    Article  CAS  Google Scholar 

  • Spadoni A, Guidarelli M, Sanzani SM, Ippolito A, Mari M (2014) Influence of hot water treatment on brown rot of peach and rapid fruit response to heat stress. Postharvest Biol Technol 94:66–73

    Article  CAS  Google Scholar 

  • Spadoni A, Guidarelli M, Phillips J, Mari M, Wisniewski M (2015) Transcriptional profiling of apple fruit in response to heat treatment: involvement of a defense response during Penicillium expansum infection. Postharvest Biol Technol 101:37–48

    Article  CAS  Google Scholar 

  • Spalding DH (1982) Resistance of mango pathogens to fungicides used to control postharvest diseases. Plant Dis 66:1185–1186

    Article  Google Scholar 

  • Sui Y, Wisniewski M, Droby S, Norelli J, Liu J (2016) Recent advances and current status of the use of heat treatments in postharvest disease management systems: is it time to turn up the heat? Trends Food Sci Technol 51:34–40

    Article  CAS  Google Scholar 

  • Tian SP, Fan Q, Xu Y, Jiang AL (2002) Effects of calcium on biocontrol activity of yeast antagonists against the postharvest fungal pathogen Rhizopus stolonifer. Plant Pathol 51:352–358

    Article  Google Scholar 

  • Usall J, Ippolito A, Sisquella M, Neri F (2016a) Physical treatments to control postharvest diseases of fresh fruits and vegetables. Postharvest Biol Technol 122:30–40

    Article  Google Scholar 

  • Usall J, Torres R, Teixido N (2016b) Biological control of postharvest diseases on fruit: a suitable alternative? Curr Opin Food Sci 11:51–55

    Article  Google Scholar 

  • Venat O, Iacomi B, PETICILĂ AG (2018) In vitro studies of antifungal activity of colloidal silver against important plants pathogens. Not Bot Horti Agrobot Cluj-Napoca 46:533–537

    Article  CAS  Google Scholar 

  • Waewthongrak W, Pisuchpen S, Leelasuphakul W (2015) Effect of Bacillus subtilis and chitosan applications on green mold (Penicillium digitatum Sacc.) decay in citrus fruit. Postharvest Biol Technol 99:44–49

    Article  CAS  Google Scholar 

  • Wang Y, Bao Y, Shen D, Feng W, Yu T, Zhang J, Zheng XD (2008) Biocontrol of Alternaria alternata on cherry tomato fruit by use of marine yeast Rhodosporidium paludigenum Fell and Tallman. Int J Food Microbiol 123:234–239

    Article  PubMed  Google Scholar 

  • Wang L, Jin P, Wang J, Gong H, Zhang S, Zheng Y (2015) Hot air treatment induces resistance against blue mold decay caused by Penicillium expansum in sweet cherry (Prunus cerasus L.) fruit. Sci Hortic (Amsterdam) 189:74–80

    Article  CAS  Google Scholar 

  • Win NKK, Jitareerat P, Kanlayanarat S, Sangchote S (2007) Effects of cinnamon extract, chitosan coating, hot water treatment and their combinations on crown rot disease and quality of banana fruit. Postharvest Biol Technol 45:333–340

    Article  CAS  Google Scholar 

  • Wisniewski M, Droby S, Norelli J, Liu J, Schena L (2016) Alternative management technologies for postharvest disease control: the journey from simplicity to complexity. Postharvest Biol Technol 122:3–10

    Article  Google Scholar 

  • Xin Y, Chen F, Lai S, Yang H (2017) Influence of chitosan-based coatings on the physicochemical properties and pectin nanostructure of Chinese cherry. Postharvest Biol Technol 133:64–71

    Article  CAS  Google Scholar 

  • Yadav A, Kon K, Kratosova G, Duran N, Ingle AP, Rai M (2015) Fungi as an efficient mycosystem for the synthesis of metal nanoparticles: progress and key aspects of research. Biotechnol Lett 37:2099–2120

    Article  CAS  PubMed  Google Scholar 

  • Yahia EM (2017) The contribution of fruit and vegetable consumption to human health. Fruit Veg Phytochem La Rosa, LA, Alvarez-Parrilla, E, González-Aguilar, GA, Eds 3–51

    Google Scholar 

  • Yehia RS, Ahmed OF (2013) In vitro study of the antifungal efficacy of zinc oxide nanoparticles against Fusarium oxysporum and Penicillium expansum. African J Microbiol Res 7:1917–1923

    Article  CAS  Google Scholar 

  • Yilmaz A, Bozkurt F, Cicek PK, Dertli E, Durak MZ, Yilmaz MT (2016) A novel antifungal surface-coating application to limit postharvest decay on coated apples: molecular, thermal and morphological properties of electrospun zein–nanofiber mats loaded with curcumin. Innov Food Sci Emerg Technol 37:74–83

    Article  CAS  Google Scholar 

  • Yu T, Li HY, Zheng XD (2007) Synergistic effect of chitosan and Cryptococcus laurentii on inhibition of Penicillium expansum infections. Int J Food Microbiol 114:261–266

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Timmer LW (2007) Preharvest application of fungicides for postharvest disease control on early season tangerine hybrids in Florida. Crop Prot 26:886–893

    Article  CAS  Google Scholar 

  • Zhang H, Zheng X, Wang L, Li S, Liu R (2007) Effect of yeast antagonist in combination with hot water dips on postharvest Rhizopus rot of strawberries. J Food Eng 78:281–287

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Gutiérrez-Martínez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

González-Estrada, R.R., Blancas-Benitez, F.J., Moreno-Hernández, C.L., Coronado-Partida, L., Ledezma-Delgadillo, A., Gutiérrez-Martínez, P. (2019). Nanotechnology: A Promising Alternative for the Control of Postharvest Pathogens in Fruits. In: Panpatte, D., Jhala, Y. (eds) Nanotechnology for Agriculture: Crop Production & Protection. Springer, Singapore. https://doi.org/10.1007/978-981-32-9374-8_15

Download citation

Publish with us

Policies and ethics