Skip to main content

Nanofertilizers: A Recent Approach in Crop Production

  • Chapter
  • First Online:
Nanotechnology for Agriculture: Crop Production & Protection

Abstract

Nanofertilizer is a novel technique toward attaining sustainable agriculture. It helps in enhancing nutrient supervision because of its properties like increased infiltration capacity, slow release, large surface area, nutrient use efficiency, stress tolerance ability, temporal and spatial release, and eco-friendly. Different types of nanofertilizers can be synthesized by either bottom-up or top-down approach and prove to be a better option than conventional fertilizers in providing both micronutrients and macronutrients. Although nanofertilizers suffer from various biosafety and ethical issues, it is economical and helps in increasing yield. Many nanofertilizer products are in the market, but still more support from public and private sectors is needed to promote industries dealing with nanofertilizer production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdel-Aziz HMM, Hasaneen MNA, Omer AM (2016) Nano chitosan-NP fertilizer enhances the growth and productivity of wheatplants grown in sandy soil. Spanish J Agric Res 14:e0902

    Article  Google Scholar 

  • Adhiari T, undu S, Meena V, Rao AS (2014) Utilization of nano roc phosphate by maize (Zea mays L.) crop in a vertisol of Central India. J Agric Sci Technol 4:384–394

    Google Scholar 

  • Amirnia R, Bayat M, Tajbahsh M (2014) Effects of nanofertilizer application and maternal corm weight on flowering at some saffron (Crocus sativus L.) ecotypes. Turish J. Field Crops 19:158–168

    Article  Google Scholar 

  • Aruoja V, Pokhrel S, Sihtmäe M, Mortimer M, Mädler L, Kahru A (2015) Environ Sci Nano 2:630

    Article  CAS  Google Scholar 

  • Barber SA (1995) Soil nutrient bioavailability: a mechanistic approach. Wiley-Blackwell, New York, 384 pp

    Google Scholar 

  • Bhargava A, Chippa H, Jain N, Panwar J (2015) Nanofertilizers and their smart delivery system. Nanotechnol Food Agric:81–98

    Google Scholar 

  • Boehm AL, Martinon I, Zerrouk R, Rump E, Fessi H (2003) Nanoprecipitation technique for the encapsulation of agrochemical active ingredients. J Microencapsul 20:433–441

    Article  PubMed  CAS  Google Scholar 

  • Bouwmeester H, Dekkers S, Noordam MY, Hagens WI, Bulder AS, de Heer C, ten Voorde SE, Wijnhoven SW, Marvin HJ, Sips AJ (2009) Review of health safety aspects of nanotechnologies in food production. Regul Toxicol Pharmacol 53:52–62

    Article  PubMed  CAS  Google Scholar 

  • Braun H, Roy RN (1983) Efficient use of fertilizers in agriculture development in plant and soil science. Proc Symp 10:251–270

    Google Scholar 

  • Chaudhry Q, Castle L (2011) Food applications of nanotechnologies: an overview of opportunities and challenges for developing countries. Trends Food Sci Technol 22:595–603

    Article  CAS  Google Scholar 

  • Cifuentes Z, Custardoy L, de la Fuente JM, Marquina C, Ibarra MR, Rubiales D (2010) Absorption and translocation to the aerial part of magnetic carbon-coated nanoparticles through the root of different crop plants. J Nanobiotechnol 8:26

    Article  CAS  Google Scholar 

  • Colman BP et al (2013) PLoS One 8:e57189

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Colvin VL (2003) The potential environmental impact of engineered nanomaterials. Nat Biotechnol 21:1166–1170

    Article  PubMed  CAS  Google Scholar 

  • Corradini E, De Moura MR, Mattoso LHC (2010) A preliminary study of the incorporation of NPK fertilizer into chitosan nanoparticles. Express Polym Lett 4:509–515

    Article  CAS  Google Scholar 

  • Corredor E, Testillano PS, Coronado MJ, González-Melendi P, Fernández-Pacheco R, Marquina C, Ibarra MR, de la Fuente JM, Rubiales D, Peréz-de-Luque A, RisueÅ„o MC (2009) Nanoparticle penetration and transport in living pumpkin plants: in situ subcellular identification. BMC Plant Biol 9:45

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cui H X, Sun C J, Liu Q, Jiang J, Gu W (2010) Applications of nanotechnology in agrochemical formulation, perspectives, challenges and strategies. International conference on Nano Agri, Sao Pedro, Brazil, pp 28–33

    Google Scholar 

  • De la Torre Roche R, Servin A, Hawthorne J, Xing B, Newman LA, Ma X, Chen G, White JC (2015) Terrestrial trophic transfer of bulk and nanoparticle La2O3 does not depend on particle size. Environ Sci Technol 49(1):1866

    Google Scholar 

  • Deepa M, Sudhakar P, Nagamadhuri V, Reddy B, Krishna TG, Prasad TNVV (2015) First evidence on phloem transport of nanoscale calcium oxide in groundnut using solution culture technique. Appl Nanosci 5:545–551

    Article  CAS  Google Scholar 

  • Delfani M, Firouzabadi MB, Farrohi N, Maarian H (2014) Some physiological responses of blac eyed pea to iron and magnesium nanofertilizers. Commun Soil Sci Plant Anal 45:530–540

    Article  CAS  Google Scholar 

  • Dhawan A, Sharma V, Parmar D (2009) Nanomaterials: a challenge for toxicologists. Nanotoxicology 3:1–9

    Article  CAS  Google Scholar 

  • Dimkpa CO (2014) Can nanotechnology deliver the promised benefits without negatively impacting soil microbial life? J Basic Microbiol 54:889–904

    Article  PubMed  CAS  Google Scholar 

  • Dimkpa C, Bindraban P, Fugice J, Agyin-Biriorang S, Singh U, Hellums D (2017) Composite micronutrient nanoparticles and salts decrease draught stress in soybean. Agron Sustain Dev 37:5

    Article  CAS  Google Scholar 

  • Eichert T, Kurtz A, Steiner U, Goldbach HE (2008) Size exclusion limits and lateral heterogeneity of the stomatal foliar uptake pathway for aqueous solutes and water-suspended nanoparticles. Physiol Plant 134:151–160

    Article  PubMed  CAS  Google Scholar 

  • Etxeberria E, Gonzalez P, Baroja-Fernandez E, Romero JP (2006) Fluid phase endocytic uptake of artificial nano-spheres and fluorescent quantum dots by sycamore cultured cells: evidence for the distribution of solutes to different intracellular compartments. Plant Signal Behav 1:196–200

    Article  PubMed  PubMed Central  Google Scholar 

  • Feng Y, Cui X, He S, Dong G, Chen M, Wang J et al (2013) The role of metal nanoparticles in influencing arbuscular mycorrhizal fungi effects on plant growth. Environ Sci Technol 47:9496–9504

    Article  PubMed  CAS  Google Scholar 

  • Gao F, Hong F, Liu C, Zheng L, Su M, Wu X, Yang F, Wu C, Yang P (2006) Mechanisms of nano-anatase TiO2 on promoting photosynthetic carbon reaction of spinach: inducing complex of rubisco–rubisco activase. Biol Trace Elem Res 111:239–253

    Article  PubMed  CAS  Google Scholar 

  • Gao F, Gao F, Liu C, Qu C, Zheng L, Yang F, Su M, Hong F (2008) Was improvement of spinach growth by nano-TiO2 treatment related to the changes of rubisco activase? Biometals 21:211–217

    Article  PubMed  CAS  Google Scholar 

  • Gericke WF (1937) Hydroponics – crop production in liquid culture media. Science 85:177–178

    Article  PubMed  CAS  Google Scholar 

  • González-Melendi P, Fernández-Pacheco R, Coronado MJ, Corredor E, Testillano PS, Risueño MC et al (2008) Nanoparticles as smart treatment-delivery systems in plants: assessment of different techniques of microscopy for their visualisation in plant tissues. Ann Bot 101:187–195

    Article  PubMed  Google Scholar 

  • Green JM, Beestman GB (2007) Recently patented and commercialized formulation and adjuvant technology. Crop Prot 26:320–327

    Article  CAS  Google Scholar 

  • He S, Feng Y, Ni J, Sun Y, Xue L, Feng Y, Yu Y, Lin X, Yang L (2016) Chemosphere 147:195

    Article  PubMed  CAS  Google Scholar 

  • Hokmabadi H, Haidarinezad A, Barfeie R, Nazaran M, Ashtian M and Abotalebi A (2006) A new iron chelate introduction and their effects on photosynthesis activity, chlorophyll content and nutrients Uptake of pistachio (Pistaciavera L.). 27th international horticultural congress and exhibitions Seoul, Korea, pp 13–19

    Google Scholar 

  • Hong F, Zuan J, Liu C, Yang F, Wu C, Zheng L, Yang P (2005) Effect of nano-TiO2 on photochemical reaction of chloroplasts of spinach. Biol Trace Elem Res 105:269–280

    Article  PubMed  CAS  Google Scholar 

  • Jo YK, Kim BH (2009) Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi. Plant Dis 93:1037–1043

    Article  PubMed  CAS  Google Scholar 

  • Kim SW (2009) An in vitro study of the antifungal effect of silver nanoparticles on oak wilt pathogen Raffaelea sp. J Microbiol Biotechnol 19:760–764

    PubMed  Google Scholar 

  • Kim JI, Park HG, Chang KH, Nam DH, Yeo MK (2016) Environ Pollut 212:316

    Article  PubMed  CAS  Google Scholar 

  • Kottegoda N, Munaweera I, Madusanka N, Karunaratne V (2011) A green slow-release fertilizer composition based on urea-modified hydroxyapatite nanoparticles encapsulated wood. Curr Sci 101:73–78

    CAS  Google Scholar 

  • Kottegoda N, Sandaruwan C, Priyadarshana G, Siriwardhana A, Rathnayae UA, Arachchige DMB, Kumarasinghe AR, Dahanayae D, Karunarantne V, Amaratunga GAJ (2017) Urea-hydroxypatite nanohybrids for slow release of nitrogen. Nano 11:1214–1221

    CAS  Google Scholar 

  • Kundu S, Adhiari T, Mohanty SR, Rajendiran S, Coumar MV, Saha J, Patra A (2016) Reduction in nitrous oxide (N2O) emission from nano zincoxide and nano rockphosphate coated urea. Agrochimica 60:2

    Google Scholar 

  • Larue C, Khodja H, Herlin-Boime N, Brisset F, Flank AM, Fayard B, Chaillou S, Carrière M (2011) Investigation of titanium dioxide nanoparticles toxicity and uptake by plants. J Phys Conf Ser 304:012057

    Article  CAS  Google Scholar 

  • Lei Z, Mingyu S, Chao L, Liang C, Hao H, Xiao W, Xiaoqing L, Fan Y, Fengqing G, Fashui H (2007) Effects of nanoanatase TiO2 on the photosynthesis of spinach chloroplasts under different light illumination. Biol Trace Elem Res 119:68–76

    Article  PubMed  CAS  Google Scholar 

  • Liscano JF, Wilson CE, Norman RJ, Slaton NA (2000) AAES Res B 963:1–31

    Google Scholar 

  • Liu R, Lal R (2012) Nanoenhanced materials for reclamation of mine lands and other degraded soils: a review. J Nanotechnol 461–468

    Google Scholar 

  • Liu R, Zhao D (2007) Reducing leachability and bioaccessibility of lead in soils using a new class of stabilized iron phosphate nanoparticles. Water Res 41:2491–2502

    Article  PubMed  CAS  Google Scholar 

  • Ma X, Geisler-Lee J, Deng Y, Kolmakov A (2010) Interactions between engineered nanoparticles (ENPs) and plants: phytotoxicity, uptake and accumulation. Sci Total Environ 408:3053–3061

    Article  PubMed  CAS  Google Scholar 

  • Malik S, Kumar A (2014) Approach for nanoparticle synthesis: using as nanofertilizer. Int J Pharm Res Biosci 3(3):519–527

    CAS  Google Scholar 

  • Min JS, Kim KS, Kim SW, Jung JH, Lamsal K, Kim SB (2009) Effects of colloidal silver nanoparticles on sclerotium-forming phytopathogenic fungi. Plant Pathol J 25:376–380

    Article  CAS  Google Scholar 

  • Moghadam A, Vattani H, Baghaei N, Keshavarz N (2009) Effect of different levels of fertilizer nano_iron chelates on growth and yield characteristics of two varieties of spinach (Spinacia oleracea L.). Res J Appl Sci 4:4813–4818

    Google Scholar 

  • Morales-Diaz BA, Ortega-ortiz H, Juarez-Maldonado A, Cadenas-Pliego G, Gonzalez-Morales S, Benavides-Mendoza A (2017) Application of nanoelements in plant nutrition and its impact in ecosystem. Adv Nat Sci Nanosc Nanotech 8:013001, 13pp

    Article  CAS  Google Scholar 

  • Navarro E, Baun A, Behra R, Hartmann NB, Filser J, Miao AJ, Quigg A, Santschi PH, Sigg L (2008) Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology 17:372–386

    Article  PubMed  CAS  Google Scholar 

  • Nel A, Xia T, Mädler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627

    Article  PubMed  CAS  Google Scholar 

  • Nel AE, Mädler L, Velegol D, Xia T, Hoek EM, Somasundaran P et al (2009) Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater 8:543–557

    Article  PubMed  CAS  Google Scholar 

  • Oberdörster G, Oberdörster E, Oberdörster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Panpatte DG, Jhala YK, Shelat HN, Vyas RV (2016) Nanoparticles-the next generation technology for sustainable agriculture. In: Singh DP, Singh HB, Prabha R (eds) Microbial inoculants in sustainable agricultural productivity volume 2: functional applications. Springer, New Delhi, pp 289–300

    Chapter  Google Scholar 

  • Park HJ, Kim SH, Kim HJ, Choi SH (2006) A new composition of nanosized silica–silver for control of various plant diseases. Plant Pathol J 22:295–302

    Article  Google Scholar 

  • Parveen A, Rao S (2015) J Clust Sci 26:693

    Article  CAS  Google Scholar 

  • Pattanayak M, Nayak PL (2012) Ecofriendly green synthesis of iron nanoparticles from various plants and spices extract. Int Plant Animal Environ Sci 3:68–78

    Google Scholar 

  • Pereira EI, Minussi FB, da Cru ZCC, Bernardi AC, Ribeiro C (2012) Ureamontmorillonite-extruded nanocomposites; anovel slow-release material. J Agric Food Chem 60:5267–5272

    Article  PubMed  CAS  Google Scholar 

  • Ponmurugan P, Manjuarunambia K, Elango V, Gnanamangai BM (2016) Antifungal activity of biosynthesized copper nanoparticles evaluated against red root-rot disease in tea plants. J Exp Nanosci 11:13

    Article  CAS  Google Scholar 

  • Prasad TNVKV, Sudhakar P, Sreenivasulu Y, Latha P, Munaswamy V, Raja Reddy K, Sreeprasad TS, Sajanlal PR, Pradeep T (2012) J Plant Nutr 35:905

    Article  CAS  Google Scholar 

  • Quereshi A, Singh DK, Dwivedi S (2018) Nanofertilizers: a novel way for enhancing nutrient use efficiency and crop productivity. Int J Curr Microbiol Appl Sci 7(2):3325–3335

    Article  CAS  Google Scholar 

  • Rico CM, Majumdar S, Duarte-Gardea M, Peralta-Videa JR, Gardea-Torresdey JL (2011) Interaction of nanoparticles with edible plants and their possible implications in the food chain. J Agric Food Chem 59:3485–3498

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Robards AW, Robb ME (1972) Uptake and binding of uranyl ions by barley roots. Science 178:980–982

    Article  PubMed  CAS  Google Scholar 

  • Roberts AG, Oparka KJ (2003) Plasmodesmata and the control of symplastic transport. Plant Cell Environ 26:103–124

    Article  Google Scholar 

  • Rui M, Ma C, Hao Y, Guo J, Rui Y, Tang X, Zhao Q, Fan X, Zhang Z, Hou T, Zhu S (2016) Iron oxide nanoparticles as a potential iron fertilizer for peanut (Arachis hypogaea). Front Plant Sci 7:815

    Article  PubMed  PubMed Central  Google Scholar 

  • Sabo-Attwood T, Unrine JM, Stone JW, Murphy CJ, Ghoshroy S, Blom D et al (2012) Uptake, distribution and toxicity of gold nanoparticles in tobacco (Nicotiana xanthi) seedlings. Nanotoxicology 6:353–360

    Article  PubMed  CAS  Google Scholar 

  • Salem NM, Albanna LS, Awwad AM, Ibrahim QM, Abdeen AO (2016) Green synthesis of nanosized sulphur and its effect on plant growth. J Agric Sci 8:1

    Google Scholar 

  • Sattelmacher B (2001) The apoplast and its significance for plant mineral nutrition. New Phytol 149:167–192

    Article  CAS  PubMed  Google Scholar 

  • Schönherr J (2002) A mechanistic analysis of penetration of glyphosate salts across astomatous cuticular membranes. Pest Manag Sci 58:343–351

    Article  PubMed  CAS  Google Scholar 

  • Schwab F, Zhai G, Kern M, Turner A, Schnoor JL, Wiesner MR (2015) Barriers, pathways and processes for uptake, translocation and accumulation of nanomaterials in plants-critical review. Nanotoxicology 10:257–278

    PubMed  Google Scholar 

  • Serag MF, Kaji N, Gaillard C, Okamoto Y, Terasaka K, Jabasini M et al (2011) Trafficking and subcellular localization of multiwalled carbon nanotubes in plant cells. ACS Nano 5:493–499

    Article  PubMed  CAS  Google Scholar 

  • Shah V, Belozerova I (2009) Influence of metal nanoparticles on the soil microbial community and germination of lettuce seeds. Water Air Soil Pollut 197:43–148

    Article  CAS  Google Scholar 

  • Sillen WMA, Thijs S, Abbamondi GR, Janssen J, Weyens N, White JC, Vangronsveld J (2015) Soil Biol. Biochemist 91:14

    CAS  Google Scholar 

  • Singh MD, Chirag G, Prakash PO, Mohan MH, Prakasha G, Vishwajith (2017) Nanofertilizers is a new to increase nutrients use efficiency in crop production. Int J Agric Sci 9(7):3831–3833

    CAS  Google Scholar 

  • Stampoulis D, Sinha SK, White JC (2009) Assay-dependent phytotoxicity of nanoparticles to plants. Environ Sci Technol 43:9473–9479

    Article  PubMed  CAS  Google Scholar 

  • Sun D, Hussain H, Yi Z, Siegele R, Cresswell T, Kong L, Cahill D (2014) Uptake and cellular distribution, in four plant species, of fluorescently labeled mesoporous silica nanoparticles. Plant Cell Rep 33:1389–1402

    Article  PubMed  CAS  Google Scholar 

  • Taiz L, Zeiger E (2010) Plant physiology, 5th edn. Sinauer Associates Inc., Sunderland, 781 pp

    Google Scholar 

  • Talaei AS (1998) Physiology of temperate zone fruit trees. Tehran University Press, Tehran, p 423

    Google Scholar 

  • Tarafdar J C, Raliya (2013) Rapid, low-cost, and ecofriendly approach for iron nanoparticle synthesis using Aspergillus oryzae TFR9. J Nanoparticles 141–274

    Google Scholar 

  • Tarafdar JC, Xiang Y, Wang WN, Dong Q, Biswas P (2012) Appl Biol Res 14:138–144

    Google Scholar 

  • Taylor AF, Rylott EL, Anderson CW, Bruce NC (2014) Investigating the toxicity, uptake, nanoparticle formation and genetic response of plants to gold. PLoS One 9:e93793

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thomas K, Sayre P (2005) Research strategies for safety evaluation of nanomaterials, Part I: evaluating the human health implications of exposure to nanoscale materials. Toxicol Sci 87:316–321

    Article  PubMed  CAS  Google Scholar 

  • Torney F, Trewyn BG, Lin VSY, Wang K (2007) Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat Nanotechnol 2:295–300

    Article  PubMed  CAS  Google Scholar 

  • Veronica N, Guru T, Thatiunta R, Reddy NS (2015) Role of nanofertilizers in agricultural farming. Int J Environ Sci Technol 1(1):1–3

    Google Scholar 

  • Von Rein I, Gessler A, Premke K, Keitel C, Ulrich A, Kayler ZE (2016) Glob Chang Biol 22:2861

    Article  Google Scholar 

  • Wang H, Kou X, Pei Z, Xiao JQ, Shan X, Xing B (2011) Physiological effects of magnetite (Fe3O4) nanoparticles on perennial ryegrass (Lolium perenne L.) and pumpkin (Cucurbita mixta) plants. Nanotoxicology 5:30–42

    Article  PubMed  CAS  Google Scholar 

  • Wanyika H, Gatebe E, Kioni P, Tang Z, Gao Y (2012) Mesoporous silica nanoparticles carrier for urea: potential applications in agrochemical delivery systems. J Nanosci Nanotechnol 12:2221–2228

    Article  PubMed  CAS  Google Scholar 

  • Weathers PJ, Zobel RW (1992) Aeroponics for the culture of organisms, tissues and cells. Biotechnol Adv 10:93–115

    Article  PubMed  CAS  Google Scholar 

  • Werlin R, Priester JH, Mielke RE, Krämer S, Jackson S, Stoimenov PK, Stucky GD, Cherr GN, Orias E, Holden PA (2011) Nat Nanotechnol 6:65

    Article  PubMed  CAS  Google Scholar 

  • Wong MH, Misra RP, Giraldo JP, Kwak SY, Son Y, Landry MP et al (2016) Lipid exchange envelope penetration (LEEP) of nanoparticles for plant engineering: a universal localization mechanism. Nano Lett 16:1161–1172

    Article  PubMed  CAS  Google Scholar 

  • Wu B, Beitz E (2007) Aquaporins with selectivity for unconventional permeants. Cell Mol Life Sci 64:2413–2421

    Article  PubMed  CAS  Google Scholar 

  • Xia T, Li N, Nel AE (2009) Potential health impact of nanoparticles. Annu Rev Public Health 30:137–150

    Article  PubMed  Google Scholar 

  • Yang L, Watts DJ (2005) Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles. Toxicol Lett 158:122–132

    Article  PubMed  CAS  Google Scholar 

  • Yugandhar P, Savithramma N (2013) Green synthesis of calcium carbonate nanoparticles and their effects on seed germination and seedling growth of Vigna mungo (L.)Hepper. Int J Adv Res 1:89–103

    CAS  Google Scholar 

  • Zhai G, Walters KS, Peate DW, Alvarez PJ, Schnoor JL (2014) Transport of gold nanoparticles through plasmodesmata and precipitation of gold ions in woody poplar. Environ Sci Technol Lett 1:146–151

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhu H, Han J, Xiao JQ, Jin Y (2008) Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. J Environ Monit 10:713–717

    Article  PubMed  CAS  Google Scholar 

  • Zhu X, Wang J, Zhang X, Chang Y, Chen Y (2010) Trophic transfer of TiO(2) nanoparticles from Daphnia to zebrafish in a simplified freshwater food chain. Chemosphere 79:928

    Article  PubMed  CAS  Google Scholar 

  • Zuverza-Mena N, Medina-Velo I, Barrios AC, Tan W, Peralta-Videa JR, Gardea-Torresdey JL (2015) Copper nanoparticles/compounds impact agronomic and physiological parameters in cilantro (Coriandrum sativum). Environ Sci Process Impacts 17:1783

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pitambara, Archana, Shukla, Y.M. (2019). Nanofertilizers: A Recent Approach in Crop Production. In: Panpatte, D., Jhala, Y. (eds) Nanotechnology for Agriculture: Crop Production & Protection. Springer, Singapore. https://doi.org/10.1007/978-981-32-9374-8_2

Download citation

Publish with us

Policies and ethics