Skip to main content

Nanofertilizers: Smart Delivery of Plant Nutrients

  • Chapter
  • First Online:
Nanotechnology for Agriculture: Crop Production & Protection

Abstract

With the growing limitation in arable land and water resources, the development of agriculture field is only possible by enhancing resources use efficiency with the minimum damage to environment through effective use of new technologies such as nanotechnology which has the potential to revolutionize agricultural system. Nutrient deficiency in agricultural soils has resulted in significant decrease in crop productivity and great economic losses in agriculture. Nanomaterials with large surface area could solve this issue due to their nanosize. Studies show that the use of nanofertilizers causes an increase in nutrient use efficiency, reduces the frequency of the application, minimizes the potential negative effects associated with overdosage and reduces soil toxicity. Hence, nanofertilizers have a high potential for achieving sustainable agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alloway BJ (2008) Micronutrients and crop production: an introduction. In: Alloway BJ (ed) Micronutrient deficiency in global crop production. Springer, Dordrecht, pp 1–39

    Chapter  Google Scholar 

  • Baniswal AK, Rayalu SS, Labhasetwar NK, Devotta S (2006) Surfactant-modified zeolite as a slow release fertilizer for phosphorous. J Food Chem 54:4773–4779

    Article  CAS  Google Scholar 

  • Barber SA (1995) Soil nutrients bioavailability: a mechanistic approach, 2nd edn. Wiley, New York, p 384

    Google Scholar 

  • Boehm AL, Maartinon I, Zerrouk R, Rump E, Fessi H (2003) Nano precipitation technique for the encapsulation of agrochemical active ingredients. J Microencapsul 20:433–441

    Article  CAS  PubMed  Google Scholar 

  • Bouwmeester H, Deekkers S, Noordam MY, Hagens WI, Bulder AS, ten Voorde d HC, SECGS, Wijnhoven WP, HJP M, AJAM S (2009) Review of health safety aspects of nanotechnologies in food production. Regul Toxicol Pharmacol 53:52–62

    Article  CAS  PubMed  Google Scholar 

  • Brady NR, Weil RR (1999) The nature and properties of soils. Prentice Hall, Upper Saddle River, NJ, pp 415–473

    Google Scholar 

  • Chinnamuthu CR, Boopathi PM (2009) Nanotechnology and agroecosystem. Madras Agric J 96:17–31

    Google Scholar 

  • Comberford NB (2005) Soil factors affecting nutrient bioavailability ecological studies. In: Bassiri Rad H (ed) Nutrient acquisition by plants an ecological perspective. Springer, Berlin, pp 1–4

    Google Scholar 

  • Corradini E, Moura MR, Mattoso LHC (2010) A preliminary study of the incorporation of NPK fertilizer into chitosan nanoparticles express. Polymer Lett 4:509–515

    Article  CAS  Google Scholar 

  • Cui HX, Sun CJ, Liu Q, Jiang J and Gu W (2010) Application of nanotechnology in agrochemical formulation, perspectives, challenges and strategies. In: International conference on Nanoagri, Sao Pedro, Brazil, June 20–25

    Google Scholar 

  • DeRosa MR, Montreal C, Schnitzer M, Walsh R, Sultan Y (2010) Nanotechnology in fertilizers. Nat Nanotechnol J 5:91–96

    Article  CAS  Google Scholar 

  • Heffer P and Prud’homme M (2012) Fertilizer outlook 2012–2016. Paper presented at the 80th IFA annual conference, 21–23 May, Doha (Qatar)

    Google Scholar 

  • Herrero-Vanrell R, Rincon AC, Alonso M, Reboto V, Molina-Martinez IT, Rodriguez-Cabello JC (2005) Self-assembled particles of an elastin-like polymer as vehicles for controlled drug release. J Control Release 102:113–122

    Article  PubMed  CAS  Google Scholar 

  • Ihsan M, Mahmood A, Mian MA, Cheema NM (2007) Effect of different methods of fertilizer application to wheat after germination under rainfed conditions. J Agric Res 45:277–281

    Google Scholar 

  • Jinghua G (2004) Synchrotron radiation, soft X-ray spectroscopy and nano-materials. J Nanotechnol 1:193–225

    Article  Google Scholar 

  • Kaushik S and Djiwanti SR (2017) Nanotechnology for enhancing crop productivity. In: Prasad R, Kumar M, Kumar V (eds) Nanotechnology: an agricultural paradigm. Springer, Singapore, pp 249–262

    Chapter  Google Scholar 

  • Kottegoda N, Munaweera I, Madusanka N, Karunaratne V (2011) A green slow-release fertilizer composition based on urea-modified hydroxyapatite nanoparticles encapsulated wood. Curr Sci 101:73–78

    CAS  Google Scholar 

  • Lai F, Wissing SA, Muller RH, Fadda AM (2006) Artemisia arborescens L. essential oil- loaded solid lipid nanoparticles for potential agricultural application: preparation and characterization. AAPS Pharm Sci Tech 7:1–9

    Article  Google Scholar 

  • Liu R and Lal R (2014) Synthetic apatite nanoparticles a phosphorus fertilizers for soybean (Glycine max). Sci Rep 4:5686–5691

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Manjunatha SB, Biradar DP, Aladaktti YR (2016) Nanotechnology and its application in agriculture: a review. J Farm Sci 29:1–13

    Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic, New York, p 889

    Google Scholar 

  • Marschner H and Romheld V (1996) Root induced changes in the availability of micronutrients in the rhizosphere. Waisel Y, Eshel A Kafuofik K Plant roots: the hidden half, 2, Dekkar, New York, 551–579

    Google Scholar 

  • Mathews GA (2008) Developments in application technology. Environmentalist 28:19–24

    Article  Google Scholar 

  • Mengel K, Kirby EA (2001) Principles of plant nutrition, 5th edn. Kluwer Academic Publishers, Dordrecht, p 849

    Book  Google Scholar 

  • Milani N, McLaughlin MJ, Stacey SP, Kirkby JK, Hettiarachchi GM, Beak DG, Cornelis G (2012) Dissolution kinetics of macronutrient fertilizers coated with manufactured zinc oxide nanoparticles. J Agri Food Chem 60:3991–3998

    Article  CAS  Google Scholar 

  • Montreal C, DeRosa M, Mallubhotla S, Bindraban P, Dimkpa C (2016) Nanotechnology for increasing the crop use efficiency of fertilizer-micronutrients. Biol Fertil Soils 52:423–437

    Article  CAS  Google Scholar 

  • Nair R, Varghesc HS, Nair BG, Maekawa T, Yoshida Y, Kumar DS (2010) Nanoparticulate material delivery to plants. Plant Sci 179:154–163

    Article  CAS  Google Scholar 

  • Nel A, Xia T, Madler I, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627

    Article  PubMed  CAS  Google Scholar 

  • Oberdorster G, Oberdorster E, Oberdorster JC (2005) Nanotoxicity: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Panpatte DG, Jhala YK, Shelat HN, Vyas RV (2016) Nanoparticles – the next generation technology for sustainable agriculture. In: Singh DP, Singh HB, Prabha R (eds) Microbial inoculants in sustainable agricultural productivity volume 2: functional applications. Springer, New Delhi, pp 289–300

    Chapter  Google Scholar 

  • Peteu SF, Oancea F, Sicuia OA, Constantinescu F, Dinu S (2010) Responsive polymers for crop protection. Polymers 2:229–251

    Article  CAS  Google Scholar 

  • Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. African J Biotech 13:705–713

    Article  CAS  Google Scholar 

  • Santoso D, Lefroy RDB, Blair GJ (1995) Sulfur and phosphorous dynamics in an acid soil/crop system. Aust J Soi Res 33:113–124

    Article  CAS  Google Scholar 

  • Sasson Y, Levy-Ruso G, Toledano O, Ishaaya I (2007) Nanosuspension: emerging novel agrochemical formulations. In: Isaaya I, Nauen R, Horowitz AR (eds) Insecticides design using advanced technologies. Springer, Dordrecht, pp 1–32

    Google Scholar 

  • Sen J, Prakash P, De N (2015) Nano-clay composite and phyto-nanotechnology: a new horizon to food security issue in Indian agriculture. J Global Biosci 4:2320–2355

    Google Scholar 

  • Subramanian KS and Sharmil Rahale C (2009) Nanofertilizer formulations for balanced fertilization of crops. Paper presented at the Platinum Jubilee Celebrations of ISSS, New Delhi, 21–25, December, 2009

    Google Scholar 

  • Tarafdar JC, Agarwal A, Raliya R, Kumar P, Burman U, Kaul RK (2012a) ZnO nanoparticles induced synthesis of polysaccharides and phosphatase by Aspergillus fungi. Adv Sci Eng Med 4:1–5

    Article  CAS  Google Scholar 

  • Tarafdar JC, Raliya R, Rathore I (2012b) Microbial synthesis of phosphorous nanoparticles from tri-calcium phosphate using Aspergillus tubigenesis TFR-5. J Bionanosci 6:84–89

    Article  CAS  Google Scholar 

  • Torney F, Trewyn BG, Lin VS, Wang K (2007) Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat Nanotechnol 2:295–300

    Article  CAS  PubMed  Google Scholar 

  • Tsuji K (2001) Microencapsulation on of pesticides and their improved handling safety. J Microencapsul 18:137–147

    Article  PubMed  CAS  Google Scholar 

  • Vauthier C, Dubernet C, Chauvierre C, Brigger I, Couveur P (2003) Drugs delivery to resistant tumors: the potential of poly (alkyl cyanoacrylate) nanoparticles. J Control Release 93:151–160

    Article  PubMed  CAS  Google Scholar 

  • Wanyika H, Gate E, Kioni P, Tang Z, Gao Y (2012) Mesoporous silica nanoparticles carrier for urea: potential applications in agrochemical delivery systems. J Nanosci Nanotechnol 12:2221–2228

    Article  CAS  PubMed  Google Scholar 

  • Wilson MA, Tran NH, Milev AS, Kannagara GSK, Volk H, Lu GHM (2008) Nanomaterials in soils. Geoderma 146:291–301

    Article  CAS  Google Scholar 

  • Win TT, Barone GD, Secudo F, Fu P (2018) Algal biofertilizer and plant growth stimulants for sustainable agriculture. Industrial Biotech 14:203–211

    Article  Google Scholar 

  • Wu SC, Cao ZH, Li ZG, Cheung KC, Wong MH (2005) Effects of biofertilizer containing N-fixer, P and K solubilizer and Am fungi on maize growth: a greenhouse trial. Geoderma 125:155–166

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kaushik, S., Djiwanti, S.R. (2019). Nanofertilizers: Smart Delivery of Plant Nutrients. In: Panpatte, D., Jhala, Y. (eds) Nanotechnology for Agriculture: Crop Production & Protection. Springer, Singapore. https://doi.org/10.1007/978-981-32-9374-8_3

Download citation

Publish with us

Policies and ethics