Skip to main content

Nanoparticles for the Improved Crop Production

  • Chapter
  • First Online:
Nanotechnology for Agriculture: Crop Production & Protection

Abstract

Currently, the agricultural sector is facing a large number of challenges such as (a) changing climate because of the greenhouse effect and global warming; (b) urbanization due to changes in the life pattern; (c) injudicious use of nonrenewable resources such as petroleum, natural gas, high-quality rock phosphate, etc.; and (d) environmental issues such as runoff of nutrients and eutrophication related to the application of more chemical fertilizers than that required. In these days, the productivity and quality of agricultural products can be improved by using the modern technology that can meet the growing demand for food of the world population and which is environment friendly. In the field of agriculture, the use of nanomaterials improves the efficiency and sustainability of agricultural practices by applying less input and generating less waste as compared to the conventional products and approaches. The success of the use of nanoparticles for disease suppression, nutritional improvement, and yield increase may depend on the particle-size difference between the “bulk” and “nano” types of materials. In this chapter, we discuss the effects of nanosized micronutrient fertilizers on improving crop yields of plants toward a sustainable environment. In this case, the nanostructured microelements of plants, such as Cu, Fe, Ni, Mn, Si, Co, Se, and Zn, play critical roles in plant disease resistance by enzyme activation and in improving the efficiency of energy production by photosynthetic machinery for defensive mechanisms. There are some nanomaterials that are not included in the list of macro- or micronutrient of plants; however, these nanomaterials have shown an improvement in various growth processes of plants, and therefore these nanomaterials have been discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abd-Elrahman SH, Mostafa M (2015) Applications of nanotechnology in agriculture: an overview. Egypt J Soil Sci 55(2):197–214

    Article  Google Scholar 

  • Adhikari T, Kundu S, Biswas AK, Tarafdar JC et al (2012) Effect of copper oxide nano particle on seed germination of selected crops. J Agric Sci Technol 2(6A):815

    CAS  Google Scholar 

  • Angrasan J, Subbaiya R (2014) Biosynthesis of copper nanoparticles by Vitis vinifera leaf aqueous extract and its antibacterial activity. Int J Curr Microbiol Appl Sci 3(9):768–774

    Google Scholar 

  • Arora S, Sharma P, Kumar S, Nayan R, Khanna P, Zaidi M (2012) Gold-nanoparticle induced enhancement in growth and seed yield of Brassica juncea. Plant Growth Regul 66(3):303–310

    Article  CAS  Google Scholar 

  • Ball P (2002) Natural strategies for the molecular engineer. Nanotechnology 13(5):R15

    Article  CAS  Google Scholar 

  • Bao V-VQ, Vuong LD, Luan LV (2018) Biomimetic synthesis of silver nanoparticles for preparing preservative solutions for mandarins (Citrus Deliciosa Tenore). Nano LIFE 8(01):1850003

    Article  CAS  Google Scholar 

  • Berahmand AA, Panahi AG, Sahabi H, Feizi H, Moghaddam PR, Shahtahmassebi N, Fotovat A, Karimpour H, Gallehgir O (2012) Effects silver nanoparticles and magnetic field on growth of fodder maize (Zea mays L.). Biol Trace Elem Res 149(3):419–424

    Article  PubMed  CAS  Google Scholar 

  • Betancourt-Galindo R, Reyes-Rodriguez PY, Puente-Urbina BA, Avila-Orta CA, Rodríguez-Fernández OS, Cadenas-Pliego G, Lira-Saldivar RH, García-Cerda LA (2014) Synthesis of copper nanoparticles by thermal decomposition and their antimicrobial properties. J Nanomater 2014:1–5

    Article  CAS  Google Scholar 

  • Chitte HK, Bhat NV, Karmakar NS, Kothari DC, Shinde GN (2012) Synthesis and characterization of polymeric composites embedded with silver nanoparticles. World J Nano Sci Eng 2(1):19–24

    Article  CAS  Google Scholar 

  • Choi HC, Jung YM, Kim SB (2005) Size effects in the Raman spectra of TiO2 nanoparticles. Vib Spectrosc 37(1):33–38

    Article  CAS  Google Scholar 

  • Chowdhury J, Ghosh M (2004) Concentration-dependent surface-enhanced Raman scattering of 2-benzoylpyridine adsorbed on colloidal silver particles. J Colloid Interface Sci 277(1):121–127

    Article  PubMed  CAS  Google Scholar 

  • Deepa M, Sudhakar P, Nagamadhuri KV, Reddy KB, Krishna TG, Prasad TNVKV (2015) First evidence on phloem transport of nanoscale calcium oxide in groundnut using solution culture technique. Appl Nanosci 5(5):545–551

    Article  CAS  Google Scholar 

  • Delfani M, Baradarn Firouzabadi M, Farrokhi N, Makarian H (2014) Some physiological responses of black-eyed pea to iron and magnesium nanofertilizers. Commun Soil Sci Plant Anal 45(4):530–540

    Article  CAS  Google Scholar 

  • Dhoke SK, Mahajan P, Kamble R, Khanna AJN (2013) Effect of nanoparticles suspension on the growth of mung (Vigna radiata) seedlings by foliar spray method. Nanotechnol Dev 3(1):1

    Article  CAS  Google Scholar 

  • Dinesh Karthik A, Geetha K (2014) Synthesis and characterization of copper and copper oxide nanoparticles by thermal decomposition method. Int J Nano Dimens 5:321–327

    Google Scholar 

  • Du W, Sun Y, Ji R, Zhu J, Wu J, Guo H (2011) TiO 2 and ZnO nanoparticles negatively affect wheat growth and soil enzyme activities in agricultural soil. J Environ Monit 13(4):822–828

    Article  PubMed  CAS  Google Scholar 

  • Du W, Tan W, Peralta-Videa JR, Gardea-Torresdey JL, Ji R, Yin Y, Guo H (2017) Interaction of metal oxide nanoparticles with higher terrestrial plants: physiological and biochemical aspects. Plant Physiol Biochem 110:210–225

    Article  PubMed  CAS  Google Scholar 

  • Duong NT, Vuong LD, Son NM, Van Tuyen H, Van Chuong TJN (2017) The synthesis of TiO2 nanoparticles using sulfuric acid method with the aid of ultrasound. Energy 6(2):82–88

    Google Scholar 

  • Durán N, Marcato PD, Alves OL, De Souza GI, Esposito E (2005) Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J Nanobiotechnol 3(1):8

    Article  Google Scholar 

  • Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238(5358):37

    Article  PubMed  CAS  Google Scholar 

  • Ghafariyan MH, Malakouti MJ, Dadpour MR, Stroeve P, Mahmoudi M (2013) Effects of magnetite nanoparticles on soybean chlorophyll. Environ Sci Technol 47(18):10645–10652

    PubMed  CAS  Google Scholar 

  • Govorov AO, Carmeli IJN (2007) Hybrid structures composed of photosynthetic system and metal nanoparticles: plasmon enhancement effect. Nano Lett 7(3):620–625

    Article  PubMed  CAS  Google Scholar 

  • Hassanjani-Roshan A, Kazemzadeh SM, Vaezi MR, Shokuhfar A (2011) Effect of sonication power on the sonochemical synthesis of titania nanoparticles. J Ceram Process Res 12(3):299–303

    Google Scholar 

  • Hossain Z, Mustafa G, Komatsu S (2015) Plant responses to nanoparticle stress. Int J Mol Sci 16(11):26644–26653

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hou X, Fang Y (2007) Investigation of p-hydroxybenzoic acid from a new surface-enhanced Raman scattering system. J Colloid Interface Sci 316(1):19–24

    Article  PubMed  CAS  Google Scholar 

  • István P, Fehér M, Bokori J, Nagy B (1991) Physiologically beneficial effects of titanium. Water Air Soil Pollut 57(1):675–680

    Article  Google Scholar 

  • Janmohammadi M, Amanzadeh T, Sabaghnia N, Ion V (2016) Effect of nano-silicon foliar application on safflower growth under organic and inorganic fertilizer regimes. Bot Lith 22(1):53–64

    Article  Google Scholar 

  • Jittiarporn P, Sikong L, Kooptarnond K, WJCI T (2014) Effects of precipitation temperature on the photochromic properties of h-MoO3. Ceramics Int 40(8):13487–13495

    Article  CAS  Google Scholar 

  • Judy JD, Unrine JM, Rao W, Wirick S, Bertsch PM (2012) Bioavailability of gold nanomaterials to plants: importance of particle size and surface coating. Environ Sci Technol 46(15):8467–8474

    Article  PubMed  CAS  Google Scholar 

  • Ko T-F, Weng Y-M, Lin S-B, Chiou Y-Y (2003) Antimutagenicity of supercritical CO2 extracts of Terminalia catappa leaves and cytotoxicity of the extracts to human hepatoma cells. J Agric Food Chem 51(12):3564–3567

    Article  PubMed  CAS  Google Scholar 

  • Krishnaraj C, Jagan E, Rajasekar S, Selvakumar P, Kalaichelvan P, Mohan N (2010) Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antibacterial activity against water borne pathogens. Colloids Surf B: Biointerfaces 76(1):50–56

    Article  PubMed  CAS  Google Scholar 

  • Latef AHA, Alhmad MFA, Abdelfattah KE (2017) The possible roles of priming with zno nanoparticles in mitigation of salinity stress in lupine (Lupinus termis) plants. J Plant Growth Regul 36(1):60–70

    Article  CAS  Google Scholar 

  • Liu R, Lal R (2014) Synthetic apatite nanoparticles as a phosphorus fertilizer for soybean (Glycine max). Sci Rep 4:5686

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lu C, Zhang C, Wen J, Wu G, Tao MJSS (2002) Research of the effect of nanometer materials on germination and growth enhancement of Glycine max and its mechanism. Soyabean Sci 21(3):168–171

    CAS  Google Scholar 

  • Ma P, Fu Z, Su Y, Zhang J, Wang W, Wang H, Wang Y, Zhang Q (2009) Modification of physicochemical and medicinal characterization of Liuwei Dihuang particles by ultrafine grinding. Powder Technol 191(1–2):194–199

    Article  CAS  Google Scholar 

  • Mahajan P, Dhoke S, Khanna A (2011) Effect of nano-ZnO particle suspension on growth of mung (Vigna radiata) and gram (Cicer arietinum) seedlings using plant agar method. J Nanotechnol 2011:1–7

    Article  CAS  Google Scholar 

  • Mahshid S, Askari M, Ghamsari MS (2007) Synthesis of TiO2 nanoparticles by hydrolysis and peptization of titanium isopropoxide solution. J Mater Process Technol 189(1–3):296–300

    Article  CAS  Google Scholar 

  • Meruvu H, Vangalapati M, Chippada SC, Bammidi SR (2011) Synthesis and characterization of zinc oxide nanoparticles and its antimicrobial activity against Bacillus subtilis and Escherichia coli. Rasayan Chem 4(1):217–222

    CAS  Google Scholar 

  • Mohammadi M, Majnoun Hoseini N, Chaichi MR, Alipour H, Dashtaki M, Safikhani S (2018) Influence of nano-iron oxide and zinc sulfate on physiological characteristics of peppermint. Commun Soil Sci Plant Anal 49(18):2315–2326

    Article  CAS  Google Scholar 

  • Morris MC, McMurdie HF, Evans EH, Paretzkin B, Harry S, Parker & N. C. Panagiotopoulos (1981). Library of Congress Catalog Card Number: 53-61386. In National Bureau of Standards Monograph 25, 110 pages

    Google Scholar 

  • Mukherjee P, Roy M, Mandal B, Dey G, Mukherjee P, Ghatak J, Tyagi A, Kale S (2008) Green synthesis of highly stabilized nanocrystalline silver particles by a non-pathogenic and agriculturally important fungus T. asperellum. Nanotechnology 19(7):075103

    Article  PubMed  CAS  Google Scholar 

  • Nel A, Xia T, Mädler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311(5761):622–627

    Article  PubMed  CAS  Google Scholar 

  • Ngo QB, Dao TH, Nguyen HC, Tran XT, Van Nguyen T, Khuu TD et al (2014) Effects of nanocrystalline powders (Fe, Co and Cu) on the germination, growth, crop yield and product quality of soybean (Vietnamese species DT-51). Adv Nat Sci Nanosci Nanotechnol 5(1):015016

    Article  CAS  Google Scholar 

  • Nunes D, Pimentel A, Santos L, Barquinha P, Fortunato E, Martins R (2017) Photocatalytic TiO2 nanorod spheres and arrays compatible with flexible applications. Catalysts 7(2):60

    Article  CAS  Google Scholar 

  • Pais I (1983) The biological importance of titanium. J Plant Nutr 6(1):3–131

    Article  CAS  Google Scholar 

  • Pais I (1992) Criteria of essentiality, beneficiality and toxicity of chemical elements. Acta Aliment 21(2):145–152

    CAS  Google Scholar 

  • Panpatte DG, Jhala YK, Shelat HN, Vyas RV (2016) Nanoparticles – the next generation technology for sustainable agriculture. In: Singh DP, Singh HB, Prabha R (eds) Microbial inoculants in sustainable agricultural productivity volume 2: functional applications. Springer, New Delhi, pp 289–300

    Chapter  Google Scholar 

  • Patel K (2016) Effect of ZnO nanoparticles on germination, growth and yield of groundnut (Arachis hypogaea L.). AAU, Anand

    Google Scholar 

  • Pawar S, Pal S (2002) Antimicrobial activity of extracts of Terminalia catappa root. Indian J Med Sci 56(6):276–278

    PubMed  CAS  Google Scholar 

  • Pellet H, Fribourg C (1905) Titanium. Ann Sci Agron Ser 2:19

    Google Scholar 

  • Prasad T, Sudhakar P, Sreenivasulu Y, Latha P, Munaswamy V, Reddy KR, Sreeprasad T, Sajanlal P, Pradeep T (2012) Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. J Plant Nutr 35(6):905–927

    Article  CAS  Google Scholar 

  • Quang NDV, Vuong LD, Alexandrov OV, Bulgakov BI (2019) Synthesis and characterization of silica nanoparticles from Vietnam. Nanomater Energy 8(1):73–77

    Article  Google Scholar 

  • Radkowski A, Radkowska I, Lemek TJEC et al (2015) Effects of foliar application of titanium on seed yield in timothy (Phleum pratense L.). Ecol Chem Eng 22(4):691–701

    CAS  Google Scholar 

  • Rahdar A, Aliahmad M, Azizi Y, Keikha N, Moudi M, Keshavarzi F (2017) CuO-NiO Nano composites: synthesis, characterization, and cytotoxicity evaluation. J Nanomed Res J 2(2):78–86

    CAS  Google Scholar 

  • Rajput V, Minkina T, Suskova S, Mandzhieva S, Tsitsuashvili V, Chapligin V, Fedorenko A (2018) Effects of copper nanoparticles (CuO NPs) on crop plants: a mini review. BioNano Sci 8(1):36–42

    Article  Google Scholar 

  • Raju D, Paneliya N, Mehta UJ (2014) Extracellular synthesis of silver nanoparticles using living peanut seedling. Appl Nanosci 4(7):875–879

    Article  CAS  Google Scholar 

  • Raliya R, Tarafdar JC (2013) ZnO nanoparticle biosynthesis and its effect on phosphorous-mobilizing enzyme secretion and gum contents in Clusterbean (Cyamopsis tetragonoloba L.). Agric Res 2(1):48–57

    Article  CAS  Google Scholar 

  • Raliya R, Franke C, Chavalmane S, Nair R, Reed N, Biswas P (2016) Quantitative understanding of nanoparticle uptake in watermelon plants. Front Plant Sci 7:1288

    Article  PubMed  PubMed Central  Google Scholar 

  • Razzaq A, Ammara R, Jhanzab H, Mahmood T, Hafeez A, Hussain SJJ (2015) A novel nanomaterial to enhance growth and yield of wheat. J Nanosci Technol 2:55–58

    Google Scholar 

  • Rico CM, Majumdar S, Duarte-Gardea M, Peralta-Videa JR, Gardea-Torresdey JL (2011) Interaction of nanoparticles with edible plants and their possible implications in the food chain. J Agric Food Chem 59(8):3485–3498

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Saeideh N, Rashid J (2014) Effect of silver nanoparticles and Pb (NO 3) 2 on the yield and chemical composition of mung bean (Vigna radiata). J Stress Physiol Biochem 10(1):316–325

    Google Scholar 

  • Salama HM (2012) Effects of silver nanoparticles in some crop plants, common bean (Phaseolus vulgaris L.) and corn (Zea mays L.). Int Res J Biotechnol 3(10):190–197

    Google Scholar 

  • Salavati-Niasari M, Davar F (2009) Synthesis of copper and copper (I) oxide nanoparticles by thermal decomposition of a new precursor. Mater Lett 63(3–4):441–443

    Article  CAS  Google Scholar 

  • Sekhon BS (2014) Nanotechnology in agri-food production: an overview. Nanotechnol Sci Appl 7:31

    Article  PubMed  PubMed Central  Google Scholar 

  • Servin A, Elmer W, Mukherjee A, De la Torre-Roche R, Hamdi H, White JC, Bindraban P, Dimkpa C (2015) A review of the use of engineered nanomaterials to suppress plant disease and enhance crop yield. J Nanopart Res 17(2):92

    Article  CAS  Google Scholar 

  • Shaw AK, Ghosh S, Kalaji HM, Bosa K, Brestic M, Zivcak M, Hossain Z (2014) Nano-CuO stress induced modulation of antioxidative defense and photosynthetic performance of Syrian barley (Hordeum vulgare L.). Environ Experimen Bot 102:37–47

    Article  CAS  Google Scholar 

  • Sheykhbaglou R, Sedghi M, Shishevan MT, Sharifi RS (2010) Effects of nano-iron oxide particles on agronomic traits of soybean. Notulae Scientia Biologicae 2(2):112–113

    Article  Google Scholar 

  • Shukla A, Rasik A, Jain G, Shankar R, Kulshrestha D, Dhawan B (1999) In vitro and in vivo wound healing activity of asiaticoside isolated from Centella asiatica. J Ethnopharmacol 65(1):1–11

    Article  PubMed  CAS  Google Scholar 

  • Siddiqui MH, Al-Whaibi MH (2014) Role of nano-SiO2 in germination of tomato (Lycopersicum esculentum seeds mill.). Saudi J Biol Sci 21(1):13–17

    Article  PubMed  CAS  Google Scholar 

  • Singh A, Singh N, Hussain I, Singh H, Singh SJIJPSI (2015) Plant-nanoparticle interaction: an approach to improve agricultural practices and plant productivity. Int J Pharm Sci Invent 4(8):25–40

    CAS  Google Scholar 

  • Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for gram-negative bacteria. J Colloid Interface Sci 275(1):177–182

    Article  PubMed  CAS  Google Scholar 

  • Su Y-I, Fu Z-Y, Quan C-J, Wang W-M (2006) Fabrication of nano Rhizoma Chuanxiong particles and determination of tetramethylpyrazine. Trans Nonferrous Metals Soc China 16:s393–s397

    Article  Google Scholar 

  • Suárez-Cerda J, Espinoza-Gómez H, Alonso-Núñez G, Rivero I-A, Gochi-Ponce Y, Flores-López LZ (2017) A green synthesis of copper nanoparticles using native cyclodextrins as stabilizing agents. J Saudi Chem Soc 21(3):341–348

    Article  CAS  Google Scholar 

  • Subbaiya R, Selvam MM (2015) Green synthesis of copper nanoparticles from Hibicus Rosasinensis and their antimicrobial, antioxidant activities. Res J Pharm Biol Chem Sci 6(2):1183–1190

    CAS  Google Scholar 

  • Tarafdar J, Raliya R, Mahawar H, Rathore IJA (2014) Development of zinc nanofertilizer to enhance crop production in pearl millet (Pennisetum americanum). Agric Res 3(3):257–262

    Article  CAS  Google Scholar 

  • Taylor R, Walton DR (1993) The chemistry of fullerenes. Nature 363(6431):685

    Article  CAS  Google Scholar 

  • Taylor AF, Rylott EL, Anderson CW, Bruce NC (2014) Investigating the toxicity, uptake, nanoparticle formation and genetic response of plants to gold. PLoS One 9(4):e93793

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tiwari PK (2017) Effect of zinc oxide nanoparticles on germination, growth and yield of maize (Zea mays L.). AAU, Anand

    Google Scholar 

  • Velmurugan P, Lee S-M, Iydroose M, Lee K-J, Oh B-T (2013) Pine cone-mediated green synthesis of silver nanoparticles and their antibacterial activity against agricultural pathogens. Appl Microbiol Biotechnol 97(1):361–368

    Article  PubMed  CAS  Google Scholar 

  • Vuong LD, Truong-Tho N (2017) Effect of ZnO Nanoparticles on the sintering behavior and physical properties of Bi0.5(Na0.8K0.2)0.5TiO3 Lead-Free Ceramics. J Electron Mater 46(11):6395–6402

    Article  CAS  Google Scholar 

  • Vuong LD, Luan NDT, Ngoc DDH, Anh PT, Bao V-VQ (2017) Green synthesis of silver nanoparticles from fresh leaf extract of Centella asiatica and their applications. Int J Nanosci 16(01):1650018

    Article  CAS  Google Scholar 

  • Wang M, Thanou M (2010) Targeting nanoparticles to cancer. Pharmacol Res 62(2):90–99

    Article  PubMed  CAS  Google Scholar 

  • Wang Q, Ma X, Zhang W, Pei H, Chen Y (2012) The impact of cerium oxide nanoparticles on tomato (Solanum lycopersicum L.) and its implications for food safety. Metallomics 4(10):1105–1112

    Article  PubMed  CAS  Google Scholar 

  • Yamanaka M, Hara K, Kudo J (2005) Bactericidal actions of a silver ion solution on Escherichia coli, studied by energy-filtering transmission electron microscopy and proteomic analysis. Appl Environ Microbiol 71(11):7589–7593

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yoon K-Y, Byeon JH, Park J-H, Hwang J (2007) Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles. Sci Total Environ 373(2–3):572–575

    Article  PubMed  CAS  Google Scholar 

  • Zuo Y, Zhang F (2011) Soil and crop management strategies to prevent iron deficiency in crops. Plant Soil 339(1–2):83–95

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vuong, L.D. (2019). Nanoparticles for the Improved Crop Production. In: Panpatte, D., Jhala, Y. (eds) Nanotechnology for Agriculture: Crop Production & Protection. Springer, Singapore. https://doi.org/10.1007/978-981-32-9374-8_5

Download citation

Publish with us

Policies and ethics