Skip to main content

Injuries of the Thigh, Knee, and Ankle as Reconstructive Factors in Road Traffic Accidents

  • Chapter
Forensic Medicine of the Lower Extremity

Part of the book series: Forensic Science and Medicine ((FSM))

Abstract

Currently, traffic accidents comprise the most common cause of traumatic deaths throughout the world and the most common cause of death and disability in the 15- to 44-yr-old age group in developed countries. In 2002, about 1.2 million people were killed in road traffic accidents, and by the year 2020, according to WHO data (1), this figure is projected to almost double, making traffic accidents the third (from the ninth) leading cause of death and disability worldwide (following ischemic heart disease and mental depression). Despite a large number of cars and accidents in high-income countries, however, the percentage of fatalities is low (Table 1). Agood marker of the motorization progress in a particular country is the percentage of pedestrians among all victims of traffic accidents, e.g., high in the low-income countries and eastern Europe (due primarily to a lack of road infrastructure and the absence of a separation between pedestrian and car streams).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Peden M, Scurfield R, Sleet D, Mohan D, Hyder AA, Jarawan E, Mathers C, eds. World report on road traffic injury prevention. World Health Organisation, Geneva 2004. Available at: http://www.who.int/world-health-day/2004/informaterials/world_report/en/(accessed October 2004).

    Google Scholar 

  2. Statistics of road traffic accidents in Europe and North America 2004. Geneva: United Nations Economic Commission for Europe; 2002. Available at: http://www.unece.org/trans/main/wp6/transstatpub.html/(accessed October 2004).

  3. DĂŒrwald W. Gerichtsmedizinische Untersuchungen bei VerkehrsunfĂ€llen. Thieme: VEB Georg Leipzig; 1966.

    Google Scholar 

  4. Eubanks JJ, Hill PF. Pedestrian accident reconstruction and litigation, Lawyers & Judges Publishing Co.; 1999.

    Google Scholar 

  5. Mason JK, Purdue BN, eds. The pathology of trauma. 3rd ed. London: Arnold Publishing; 2000.

    Google Scholar 

  6. Siegel JA, Saukko PJ, Knupfer GC, eds. Encyclopedia of forensic sciences. Academic Press, 2000.

    Google Scholar 

  7. TeresiƄski G, Madro R. Evidential value of injuries useful for reconstruction of the pedestrian-vehicle location at the moment of collision. Forensic Sci Int 128:127–135 (2002).

    Article  PubMed  Google Scholar 

  8. Karger B, Teige K, BĂŒhren W, DuChesne A. Relationship between impact velocity and injuries in fatal pedestrian-car collisions, Int J Legal Med 113:84–88 (2000).

    Article  PubMed  CAS  Google Scholar 

  9. Spitz WU, Fisher RS, eds. Medicolegal investigation of death. 3rd ed. Springfield: Charles C. Thomas; 1993.

    Google Scholar 

  10. Metter D. Spurenbefunde bei FuÎČgĂ€nger-Fahrzeugkollisionen und ihre Bedeutung fĂŒr die Unfallrekonstruktion, Z Rechtsmedizin 91:21–32 (1983).

    Article  CAS  Google Scholar 

  11. Metter D. Das Decollement als Anfahrverletzung, Z. Rechtsmedizin 85:211–219 (1980).

    Article  CAS  Google Scholar 

  12. New Car Assessment Programme (NCAP) crash tests. Available at: http://www.euroncap.com.

  13. Messerer OM. Über ElastizitĂ€t and Festigkeit der menschlichen Knochens. Stuttgart: JG Cotta Verlag; 1880.

    Google Scholar 

  14. Karger B, Teige K, Fuchs M, Brinkmann B. Was the pedestrian hit in an erect position before being run over? Forensic Sci Int 119:217–220 (2001).

    Article  PubMed  CAS  Google Scholar 

  15. Sellier K. Zur mechanik des knochenbruchs. Dtsch Z Gerichtl Med 56:341–348 (1965).

    Article  CAS  Google Scholar 

  16. Mittmeyer HJ, König HG, Springer E, Staak M. Die Unterschenkelfraktur verunglĂŒckter FuÎČgĂ€nger: Möglichkeiten und Grenzen der Unfallrekonstruktion. Z Rechtsmedizin 74: 163–170 (1974).

    Article  Google Scholar 

  17. Rabl W, Haid C, Krismer M. Biomechanical properties of the human tibia: fracture behavior and morphology. Forensic Sci Int 83:39–49 (1996).

    Article  PubMed  CAS  Google Scholar 

  18. TeresiƄski G, Madro R. The patterns of diaphyseal fractures of the lower limbs in vulnerable participants in real world traffic accidents. Proceedings of the IRCOBI Conference, Graz 2004.

    Google Scholar 

  19. Kress TA, Snider JN, Psihogios JP, et al. Fracture patterns of human cadaver long bones. In: Biomechanics of impact injury and injury tolerances of the extremities. Backaitis SH, ed. Warrendale: Society of Automotive Engineers, Inc. 1996:453–467.

    Google Scholar 

  20. Klose H, Janik B. Frakturen und luxationen. Berlin: Walter de Gruyter; 1953.

    Google Scholar 

  21. Sjövall H. Die formen der frakturen der langen röhrenknochen. Zbl Chir 30:1234–1241 (1957).

    Google Scholar 

  22. Insall JN, ed. Surgery of the knee. 2nd ed. New York: Churchill-Livingstone; 1993.

    Google Scholar 

  23. Hayes CW, Brigido MK, Jamadar DA, Propeck T. Mechanism-based pattern approach to classification of complex injuries of the knee depicted at MR imaging. Radiographics 20:121–134 (2000).

    Google Scholar 

  24. Sanders TG, Medynski MA, Feller JF, Lawhorn KW. Bone contusion patterns of the knee at MR imaging: footprint of the mechanism of injury. Radiographics 20:135–151 (2000).

    Google Scholar 

  25. TeresiƄski G, Madro R. Knee joint injuries as a reconstruction parameter in car-to-pedestrian accidents. Forensic Sci Int 124:74–82 (2001).

    Article  PubMed  Google Scholar 

  26. Mink JH, Reicher MA, Crues JV III, Deutsch AL, eds. Magnetic resonance imaging of the knee. 2nd ed. New York: Raven Press; 1993.

    Google Scholar 

  27. TeresiƄski G, Madro R. A comparison of mechanisms of ankle, knee, pelvis and neck injuries in pedestrians and in cyclists according to the direction of impact and type of vehicle. Proceedings of the IRCOBI Conference; Lisbon, Portugal; 2003.

    Google Scholar 

  28. TeresiƄski G, Madro R. Ankle joint injuries as a reconstruction parameter in car-to-pedestrian accidents. Forensic Sci Int 1118:65–73 (2001).

    Article  Google Scholar 

  29. TeresiƄski G, Madro R. Spuren an SchuhsohlenoberflĂ€chen von FuÎČgĂ€ngerunfallopfern und Verletzungen der Sprunggelenke. Verkehrsunfall und Fahrzeugtechnik 39:190–197 (2001).

    Google Scholar 

  30. Bunketorp O, Aldman B, Thorngren L, Romanus B. Clinical and experimental studies on leg injuries in car-pedestrian accidents. In: Biomechanics of impact injury and injury tolerances of the extremities. Backaitis SH, ed. Warrendale: Society of Automotive Engineers, Inc.; 1996:699–710.

    Google Scholar 

  31. Wegner C, Otte D, Rau H. Deformationscharakteristik und EinfluÎČparameter von FahrrĂ€dern bei Kollisionen mit der Pkw-Front. Verkehrsunfall und Fahrzeugtechnik Heft 2, 32–38, Heft 3, 63–70 (2000).

    Google Scholar 

  32. Morgan RM, Eppinger RH, Hennessey BC. Ankle joint injury mechanism for adults in frontal automotive impact. In: Biomechanics of impact injury and injury tolerances of the extremities. Backaitis SH, ed. Warrendale: Society of Automotive Engineers, Inc.; 1996:525–534.

    Google Scholar 

  33. Nagel DA, Burton DS, Manning J. The dashboard knee injury. Clin Orthop 126:203–208 (1977).

    PubMed  Google Scholar 

  34. Wagner K, Wagner HJ. Handbuch der Verkehrsmedizin. Berlin: Springer Verlag; 1968.

    Google Scholar 

  35. Rau H, Otte D, Schulz B. Pkw-FuÎČgĂ€ngerkollisionen im hohen Geschwindigkeitsbereich. Ergebnisse von Dummyversuchen mit Kollisionsgeschwindigkeiten zwischen 70 und 90 km/h.Verkehrsunfall und Fahrzeugtechnik Heft 2:341–351 (2000).

    Google Scholar 

  36. Zivot U, Di Maio VJM. Motor vehicle-pedestrian accidents in adults: relationship between impact speed, injuries and distance thrown. Am J Forensic Med Pathol 14:185–186 (1993).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

TeresiƄski, G. (2005). Injuries of the Thigh, Knee, and Ankle as Reconstructive Factors in Road Traffic Accidents. In: Rich, J., Dean, D.E., Powers, R.H. (eds) Forensic Medicine of the Lower Extremity. Forensic Science and Medicine. Humana Press. https://doi.org/10.1385/1-59259-897-8:311

Download citation

  • DOI: https://doi.org/10.1385/1-59259-897-8:311

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-269-8

  • Online ISBN: 978-1-59259-897-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics