Skip to main content
Log in

Real-time visual tracking based on improved perceptual hashing

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Video object tracking represents a very important computer vision domain. In this paper, a perceptual hashing based template-matching method for object tracking is proposed to efficiently track objects in challenging video sequences. In the tracking process, we first apply three existing basic perceptual hashing techniques to visual tracking, namely average hash (aHash), perceptive hash (pHash) and difference hash (dHash). Compared with previous tracking methods such as mean-shift or compressive tracking (CT), perceptual hashing-based tracking outperforms in terms of efficiency and accuracy. In order to further improve the accuracy of object localization and the robustness of tracking, we propose Laplace-based Hash (LHash) and Laplace-based Difference Hash (LDHash). By qualitative and quantitative comparison with some representative tracking algorithms, experimental results show that our improved perceptual hashing-based tracking algorithms perform favorably against the state-of-the-art algorithms under various challenging environments in terms of time cost, accuracy and robustness. Since our improved perceptual hashing can be a compact and efficient representation of objects, it can be further applied to fusing with depth information for more robust RGB-D video tracking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Altinok A, El-Saban M, Peck AJ (2006) Activity analysis in microtubule videos by mixture of hidden Markov models. 2006 I.E. Conf Comput Vision Pattern Recognit 2:1662–1669

    Google Scholar 

  2. Avidan S (2004) Support vector tracking. IEEE Trans Pattern Anal Mach Intell 26(8):1064–1072

    Article  Google Scholar 

  3. Babenko B, Yang MH, Belongie S (2011) Robust object tracking with online multiple instance learning. IEEE Trans Pattern Anal Mach Intell 33(8):1619–1632

    Article  Google Scholar 

  4. Bhattacharjee S, Kutter M (1998) Compression tolerant image authentication. Proc Int Conf Image Process 1:435–439

    Google Scholar 

  5. Black MJ, Jepson AD (1998) Eigentracking: robust matching and tracking of articulated objects using a view-based representation. Int J Comput Vis 26(1):63–84

    Article  Google Scholar 

  6. Bradski G, Kaehler A (2008) Learning OpenCV: computer vision with the OpenCV library. “ O’Reilly Media, Inc.”

  7. Bulling A, Gellersen H (2010) Toward mobile eye-based human-computer interaction. Pervasive Comput 9(4):8–12

    Article  Google Scholar 

  8. Bulling A, Ward J, Gellersen H et al (2011) Eye movement analysis for activity recognition using electrooculography. IEEE Trans Pattern Anal Mach Intell 33(4):741–753

    Article  Google Scholar 

  9. Cesetti A, Frontoni E, Mancini A (2010) A vision-based guidance system for UAV navigation and safe landing using natural landmarks. Selected papers from the 2nd International Symposium on UAVs, Reno, Nevada, USA June 8–10, 2009. Springer, Netherlands, pp 233–257

    MATH  Google Scholar 

  10. Chen J (2010) UAV-guided navigation for ground robot tele-operation in a military reconnaissance environment. Ergonomics 53:940–950

    Article  Google Scholar 

  11. Chen N, Xiao HD, Wan W (2011) Audio hash function based on non-negative matrix factorisation of mel-frequency cepstral coefficients. Information Security, IET 5(1):19–25

    Article  Google Scholar 

  12. Comaniciu D, Ramesh V, Meer P (2000) Real-time tracking of non-rigid objects using mean shift. IEEE Conf Comput Vision Pattern Recognit 2:142–149

    Google Scholar 

  13. Coşkun B, Sankur B (2004) Robust video hash extraction. Proc IEEE Conf Sign Process Commun Appl:292–295

  14. Jia Z, Balasuriya A, Challa S (2008) Autonomous vehicles navigation with visual target tracking: technical approaches. Algorithms 1(2):153–182

    Article  Google Scholar 

  15. Jie Z (2013) A novel block-DCT and PCA based image perceptual hashing algorithm. arXiv preprint arXiv:1306.4079

  16. Kalal Z, Matas J, Mikolajczyk K (2010) Pn learning: bootstrapping binary classifiers by structural constraints. IEEE Conf Comput Vision Pattern Recognit:49–56

  17. Karavasilis V, Nikou C, Likas A (2011) Visual tracking using the earth mover’s distance between Gaussian mixtures and Kalman filtering. Image Vis Comput 29(5):295–305

    Article  Google Scholar 

  18. Kwon J, Lee KM (2010) Visual tracking decomposition. IEEE Conf Comput Vision Pattern Recognit:1269–1276

  19. Kwon J, Lee KM (2010) Visual tracking decomposition. (CVPR). IEEE Conf Comput Vision Pattern Recognit 1269–1276

  20. Laradji IH, Ghouti L, Khiari EH (2013) Perceptual hashing of color images using hypercomplex representations. IEEE Int Conf Imag Process: 4402–4406

  21. Li J, Allinson NM (2008) A comprehensive review of current local features for computer vision. Neurocomputing 71(10):1771–1787

    Article  Google Scholar 

  22. Li X, Shen C, Dick A, et al. (2013) Learning compact binary codes for visual tracking. IEEE Conf Comput Vision Pattern Recognit:2419–2426

  23. Li H, Shen C, Shi Q (2011) Real-time visual tracking using compressive sensing. IEEE Conf Computer Vision Pattern Recognition: 1305–1312

  24. Liu L, Shao L (2013) Learning discriminative representations from RGB-D video data. Proc Twenty-Third Int Joint Conf Artificial Intell. AAAI Press, 1493–1500

  25. Liu L, Yu M, Shao L (2015) Multiview alignment hashing for efficient image search. IEEE Trans Image Process 24(3):956–966

    Article  MathSciNet  Google Scholar 

  26. Mei X, Ling H (2011) Robust visual tracking and vehicle classification via sparse representation. IEEE Trans Pattern Anal Mach Intell 33(11):2259–2272

    Article  Google Scholar 

  27. Micalizio R, Scala E, Torasso P (2011) Intelligent supervision for robust plan execution. AI* IA 2011: artificial intelligence around man and beyond. Springer, Berlin Heidelberg, pp 151–163

    Book  Google Scholar 

  28. Monga V, Evans BL (2006) Perceptual image hashing via feature points: performance evaluation and tradeoffs. IEEE Trans Image Process 15(11):3452–3465

    Article  Google Scholar 

  29. Narasimha MJ, Peterson AM (1978) On the computation of the discrete cosine transform. IEEE Trans Commun 26(6):934–936

    Article  MATH  Google Scholar 

  30. Newcombe R, Fox D, Seitz S (2015) DynamicFusion: reconstruction and tracking of non-rigid scenes in real-time. IEEE Comput Vision Pattern Recognition: 343–352

  31. Perng MH, Chang HH (1993) Intelligent supervision of servo control. control theory and applications. IEE Proc D IET 140(6):405–412

    Article  MATH  Google Scholar 

  32. Santner J, Leistner C, Saffari A, et al. (2010) Prost: parallel robust online simple tracking. 2010 I.E. Conf Comput Vision Pattern Recognit:723–730

  33. Shao L, Liu L, Li X (2014) Feature learning for image classification via multiobjective genetic programming. IEEE Trans Neural Networks Learn Syst 25(7):1359–1371

    Article  Google Scholar 

  34. Wang L, Liu T, Wang G, Chan KL, Yang Q (2015) Video tracking using learned hierarchical features. IEEE Trans Image Process 24(4):1424–1435

    Article  MathSciNet  Google Scholar 

  35. Wang PK, Torrione PA, Collins LM, et al. (2012) Rapid position estimation and tracking for autonomous driving. SPIE defense, security, and sensing. Int Soc Optics Photonics:83871I–83871I

  36. Watson AB (1994) Image compression using the discrete cosine transform. Mathematica J 4(1):81

    MathSciNet  Google Scholar 

  37. Weng L, Preneel B (2009) Shape-based features for image hashing. 2009. IEEE Int Conf Multimed Expo: 1074–1077

  38. Wen-Hsiung C, Smith C, Fralick S (1977) A fast computational algorithm for the discrete cosine tranfsorm. IEEE Trans Commun 25(9):1004–1009

    Article  MATH  Google Scholar 

  39. Yang B, Gu F, Niu X (2006) Block mean value based image perceptual hashing. Int Conf Intell Inform Hiding Multimed Sign Process:167–172

  40. Yang H, Shao L, Zheng F et al (2011) Recent advances and trends in visual tracking: a review. Neurocomputing 74(18):3823–3831

    Article  Google Scholar 

  41. Yilmaz A, Javed O, Shah M (2006) Object tracking: a survey. ACM Comput Surv (CSUR) 38(4):13

    Article  Google Scholar 

  42. Yoon Y, Yun W, Yoon H, et al. (2014) Real-time visual target tracking in RGB-D data for person-following robots. Pattern Recognition (ICPR), 2014 22nd Int Conf. IEEE, 2227–2232

  43. Yu M, Liu L, Shao L (2015) Structure-preserving binary representations for RGB-D action recognition. IEEE Trans Pattern Anal Mach Intell. doi:10.1109/TPAMI.2015.2491925

    Google Scholar 

  44. Zhang P, Li N (2005) The intellectual development of human-computer interaction research: a critical assessment of the MIS literature (1990–2002). J Assoc Inf Syst 6(11):227–292

    Google Scholar 

  45. Zhang BC, Li ZG, Perina, A (2016) Adaptive local movement modeling for object tracking, IEEE TCSVT

  46. Zhang B, Perina A, Li Z, Murino V, Liu J, Ji R (2016) Bounding multiple gaussians uncertainty with application to object tracking. Int J Comput Vision:1–16

  47. Zhang S, Yao H, Zhou H et al (2013) Robust visual tracking based on online learning sparse representation. Neurocomputing 100:31–40

    Article  Google Scholar 

  48. Zhang K, Zhang L, Yang MH (2012) Real-time compressive tracking. computer vision–ECCV 2012. Springer, Berlin Heidelberg, pp 864–877

    Google Scholar 

  49. Zhu F, Shao L (2014) Weakly-supervised cross-domain dictionary learning for visual recognition. Int J Comput Vis 109(1–2):42–59

    Article  MATH  Google Scholar 

Download references

Acknowledgments

This work is supported by National Natural Science Foundation of China (61463032, 61563035, and 81501560) and Scientific Research Foundation for Returned Scholars, Ministry of Education of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fei, M., Ju, Z., Zhen, X. et al. Real-time visual tracking based on improved perceptual hashing. Multimed Tools Appl 76, 4617–4634 (2017). https://doi.org/10.1007/s11042-016-3723-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-016-3723-5

Keywords

Navigation