Skip to main content
Themenschwerpunkt

Wege aus der Abhängigkeit

Rückfallprädiktoren der Alkoholabhängigkeit

Published Online:https://doi.org/10.1024/0939-5911.a000255

Hintergrund: Alkohol-assoziierte Reize lösen bei alkoholabhängigen Patienten konditionierte Reaktionen aus, die zu einer erhöhten Motivation der Alkoholeinnahme führen können. Klassische Konditionierungsprozesse scheinen demnach sowohl zur Aufrechterhaltung der Abhängigkeit als auch zum Rückfallgeschehen nach Entzug beizutragen. Bildgebende Studien weisen darauf hin, dass das dopaminerge Neurotransmittersystem an assoziativen Lernvorgängen beteiligt ist und Veränderungen innerhalb dieses Systems bei entgifteten alkoholabhängigen Patienten zum Rückfall beitragen könnten. Die genauen Mechanismen in diesem Zusammenhang sind bisher jedoch ungeklärt. Zielsetzung: Ziel dieser Arbeit ist die Darstellung von motivationalen Veränderungen und deren (neuroadaptiven) Grundlagen bei Alkoholabhängigkeit. Ein genaueres Verständnis davon, welche neuronalen und motivationalen Prozesse im Rahmen des Rückfallgeschehens eine Rolle spielen, könnte sowohl pharmakologische als auch therapeutische Implikationen für die Behandlung der Alkoholabhängigkeit liefern. Methodik: Diese Arbeit umfasst eine Literaturanalyse über neuroadaptive Veränderungen bei Alkoholabhängigkeit mit besonderem Fokus auf Lernprozesse und deren Rolle beim Rückfallgeschehen. Die Literaturrecherche basiert auf Recherchen der Forschergruppe 1617 der Deutschen Forschungsgesellschaft (DFG; Learning and Habitization in Alcohol Dependence, LeAD). Schlussfolgerung: Bisher existieren keine Untersuchungen, in denen neuroadaptive Veränderungen der Alkoholabhängigkeit mit spezifischen Lerndefiziten in Zusammenhang gebracht werden. Die DFG Forschergruppe LeAD untersucht neuronale Korrelate von lernbezogenen Rückfallprädiktoren. Ein Ziel dieser Untersuchung ist es herauszufinden, warum alkoholabhängige Patienten nach ihrer Entgiftung oft nicht lernen, Alkohol durch alternative belohnende Reize und Situation zu ersetzen und welche neuronalen Grundlagen diesem Defizit zu Grunde liegen.


Leaving Addiction Behind: Predicting Relapse in Alcohol Dependence

Background: In alcohol dependence alcohol-associated stimuli elicit conditioned responses that can increase motivation to consume alcohol. Thus, an essential role for Pavlovian learning in addiction maintenance and relapse is pointed out. Studies using functional imaging implicate a fundamental involvement of the dopaminergic system in associative learning. These studies also suggest that neuroadaptive alterations within this system might contribute to relapse in alcohol addiction. However, the exact mechanism of how these processes might be related still remains unanswered. Aim: We review motivational and neuroadaptive alterations in alcohol dependence. A more precise understanding of neural and affective processes that are related to relapse can have pharmacological as well as therapeutic implications in the treatment of alcohol dependent patients. Methods: Studies reporting neuroadaptative alterations in alcohol dependence are reviewed, with a particular focus on learning processes and relapse, based on a literature search conducted in the research group 1617 funded by the Deutsche Forschungsgesellschaft (DFG; Learning and Habitization in Alcohol Dependence, LeAD) Conclusion: So far, no investigations have been conducted that examined neuroadaptive alterations in alcohol dependence as associated with learning mechanisms that could predict relapse. We describe a study design that aims to assess why detoxified patients with alcohol addiction often do not learn to substitute alcohol with alternative rewards. Moreover, we explored the neural basis of these potential learning-related alterations in alcohol dependence.

Literatur

  • Badiani, A. , Oates, M. M. , Fraioli, S. , Browman, K. E. , Ostrander, M. M. , Xue, C. J. (2000). Environmental modulation of the response to amphetamine: Dissociation between changes in behavior and changes in dopamine and glutamate overflow in the rat striatal complex. Psychopharmacology, 151(2 – 3), 166 – 174. First citation in articleCrossrefGoogle Scholar

  • Barratt, E. S. , Patton, J. H. (1983). Impulsivity: Cognitive, behavioral, and psychophysiological correlates. In M. Zuckerman, (Ed.), Biological Bases of Sensation Seeking, Impulsivity, and Anxiety. (pp. 77 – 122). Hillsdale, NJ: Lawrence Erlbaum Associates. First citation in articleGoogle Scholar

  • Bassareo, V. , De Luca, M. A. , Di Chiara, G. (2007). Differential impact of Pavlovian drug conditioned stimuli on in vivo dopamine transmission in the rat accumbens shell and core and in the prefrontal cortex. Psychopharmacology, 191, 689 – 703. First citation in articleCrossrefGoogle Scholar

  • Bechara, A. , Dolan, S. , Denburg, N. , Hindes, A. , Anderson, S. W. , Nathan, P. E. (2001). Decision-making deficits, linked to a dysfunctional ventromedial prefrontal cortex, revealed in alcohol and stimulant abusers. Neuropsychologia, 39, 376 – 389. First citation in articleCrossrefGoogle Scholar

  • Bechara, A. (2005). Decision making, impulse control and loss of willpower to resist drugs: A neurocognitive perspective. Nature Neuroscience, 8, 1458 – 1463. First citation in articleCrossrefGoogle Scholar

  • Bechara A. & Damasio H. , (2002) Decision-making and addiction (Part I): Impaired activation of somatic states in substance dependent individuals when pondering decisions with negative future consequences. Neuropsychologia, 40, 1675 – 1689. First citation in articleCrossrefGoogle Scholar

  • Beck, A. , Wüstenberg, T. , Genauck, A. , Wrase, J. , Schlagenhauf F., Smolka , M., et al. (2012). Effect of brain structure, brain function, and brain connectivity on relapse in alcohol-dependent patients. Archives of General Psychiatry, 69, 842 – 852. First citation in articleCrossrefGoogle Scholar

  • Beck, A. , Schlagenhauf, F. , Wüstenberg, T. , Hein, J. , Kienast, T. , Kahnt, T. (2009). Ventral striatal activation during reward anticipation correlates with impulsivity in alcoholics. Biological Psychiatry, 66, 734 – 742. First citation in articleCrossrefGoogle Scholar

  • Berglund, M. , Nordström, G. (1989). Mood disorders in alcoholism. Current Opinion in Psychiatry, 2, 428 – 433. First citation in articleCrossrefGoogle Scholar

  • Boothby, L. A. , Doering, P. L. (2005). Acamprosate for the treatment of alcohol dependence. Clinical Therapeutics, 27, 695 – 714. First citation in articleCrossrefGoogle Scholar

  • Bottlender, M. , Spanagel, R. , Soyka, M. (2007). One drink, one drunk – Ist kontrolliertes Trinken möglich? PPmP – Psychotherapie, Psychosomatik, Medizinische Psychologie, 57, 32 – 38. First citation in articleCrossrefGoogle Scholar

  • Braus, D. F. , Wrase, J. , Grüsser, S. , Hermann, D. , Ruf, M. , Flor, H. (2001). Alcohol-associated stimuli activate the ventral striatum in abstinent alcoholics. Journal of Neural Transmission, 108, 887 – 894. First citation in articleCrossrefGoogle Scholar

  • Breese, G. R. , Chu, K. , Dayas, C. V. , Funk, D. , Knapp, D. J. , Koob, G. F. et al. (2005) Stress enhancement of craving during sobriety: A risk for relapse. Alcoholism: Clinical and Experimental Research, 29, 185 – 195. First citation in articleCrossrefGoogle Scholar

  • Brown, S. A. , Vik, P. W. , Patterson, T. L. , Grant, I. , Schuckit, M. A. (1995). Stress, vulnerability and adult alcohol relapse. Journal of Studies on Alcohol and Drugs, 56, 538. First citation in articleCrossrefGoogle Scholar

  • Bühler, M. , Vollstädt-Klein, S. , Kobiella, A. , Budde, H. , Reed, L. J. , Braus, D. F. (2010). Nicotine dependence is characterized by disordered reward processing in a network driving motivation. Biological Psychiatry, 67, 745 – 752. First citation in articleCrossrefGoogle Scholar

  • Carter, B. L. , Tiffany, S. T. (1999). Meta-analysis of cue-reactivity in addiction research. Addiction, 94, 327 – 340. First citation in articleCrossrefGoogle Scholar

  • Charlet, K. , Schlagenhauf, F. , Richter, A. , Naundorf, K. , Dornhof, L.,Weinfurter , C. et al., (2013). Neuronal activation during processing of aversive faces predicts treatment outcome in alcoholism. Addiction Biology. Advance online publication. DOI: 10.1111/adb.12045 First citation in articleGoogle Scholar

  • Di Chiara, G. , Imperato, A. (1988). Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proceedings of the National Academy of Sciences of the United States of America, 85, 5274 – 5278. First citation in articleCrossrefGoogle Scholar

  • Di Chiara, G. (2002). Nucleus accumbens shell and core dopamine: differential role in behavior and addiction. Behavioural Brain Research, 137(1 – 2), 75 – 114. First citation in articleCrossrefGoogle Scholar

  • Childress, A. R. , Ehrman, R. N. , Wang, Z. , Li, Y. , Sciortino, N. , Hakun, J. et al. (2008). Prelude to passion: Limbic activation by “unseen” drug and sexual cues. PLoS ONE. DOI:10.1371/journal.pone.0001506 First citation in articleGoogle Scholar

  • Childress, A. R. , Mozley, P. D. , McElgin, W. , Fitzgerald, J. , Reivich, M. , O’Brien, C. P. (1999). Limbic activation during cue induced cocaine craving. American Journal of Psychiatry, 156, 11 – 18. First citation in articleCrossrefGoogle Scholar

  • Christakou, A. , Brammer, M. , Giampietro, V. , Rubia, K. (2009). Right ventromedial and dorsolateral prefrontal cortices mediate adaptive decisions under ambiguity by integrating choice utility and outcome evaluation. The Journal of Neuroscience, 29, 11020 – 11028. First citation in articleCrossrefGoogle Scholar

  • Cloninger, C. , Przybeck, T. , Svraki C. & Wetzel R., (1994). The Temperament and Character Inventory (TCI): A Guide to Its Development and Use. St. Louis, MO: Center for Psychobiology of Personality. First citation in articleGoogle Scholar

  • Cloninger, C. R. (1987). A systematic method for clinical description and classification of personality variants. A proposal. Archives of General Psychiatry, 44, 573 – 588. First citation in articleCrossrefGoogle Scholar

  • Cooney, N. L. , Litt, M. D. , Morse, P. A. , Bauer, L. O. , Gaupp, L. (1997). Alcohol cue reactivity, negative-mood reactivity, and relapse in treated alcoholic men. Journal of Abnormal Psychology, 106, 243 – 250. First citation in articleCrossrefGoogle Scholar

  • Corbit, L. H. , Janak, P. H. (2007). Ethanol-associated cues produce general Pavlovian-instrumental transfer. Alcoholism: Clinical and Experimental Research, 31, 766 – 774. First citation in articleCrossrefGoogle Scholar

  • Corbit, L. H. , Nie, H. , Janak, P. H. (2012). Habitual alcohol seeking: Time course and the contribution of subregions of the dorsal striatum. Biological Psychiatry, 72, 389 – 395. First citation in articleCrossrefGoogle Scholar

  • Dawkins, L. , Powell, J. H. , West, R. , Powell, J. , Pickering, A. (2007). A double-blind placebo-controlled experimental study of nicotine: II – Effects on response inhibition and executive functioning. Psychopharmacology, 190, 457 – 467. First citation in articleCrossrefGoogle Scholar

  • Dayas, C. V. , Liu, X. , Simms, J. A. , Weiss, F. (2007). Distinct patterns of neural activation associated with ethanol seeking: Effects of naltrexone. Biological Psychiatry, 61, 979 – 989. First citation in articleCrossrefGoogle Scholar

  • Deutsche Hauptstelle für Suchtfragen DHS (2008). Jahrbuch Sucht 08. Geesthacht: Neuland. First citation in articleGoogle Scholar

  • Dick, D. M. , Agrawal, A. , Wang, J. C. , Hinrichs, A. , Bertelsen, S. , Bucholz, K. K. (2007). Alcohol dependence with comorbid drug dependence: Genetic and phenotypic associations suggest a more severe form of the disorder with stronger genetic contribution to risk. Addiction, 102, 1131 – 1139. First citation in articleCrossrefGoogle Scholar

  • Dougherty, D. M. , Marsh-Richard, D. M. , Hatzis, E. S. , Nouvion, S. O. , Mathias, C. W. (2008). A Test of alcohol dose effects on multiple behavioral measures of impulsivity. Drug and Alcohol Dependence, 96(1 – 2), 111 – 120. First citation in articleCrossrefGoogle Scholar

  • Easdon, C. , Izenberg, A. , Armilio, M. L. , Yu, H. , Alain, C. (2005). Alcohol consumption impairs stimulus- and error-related processing during a Go/No-Go Task. Cognitive Brain Research, 25, 873 – 883. First citation in articleCrossrefGoogle Scholar

  • Evren, C. , Durkaya, M. , Evren, B. , Dalbudak, E. , Cetin, R. (2012). Relationship of relapse with impulsivity, novelty seeking and craving in male alcohol-dependent inpatients. Drug and Alcohol Review, 31, 81 – 90. First citation in articleCrossrefGoogle Scholar

  • Field, M. , Christiansen, P. , Cole, J. , Goudie, A. (2007). Delay discounting and the alcohol Stroop in heavy drinking adolescents. Addiction, 102, 579 – 586. First citation in articleCrossrefGoogle Scholar

  • Field, M. , Cox, W. M. (2008). Attentional bias in addictive behaviors: a review of its development, causes, and consequences. Drug and Alcohol Dependence, 97(1 – 2), 1 – 20. First citation in articleCrossrefGoogle Scholar

  • Flagel, S. B. , Akil, H. , Robinson, T. E. (2009). Individual differences in the attribution of incentive salience to reward related cues: Implications for addiction. Neuropharmacology, 56(Suppl. 1), 139 – 148. First citation in articleCrossrefGoogle Scholar

  • George, M. S. , Anton, R. F. (2001). ACtivation of prefrontal cortex and anterior thalamus in alcoholic subjects on exposure to alcohol-specific cues. Archives of General Psychiatry, 58, 345 – 352. First citation in articleCrossrefGoogle Scholar

  • Giordano, L. A. , Bickel, W. K. , Loewenstein, G. , Jacobs, E. A. , Marsch, L. , Badger, G. J. (2002). Mild opioid deprivation increases the degree that opioid-dependent outpatients discount delayed heroin and money. Psychopharmacology, 163, 174 – 182. First citation in articleCrossrefGoogle Scholar

  • Glasner, S. V. , Overmier, J. B. , Balleine, B. W. (2005). The role of Pavlovian cues in alcohol seeking in dependent and nondependent rats. Journal of Studies on Alcohol, 66, 53 – 61. First citation in articleCrossrefGoogle Scholar

  • Glenn, S. W. , Parsons, O. A. (1991). Prediction of resumption of drinking in posttreatment alcoholics. The International Journal of the Addictions, 26, 237 – 254. First citation in articleCrossrefGoogle Scholar

  • Goldstein, P. D. , Alia-Klein, P. D. , Tomasi, P. D. , Zhang, P. D. , Cottone, P. D. , Maloney, P. D. , et al., (2007). Is decreased prefrontal cortical sensitivity to monetary reward associated with impaired motivation and self-control in cocaine addiction? American Journal of Psychiatry, 164, 43 – 51. First citation in articleCrossrefGoogle Scholar

  • Goudriaan, A. E. , Oosterlaan, J. , De Beurs, E. , Van den Brink, W. (2006). Neurocognitive functions in pathological gambling: a comparison with alcohol dependence, Tourette syndrome and normal controls. Addiction, 101, 534 – 547. First citation in articleCrossrefGoogle Scholar

  • Grüsser, S. , Wrase, J. , Klein, S. , Hermann, D. , Smolka, M. , Ruf, M. et al. (2004). Cue-induced activation of the striatum and medial prefrontal cortex is associated with subsequent relapse in abstinent alcoholics. Psychopharmacology, 175, 296 – 302. First citation in articleCrossrefGoogle Scholar

  • Grüsser, S.-M. , Heinz, A , Raabe, A. , Wessa, M. , Podschus, J. , Flor, H. (2002). Stimulus-induced craving and startle potentiation in abstinent alcoholics and controls. European Psychiatry: The Journal of the Association of European Psychiatrists, 17, 188 – 193. First citation in articleCrossrefGoogle Scholar

  • Guardia, J. , Catafau, A. M. , Batlle, F. , Martín, J. C. , Segura, L. , Gonzalvo, B. et al. (2000) Striatal dopaminergic D2 receptor density measured by [123I] iodobenzamide SPECT in the prediction of treatment outcome of alcohol-dependent patients. American Journal of Psychiatry, 157, 127 – 129. First citation in articleCrossrefGoogle Scholar

  • Hartka, E. , Johnstone, B. , Leino, E. V. , Motoyoshi, M. , Temple, M. T. , Fillmore, K. M. (1991). A meta-analysis of depressive symptomatology and alcohol consumption over time. British journal of addiction, 86, 1283 – 1298. First citation in articleCrossrefGoogle Scholar

  • Heldmann, M. , Berding, G. , Voges, J. , Bogerts, B. , Galazky, I. , Müller, U. et al. (2012). Deep brain stimulation of nucleus accumbens region in alcoholism affects reward processing. PLOS One. DOI: 10.1371/journal.pone.0036572 First citation in articleGoogle Scholar

  • Heinz, A , Dettling, M. , Kuhn, S. , Dufeu, P. , Gräf, K. J. , Kürten, I. (1995). Blunted growth hormone response is associated with early relapse in alcohol-dependent patients. Alcoholism: Clinical and Experimental Research, 19, 62 – 65. First citation in articleGoogle Scholar

  • Heinz, A , Dufeu, P. , Kuhn, S. , Dettling, M. , Gräf, K. , Kürten, I. (1996). Psychopathological and behavioral correlates of dopaminergic sensitivity in alcohol-dependent patients. Archives of General Psychiatry, 53, 1123 – 1128. First citation in articleCrossrefGoogle Scholar

  • Heinz, A. , Jones, D. W. , Bissette, G. , Hommer, D. , Ragan, P. , Knable, M. (2002). Relationship between cortisol and serotonin metabolites and transporters in alcoholism. Pharmacopsychiatry, 35, 127 – 134. First citation in articleCrossrefGoogle Scholar

  • Heinz, A , Jones, D. W. , Gorey, J. G. , Bennet, A. , Suomi, S. J. , Weinberger, D. R. (2003). Serotonin transporter availability correlates with alcohol intake in non-human primates. Molecular Psychiatry, 8, 231 – 234. First citation in articleCrossrefGoogle Scholar

  • Heinz, A , Ragan, P. , Jones, D. W. , Hommer, D. , Williams, W. , Knable, M. B. (1998). Reduced central serotonin transporters in alcoholism. The American Journal of Psychiatry, 155, 1544 – 1549. First citation in articleCrossrefGoogle Scholar

  • Heinz, A. , Lichtenberg-Kraag, B. , Sällström Baum, S. , Gräf, K. , Krüger, F. , Dettling, M. (1995). Evidence for prolonged recovery of dopaminergic transmission after detoxification in alcoholics with poor treatment outcome. Journal of Neural Transmission, 102, 149 – 157. First citation in articleCrossrefGoogle Scholar

  • Heinz, A. , Löber, S. , Georgi, A. , Wrase, J. , Hermann, D. , Rey, E.-R. (2003). Reward craving and withdrawal relief craving: Assessment of different motivational pathways to alcohol intake. Alcohol and Alcoholism, 38, 35 – 39. First citation in articleCrossrefGoogle Scholar

  • Heinz, A. , Siessmeier, T. , Wrase, J. , Buchholz, H. G. , Gründer, G. , Kumakura, Y. (2005). Correlation of alcohol craving with striatal dopamine synthesis capacity and D2/3 receptor availability: A combined [18F]DOPA and [18F]DMFP PET study in detoxified alcoholic patients. American Journal of Psychiatry, 162, 1515 – 1520. First citation in articleCrossrefGoogle Scholar

  • Heinz, A. , Siessmeier, T. , Wrase, J. , Hermann, D. , Klein, S. , Grüsser, S. M. (2004). Correlation between dopamine D(2) receptors in the ventral striatum and central processing of alcohol cues and craving. The American Journal of Psychiatry, 161, 1783 – 1789. First citation in articleCrossrefGoogle Scholar

  • Heinz, A. , Wrase, J. , Kahnt, T. , Beck, A. , Bromand, Z. , Grüsser, S. M. et al. (2007). Brain activation elicited by affectively positive stimuli is associated with a lower risk of relapse in detoxified alcoholic subjects. Alcoholism: Clinical and Experimental Research, 31, 1138 – 1147. First citation in articleCrossrefGoogle Scholar

  • Huys, Q. J. M. , Cools, R. , Gölzer, M. , Friedel, E. , Heinz, A. , Dolan, R. J. (2011). Disentangling the roles of approach, activation and valence in instrumental and pavlovian responding. PLoS Computational Biology. DOI: 10.1371/journal.pcbi.1002028 First citation in articleGoogle Scholar

  • Kamarajan, C. , Porjesz, B. , Jones, K. A. , Choi, K. , Chorlian, D. B. , Padmanabhapillai, A. (2004). The role of brain oscillations as functional correlates of cognitive systems: A study of frontal inhibitory control in alcoholism. International Journal of Psychophysiology, 51, 155 – 180. First citation in articleCrossrefGoogle Scholar

  • Kanfer, F. H. , Saslow, G. (1965). Behavioral analysis: An alternative to diagnostic classification. Archives of General Psychiatry, 12, 529 – 538. First citation in articleCrossrefGoogle Scholar

  • Katner, S. N. , Magalong, J. G. , Weiss, F. (1999). Reinstatement of alcohol-seeking behavior by drug-associated discriminative stimuli after prolonged extinction in the rat. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology, 20, 471 – 479. First citation in articleCrossrefGoogle Scholar

  • Katner, S. N. , Weiss, F. (1999). Ethanol-associated olfactory stimuli reinstate ethanol-seeking behavior after extinction and modify extracellular dopamine levels in the nucleus accumbens. Alcoholism: Clinical and Experimental Research, 23, 1751 – 1760. First citation in articleCrossrefGoogle Scholar

  • Kosten, T. R. , Scanley, B. E. , Tucker, K. A. , Oliveto, A. , Prince, C. , Sinha, R. (2006). Cue-induced brain activity changes and relapse in cocaine-dependent patients. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology, 31, 644 – 650. First citation in articleCrossrefGoogle Scholar

  • Kruzich, P. J. , Congleton, K. M. , See, R. E. (2001). Conditioned reinstatement of drug-seeking behavior with a discrete compound stimulus classically conditioned with intravenous cocaine. Behavioral Neuroscience, 115, 1086 – 1092. First citation in articleCrossrefGoogle Scholar

  • Kuhn, J. , Gründler, T. , Bauer, R. , Huff, W. , Fischer, A. , Lenartz, D. et al. (2011). Successful deep brain stimulation of the nucleus accumbens in severe alcohol dependence is associated with changed performance monitoring. Addiction Biology, 16, 620 – 623. First citation in articleCrossrefGoogle Scholar

  • Le Berre, A. P. , Rauchs, G. , La Joie, R. , Mézenge, F. , Boudehent, C. , Vabret, F. et al. (2012). Impaired decision-making and brain shrinkage in alcoholism. European Psychiatry. Advance online publication. DOI: 10.1016/j.eurpsy.2012.10.002 First citation in articleGoogle Scholar

  • Lovinger, D. M. (1999). 5-HT3 receptors and the neural actions of alcohols: an increasingly exciting topic. Neurochemistry International, 35, 125 – 130. First citation in articleCrossrefGoogle Scholar

  • Ludwig, A. M. , Stark, L. H. (1974). Alcohol craving. Subjective and situational aspects. Quarterly Journal of Studies on Alcohol, 35, 899 – 905. First citation in articleGoogle Scholar

  • Makris, N. , Oscar-Berman, M. , Jaffin, S. K. , Hodge, S. M. , Kennedy, D. N. , Caviness, V. S. et al. (2008). Decreased volume of the brain reward system in alcoholism. Biological Psychiatry, 64, 192 – 202. First citation in articleCrossrefGoogle Scholar

  • Marinkovic, K. , Oscar-Berman, M. , Urban, T. , O’Reilly, C. E. , Howard, J. A. , Sawyer, K. et al. (2009). Alcoholism and dampened temporal limbic activation to emotional faces. Alcoholism: Clinical and Experimental Research, 33, 1880 – 1892. First citation in articleCrossrefGoogle Scholar

  • Martinez, D. , Gil, R. , Slifstein, M. , Hwang, D.-R. , Huang, Y. , Perez, A. (2005). Alcohol dependence is associated with blunted dopamine transmission in the ventral striatum. Biological Psychiatry, 58, 779 – 786. First citation in articleCrossrefGoogle Scholar

  • Mucha, R. F. , Geier, A. , Stuhlinger, M. , Mundle, G. (2000). Appetitve effects of drug cues modelled by pictures of the intake ritual: generality of cue-modulated startle examined with inpatient alcoholics. Psychopharmacology, 151, 428 – 432. First citation in articleCrossrefGoogle Scholar

  • Murphy, J. M. , McBride, W. J. , Lumeng, L. , Li, T.-K. (1982). Regional brain levels of monoamines in alcohol-preferring and -nonpreferring lines of rats. Pharmacology Biochemistry and Behavior, 16, 145 – 149. First citation in articleCrossrefGoogle Scholar

  • Myrick, H. , Raymond, F. A. , Xingbao, L. , Henderson, S. , Drobes, D. , Voronin, K. et al. (2004). Differential brain activity in alcoholics and social drinkers to alcohol cues: Relationship to craving. Neuropsychopharmacology, 29, 393 – 402. First citation in articleCrossrefGoogle Scholar

  • O’Brien, C. P. , Childress, A. R. , McLellan, A. T. , Ehrman, R. (1992). A learning model of addiction. Research Publications – Association for Research in Nervous and Mental Disease, 70, 157 – 177. First citation in articleGoogle Scholar

  • Park, S. Q. , Kahnt, T. , Beck, A. , Cohen, M. X. , Dolan, R. J. , Wrase, J. , et al., (2010). Prefrontal cortex fails to learn from reward prediction errors in alcohol dependence. The Journal of Neuroscience, 30, 7749 – 7753. First citation in articleCrossrefGoogle Scholar

  • Paulus, M. P. , Tapert, S. F. , Schuckit, M. A. (2005). Neural activation patterns of methamphetamine-dependent subjects during decision making predict relapse. Archives of General Psychiatry, 62, 761 – 768. First citation in articleCrossrefGoogle Scholar

  • Prévost, C. , Liljeholm, M. , Tyszka, J. M. , O’Doherty, J. P. (2012). Neural correlates of specific and general Pavlovian-to-Instrumental Transfer within human amygdalar subregions: A high-resolution fMRI study. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 32, 8383 – 8390. First citation in articleCrossrefGoogle Scholar

  • Reynolds, B. , Ortengren, A. , Richards, J. B. , De Wit, H. (2006). Dimensions of impulsive behavior: Personality and behavioral measures. Personality and Individual Differences, 40, 305 – 315. First citation in articleCrossrefGoogle Scholar

  • Ridderinkhof, K. R. , de Vlugt, Y. , Bramlage, A. , Spaan, M. , Elton, M. , Snel, J. et al. (2002). Alcohol consumption impairs detection of performance errors in mediofrontal cortex. Science, 298(5601), 2209 – 2211. First citation in articleCrossrefGoogle Scholar

  • Robbins, T. W. , Cador, M. , Taylor, J. R. , Everitt, B. J. (1989). Limbic-striatal interactions in reward-related processes. Neuroscience and Biobehavioral Reviews, 13(2 – 3), 155 – 162. First citation in articleCrossrefGoogle Scholar

  • Robbins, T. W. , Everitt, B. J. (1999). Drug addiction: Bad habits add up. Nature, 398(6728), 567 – 570. First citation in articleCrossrefGoogle Scholar

  • Robinson, T. , Berridge, K. (1993). The neural basis of drug craving: An incentive-sensitization theory of addiction. Brain Research Reviews, 18, 247 – 291. First citation in articleCrossrefGoogle Scholar

  • Rubonis, A. V. , Colby, S. M. , Monti, P. M. , Rohsenow, D. J. , Gulliver, S. B. , Sirota, A. D. (1994). Alcohol cue reactivity and mood induction in male and female alcoholics. Journal of Studies on Alcohol, 55, 487 – 494. First citation in articleCrossrefGoogle Scholar

  • Salloum, J. B. , Ramchandani, V. A. , Bodurka, J. , Rawlings, R. , Momenan, R. , George, D. et al. (2007). Blunted rostral anterior cingulate response during a simplified decoding task of negative emotional facial expressions in alcoholic patients. Alcoholism: Clinical and Experimental Research, 31, 1490 – 1504. First citation in articleCrossrefGoogle Scholar

  • Schoenmakers, T. M. , De Bruin, M. , Lux, I. F. M. , Goertz, A. G. , Van Kerkhof, D. H. A. T. , Wiers, R. W. (2010). Clinical effectiveness of attentional bias modification training in abstinent alcoholic patients. Drug and Alcohol Dependence, 109(1 – 3), 30 – 36. First citation in articleCrossrefGoogle Scholar

  • Schuckit, M. (1983). Alcoholic patients with secondary depression. The American Journal of Psychiatry, 140, 711 – 714. First citation in articleCrossrefGoogle Scholar

  • Schultz, W. (1998). Predictive Reward Signal of Dopamine Neurons. Journal of Neurophysiology, 80, 1 – 27. First citation in articleCrossrefGoogle Scholar

  • Sinha, R. (2007). The role of stress in addiction relapse. Current Psychiatry Reports, 9, 388 – 395. First citation in articleCrossrefGoogle Scholar

  • Soloff, P. H. , Lynch, K. G. , Moss, H. B. (2000). Serotonin, impulsivity, and alcohol use disorders in the older adolescent: A psychobiological study. Alcoholism: Clinical and Experimental Research, 24, 1609 – 1619. First citation in articleCrossrefGoogle Scholar

  • Swann, A. C. , Dougherty, D. M. , Pazzaglia, P. J. , Pham, M. , Moeller, F. G. (2004). Impulsivity: A link between bipolar disorder and substance abuse. Bipolar Disorders, 6, 204 – 212. First citation in articleCrossrefGoogle Scholar

  • Talmi, D. , Seymour, B. , Dayan, P. , Dolan, R. J. (2008). Human Pavlovian–instrumental transfer. The Journal of Neuroscience, 28, 360 – 368. First citation in articleCrossrefGoogle Scholar

  • Tiffany, S. T. (1990). A cognitive model of drug urges and drug-use behavior: Role of automatic and nonautomatic processes. Psychological Review, 97, 147 – 168. First citation in articleCrossrefGoogle Scholar

  • Verheul, R. , Van den Brink, W. , Geerlings, P. (1999). A three-pathway psychobiological model of craving for alcohol. Alcohol and Alcoholism, 34, 197 – 222. First citation in articleCrossrefGoogle Scholar

  • Vezina, P. , Giovino, A. A. , Wise, R. A. , Stewart, J. (1989). Environment-specific cross-sensitization between the locomotor activating effects of morphine and amphetamine. Pharmacology, Biochemistry, and Behavior, 32, 581 – 584. First citation in articleCrossrefGoogle Scholar

  • Virkkunen M. (1994). Personality profiles and state aggressiveness in Finnish alcoholic, violent offenders, fire setters, and healthy volunteers. Archives of General Psychiatry, 51, 28 – 33. First citation in articleCrossrefGoogle Scholar

  • Volkow, N. D. , Wang, G. J. , Fowler, J. S. , Logan, J. , Hitzemann, R. , Ding, Y. S. , et al., (1996). Decreases in dopamine receptors but not in dopamine transporters in alcoholics. Alcoholism: Clinical and Experimental Research, 20, 1594 – 1598. First citation in articleCrossrefGoogle Scholar

  • Volkow, N. D. , Wang, G.-J. , Telang, F. , Fowler, J. S. , Logan, J. , Childress, A.-R. (2006). Cocaine cues and dopamine in dorsal striatum: Mechanism of craving in cocaine addiction. The Journal of Neuroscience, 26, 6583 – 6588. First citation in articleCrossrefGoogle Scholar

  • Vollstädt-Klein, S. , Wichert, S. , Rabinstein, J. , Bühler, M. , Klein, O. , Ende, G. (2010). Initial, habitual and compulsive alcohol use is characterized by a shift of cue processing from ventral to dorsal striatum. Addiction, 105, 1741 – 1749. First citation in articleCrossrefGoogle Scholar

  • Vorel, S. R. , Liu, X , Hayes, R. J. , Spector, J. A. , Gardner, E. L. (2001). Relapse to cocaine-seeking after hippocampal theta burst stimulation. Science, 292(5519), 1175 – 1178. First citation in articleCrossrefGoogle Scholar

  • Vuchinich, R. E. , Simpson, C. A. (1999). Delayed-reward discounting in alcohol abuse. In F. J. Chaloupka, M. Grossman , W. K. Bickel & H. Saffer, (Eds.), The Economic Analysis of Substance Use and Abuse: An Integration of Econometrics and Behavioral Economic Research. (pp. 103 – 132). Chicago, IL: University of Chicago Press. First citation in articleGoogle Scholar

  • Wiers, R. W. , Rinck, M. , Kordts, R. , Houben, K. , Strack, F. (2010). Retraining automatic action-tendencies to approach alcohol in hazardous drinkers. Addiction, 105, 279 – 287. First citation in articleCrossrefGoogle Scholar

  • Wikler, A. (1948). Recent progress in research on the neurophysiologic basis of morphine addiction. The American Journal of Psychiatry, 105, 329 – 338. First citation in articleCrossrefGoogle Scholar

  • De Wit, H. (2009). Impulsivity as a determinant and consequence of drug use: A review of underlying processes. Addiction Biology, 14, 22 – 31. First citation in articleCrossrefGoogle Scholar

  • De Wit, H. , Crean, J. , Richards, J. B. (2000). Effects of d-Amphetamine and ethanol on a measure of behavioral inhibition in humans. Behavioral Neuroscience, 114, 830 – 837. First citation in articleCrossrefGoogle Scholar

  • Wojnar, M. , Brower, K. J. , Jakubczyk, A. , Żmigrodzka, I. , Burmeister, M. , Matsumoto, H. et al. (2006). Wpływ impulsywności, skłonności samobójczych oraz genów układu serotoninowego na wyniki leczenia uzależnienia od alkoholu [Influence of impulsivity, suicidality and serotonin genes on treatment outcomes in alcohol dependence]. Psychiatria Polska, 40, 985 – 994. First citation in articleGoogle Scholar

  • Wolffgramm, J. , Heyne, A. (1995). From controlled drug intake to loss of control: The irreversible development of drug addiction in the rat. Behavioural Brain Research, 70, 77 – 94. First citation in articleCrossrefGoogle Scholar

  • Wong, D. F. , Kuwabara, H. , Schretlen, D. J. , Bonson, K. R. , Zhou, Y. , Nandi, A. et al. (2006). Increased occupancy of dopamine receptors in human striatum during cue-elicited cocaine craving. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology, 31, 2716 – 2727. First citation in articleCrossrefGoogle Scholar

  • Wrase, J. , Schlagenhauf, F. , Kienast, T. , Wüstenberg, T. , Bermpohl, F. , Kahnt, T. (2007). Dysfunction of reward processing correlates with alcohol craving in detoxified alcoholics. NeuroImage, 35, 787 – 794. First citation in articleCrossrefGoogle Scholar