Skip to main content

Brefeldin A Revealing the Fundamental Principles Governing Membrane Dynamics and Protein Transport

  • Chapter
Fusion of Biological Membranes and Related Problems

Part of the book series: Subcellular Biochemistry ((SCBI,volume 34))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Apodaca, G., Aroeti, B., Tang, K., and Mostov, K. E., 1993, Brefeldin-A inhibits the delivery of the polymeric immunoglobulin receptor to the basolateral surface of MDCK cells. J. Biol. Chem. 268:20380–20385.

    Google Scholar 

  • Balch, W. E., Dunphy, W. G., Braell, W. A., and Rothman, J. E., 1984, Reconstitution of the transport of protein between successive compartments of the Golgi measured by the coupled incorporation of N-acetylglucosamine. Cell 39:405–416.

    Google Scholar 

  • Barlowe, C., 1997, Coupled ER to Golgi transport reconstituted with purified cytosolic proteins. J. Cell Biol. 139:1097–1108.

    Google Scholar 

  • Barr, F. A., 1999, A novel Rab6-interacting domain defines a family of golgi-targeted coiled-coil proteins. Curr. Biol. 9:381–384.

    Google Scholar 

  • Beck, K. A., and Nelson, W. J., 1998, A spectrin membrane skeleton of the Golgi complex. Biochirn. Biophys. Acta. 1404:153–160.

    Google Scholar 

  • Betz, S. F., Schnuchel, A., Wang, H., Olejniczak, E.T., Meadows, R. P., et al., 1998, Solution structure of the cytohesin-1 (B2-1) Sec7 domain and its interaction with the GTPase ADP ribosylation factor 1. Proc. Natl. Acad. Sci. USA 95:7909–7914.

    Google Scholar 

  • Burd, C. G., and Emr, S. D., 1998, Phosphatidylinositol(3)-phosphate signaling mediated by specific binding to RING FYVE domains. Mol. Cell 237–162.

    Google Scholar 

  • Busch, M., Mayer, U., and Jurgens, G., 1996, Molecular analysis of the Arabidopsis pattern formation of gene GNOM: gene structure and intragenic complementation. Mol. Gen. Genet. 250:681–691.

    Google Scholar 

  • Chardin, P., and McCormick, F., 1999, Brefeldin A: the advantage of being uncompetitive. Cell 97:153–155.

    Google Scholar 

  • Chardin, P., Paris, S., Antonny, B., Robineau, S., Beraud-Dufour, S., et al., 1996, A human exchange factor for ARF contains Sec7-and pleckstrin-homology domains. Nature 384: 481–484.

    Google Scholar 

  • Chege, N. W., and Pfeffer, S. R., 1990, Compartmentation of the Golgi complex: brefeldin-A distinguishes trans-Golgi cisternae from the trans-Golgi network. J. Cell Biol. 111:893–899.

    Google Scholar 

  • Cherfils, J., Menetrey, J., Mathieu, M., Le Bras, G., Robineau, S., et al., 1998, Structure of the Sec7 domain of the Arf exchange factor ARNO. Nature 392:101–105.

    Google Scholar 

  • Clermont, Y., Xia, L., Rambourg, A,, Turner, J. D., and Hermo, L., 1993, Structure of the Golgi apparatus in stimulated and nonstimulated acinar cells of mammary glands of the rat. Anat. Rec. 237:308–317.

    Google Scholar 

  • Cukierman, E., Huber, I., Rotman, M., and Cassel, D., 1995, The ARF1 GTPase-activating protein: zinc finger motif and Golgi complex localization. Science 270:1999–2002.

    Google Scholar 

  • Dascher, C., and Balch, W. E., 1994, Dominant inhibitory mutants of AFG1 block endoplasmic reticulum to Golgi transport and trigger disassembly of the Golgi apparatus. J. Biol. Chem. 269:1437–1448.

    Google Scholar 

  • De Camilli, F!, Emr, S. D., McPherson, P.,, S., and Novick, F!, 1996, Phosphoinositides as regulators in membrane traffic. Science 271:1533–1539.

    Google Scholar 

  • De Lemos-Chiarandini, C., Ivessa, N. E., Black, V. H., Tsao, Y. S., Gumper, I., and Kreibich, G., 1992, A Golgi-related structure remains after the brefeldin A-induced formation of an ER-Golgi hybrid compartment. Eur. J. Cell Biol. 58:187–201.

    Google Scholar 

  • Dell’Angelica, E. C., Mullins, C., and Bonifacino, J. S., 1999, AP-4, a novel protein complex related to clathrin adaptors. J. Biol. Chem. 274;7278–7285.

    Google Scholar 

  • Doms, R. W., Russ, G., and Yewdell, J. W., 1989, Brefeldin A redistributes resident and itinerant Golgi proteins to the endoplasmic reticulum. J. Cell Biol. 109:61–72.

    Google Scholar 

  • Donaldson, J. G., Cassel, D., Kahn, R. A., and Klausner, R. D., 1992a, ADP-ribosylation factor, a small GTP-binding protein, is required for binding of the coatomer protein beta-COP to Golgi membranes. Proc. Natl. Acad. Sci. USA 9:6408–6412.

    Google Scholar 

  • Donaldson, J. G., Finazzi, D., and Klausner, R. D., 1992b, Brefeldin A inhibits Golgi membranecatalysed exchange of guanine nucleotide onto ARF protein. Nature 360:350–352.

    Google Scholar 

  • Donaldson, J. G., Kahn, R. A., Lippincott-Schwartz, J., and Klausner, R. D., 1991, Binding of AFG and beta-COP to Golgi membranes: possible regulation by a trimeric G protein. Science 254:1197–1199.

    Google Scholar 

  • Donaldson, J. G., Lippincott-Schwartz, J., Bloom, G. S., Kreis, T. E., and Klausner, R. D., 1990, Dissociation of a 110-kD peripheral membrane protein from the Golgi apparatus is an early event in brefeldin A action. J. Cell Biol. 111:2295–2306.

    Google Scholar 

  • Duden, R., Griffiths, G., Frank, R., Argos, P., and Kreis, T. E., 1991, Beta-COP, a 110kd protein associated with non-clathrin-coated vesicles and the Golgi complex, shows homology to beta-adaptin. Cell 64:649–665.

    Google Scholar 

  • Egea, G., Franci, C., Gambus, G., Lesuffleur, T., Zweibaum, A., and Real, F. X., 1993, cis-Golgi resident proteins and O-glycans are abnormally compartmentalized in the RER of colon cancer cells. J. Cell Sci. 105:819–830.

    Google Scholar 

  • Elazar, Z., Orci, L., Ostermann, J., Amherdt, M., Tanigawa, G., and Rothman, J. E., 1994, ADP-ribosylation factor and coatomer couple fusion to vesicle budding. J. Cell Biol. 124 415–424.

    Google Scholar 

  • Erickson, J. W., Zhang, C., Kahn, R. A., Evans, T., and Cerione, R. A., 1996, Mammalian Cdc42 is a brefeldin A-sensitive component of the Golgi apparatus. J. Biol. Chem. 271:26850–26854.

    Google Scholar 

  • Farquhar, M. G., 1985, Progress in unraveling pathways of Golgi traffic. Annu. Rev. Cell Biol. 1:447–488.

    Google Scholar 

  • Farquhar, M. G., and Palade, G. E., 1998, The Golgi apparatus: 100 years of progress and controversy. Trends. Cell Biol. 8:2–10.

    Google Scholar 

  • Fernandez, C. J., Haugwitz, M., Eaton, B., and Moore, H. P., 1997, Distinct molecular events during secretory granule biogenesis revealed by sensitivities to brefeldin A. Mol. Biol. Cell 8:2171–2185.

    Google Scholar 

  • Franco, M., Boretto, J., Robineau, S., Monier, S., Goud, B., et al., 1998, ARNO3, a Sec7-domain guanine nucleotide exchange factor for ADP ribosylation factor 1, is involved in the control of Golgi structure and function. Proc. Natl. Acad. Sci. USA 95:9926–9931.

    Google Scholar 

  • Franco, M., Peters, P. J., Boretto, J., van Donselaar, E., Neri, A., et al., 1999, EFA6, a sec7 domaincontaining exchange factor for ARF6, coordinates membrane recycling and actin cytoskeleton organization. Embo. J. 18:1480–1491.

    Google Scholar 

  • Franzusoff, A., Lauze, E., and Howell, K. E., 1992, Immuno-isolation of Sec7p-coated transport vesicles from the yeast secretory pathway. Nature 355:173–175.

    Google Scholar 

  • Franzusoff, A., Redding, K., Crosby, J., Fuller, R. S., and Schekman, R., 1991, Localization of components involved in protein transport and processing through the yeast Golgi apparatus. J. Cell Biol. 112:27–37.

    Google Scholar 

  • Franzusoff, A., and Schekman, R., 1989, Functional compartments of the yeast Golgi apparatus are defined by the sec7 mutation. Embo. J. 8:2695–702.

    Google Scholar 

  • Fries, E., and Rothman, J. E., 1980, Transport of vesicular stomatitis virus glycoprotein in a cell-free extract. Proc. Natl. Acad. Sci. USA 77:3870–3874.

    Google Scholar 

  • Fujiwara, T., Oda, K., Yokota, S., Takatsuki, A., and Ikehara, Y., 1988, Brefeldin A causes disassembly of the Golgi complex and accumulation of secretory proteins in the endoplasmic reticulum. J. Biol. Chem. 2 63:18545–18552.

    Google Scholar 

  • Gaynor, E. C., Chen, C. Y., Emr, S. D., and Graham, T. R., 1998a, ARF is required for maintenance of yeast Golgi and endosome structure and function. Mol. Biol. Cell 9:653–670.

    Google Scholar 

  • Gaynor, E. C., and Emr, S. D., 1997, COPI-independent anterograde transport: cargo-selective ER to Golgi protein transport in yeast COPI mutants. J. Cell Biol. 136:789–802.

    Google Scholar 

  • Gaynor, E. C., Graham, T. R., and Emr, S. D., 1998b, COPI in ER/Golgi and intra-Golgi transport: do yeast COPI mutants point the way? Biochim. Biophys. Acta. 1404:33–51.

    Google Scholar 

  • Glick, B. S., Elston, T., and Oster, G., 1997, A cisternal maturation mechanism can explain the asymmetry of the Golgi stack. FEBS. Lett. 414:177–181.

    Google Scholar 

  • Glick, B. S., and Malhotra, V., 1998, The curious status of the Golgi apparatus [comment]. Cell 95:883–889.

    Google Scholar 

  • Goldberg, J., 1998, Structural basis for activation of ARF GTPase: mechanisms of guanine nucleotide exchange and GTP-myristoyl switching. Cell 95:237–248.

    Google Scholar 

  • Graham, T. R., Scott, P. A., and Emr, S. D., 1993, Brefeldin A reversibly blocks early but not late protein transport steps in the yeast secretory pathway. Embo. J. 12:869–877.

    Google Scholar 

  • Helms, J. B., and Rothman, J. E., 1992, Inhibition by brefeldin A of a Golgi membrane enzyme that catalyses exchange of guanine nucleotide bound to ARF. Nature 360:352–354.

    Google Scholar 

  • Hendricks, L. C., McCaffery, M., Palade, G. E., and Farquhar, M. G., 1993, Disruption of endoplasmic reticulum to Golgi transport leads to the accumulation of large aggregates containing beta-COP in pancreatic acinar cells. Mol. Biol. Cell 4:413–424.

    Google Scholar 

  • Hendricks, L. C., McClanahan, S. L., McCaffery, M., Palade, G. E., and Farquhar, M. G., 1992a, Golgi proteins persist in the tubulovesicular remnants found in brefeldin A-treated pancreatic acinar cells. Eur. J. Cell Biol. 58:202–213.

    Google Scholar 

  • Hendricks, L. C., McClanahan, S. L., Palade, G. E., and Farquhar, M. G., 1992b, Brefeldin A affects early events but does not affect late events along the exocytic pathway in pancreatic acinar cells. Proc. Natl. Acad. Sci. USA 89:7242–7246.

    Google Scholar 

  • Herrmann, J. M., Malkus, P., and Schekman, R., 1999, Out of the ER—outfitters, escorts and guides. Trends. Cell Biol. 9:5–7.

    Google Scholar 

  • Hidalgo, J., Garcia-Navarro, R., Gracia-Navarro, F., Perez-Vilar, J., and Velasco, A., 1992, Presence of Golgi remnant membranes in the cytoplasm of brefeldin A-treated cells. Eur. J. Cell Biol. 58:214–227.

    Google Scholar 

  • Hirst, J., and Robinson, M. S., 1998, Clathrin and adaptors. Biochim. Biophys. Acta. 1404:173–193.

    Google Scholar 

  • Hsu, V. W., Shah, N., and Klausner, R. D., 1992, A brefeldin A-like phenotype is induced by the overexpression of a human ERD-2-like protein, ELP-1. Cell 69:625–435.

    Google Scholar 

  • Huffaker, T. C., Thomas, J. H., and Botstein, D., 1988, Diverse effects of beta-tubulin mutations on microtubule formation and function. J. Cell Biol. 106:1997–2010.

    Google Scholar 

  • Hunziker, W., Whitney, J. A., and Mellman, I., 1991, Selective inhibition of transcytosis by brefeldin A in MDCK cells. Cell 67:617–627.

    Google Scholar 

  • Hunziker, W., Whitney, J. A., and Mellman, I., 1992, Brefeldin A and the endocytic pathway. Possible implications for membrane traffic and sorting. FEBS. Lett. 307:93–96.

    Google Scholar 

  • Hurtley, S. M., 1992, Now you see it, now you don’t: the Golgi disappearing act. Trends. Biochem. Sci. 17:325–327.

    Google Scholar 

  • Infante, C., Ramos-Morales, F., Fedriani, C., Bornens, M., and Rios, R. M., 1999, GMAP-210, A cis-Golgi network-associated protein, is a minus end microtubule-binding protein. J. Cell Biol. 145:83–98.

    Google Scholar 

  • Ivessa, N. E., De Lemos-Chiarandini, C., Gravotta, D., Sabatini, D. D., and Kreibich, G., 1995, The Brefeldin A-induced retrograde transport from the Golgi apparatus to the endoplasmic reticulum depends on calcium sequestered to intracellular stores. J. Biol. Chem. 270:2596–25967.

    Google Scholar 

  • Julius, D., Schekman, R., and Thorner, J., 1984, Glycosylation and processing of prepro-alpha-factor through the yeast secretory pathway. Cell 36:309–318.

    Google Scholar 

  • Jurgens, G., 1995, Axis formation in plant embryogenesis: cues and clues. Cell 81:467–470.

    Google Scholar 

  • Kaiser, C., and Huffaker, T., 1992, An inside look at a small cell. Yeast Cell Biology sponsored by Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA, August 13–18,1991. New. Biol. 4:23–27.

    Google Scholar 

  • Kanoh, H., Williger, B. T., and Exton, J. H., 1997, Arfaptin 1, a putative cytosolic target protein of ADP-ribosylation factor, is recruited to Golgi membranes. J. Biol. Chem. 272: 5421–5429.

    Google Scholar 

  • Karrenbauer, A., Jeckel, D., Just, W., Birk, R., Schmidt, R. R., et al., 1990, The rate of bulk flow from the Golgi to the plasma membrane. Cell 63:259–267.

    Google Scholar 

  • Kjer-Nielsen, L., Teasdale, R. D., van Vliet, C., and Gleeson, P. A., 1999a, A novel golgi-localisation domain shared by a class of coiled-coil peripheral membrane proteins. Curr. Biol. 9:385–388.

    Google Scholar 

  • Kjer-Nielsen, L., van Vliet, C., Erlich, R., Toh, B. H., and Gleeson, P. A., 1999b, The Golgi-tar-geting sequence of the peripheral membrane protein p230. J. Cell Sci. 112:1645–1654.

    Google Scholar 

  • Klarlund, J. K., Guilherme, A., Holik, J. J., Virbasius, J. V., Chawla, A., and Czech, M. P., 1997, Signaling by phosphoinositide-3,4,5-trisphosphate through proteins containing pleckstrin and Sec7 homology domains [see comments]. Science 275:1927–1930.

    Google Scholar 

  • Klausner, R. D., Donaldson, J. G., and Lippincott-Schwartz, J., 1992, Brefeldin A: insights into the control of membrane traffic and organelle structure. J. Cell Biol. 116:1071–1080.

    Google Scholar 

  • Kok, J. W., Babia, T., Filipeanu, C. M., Nelemans, A., Egea, G., and Hoekstra, D., 1998, PDMP blocks brefeldin A-induced retrograde membrane transport from golgi to ER evidence for involvement of calcium homeostasis and dissociation from sphingolipid metabolism. J. Cell Biol. 142:25–38.

    Google Scholar 

  • Kolanus, W., Nagel, W., Schiller, B., Zeitlmann, L., Godar, S., et al., 1996, Alpha L beta 2 integrin/LFA-1 binding to ICAM-1 induced by cytohesin-1, a cytoplasmic regulatory molecule. Cell86:233–242.

    Google Scholar 

  • Komhoff, M., Hollinshead, M., Tooze, J., and Kern, H. F., 1994, Brefeldin A induced dose-dependent changes to Golgi structure and function in the rat exocrine pancreas. Eur. J. Cell Biol. 63:192–207.

    Google Scholar 

  • Kooy, J., Toh, B. H., Pettitt, J. M., Erlich, R., and Gleeson, P. A., 1992, Human autoantibodies as reagents to conserved Golgi components. Characterization of a peripheral, 230-kDa compartment-specific Golgi protein. J. Biol. Chem. 267:20255–20263.

    Google Scholar 

  • Ktistakis, N. T., Roth, M. G., and Bloom, G. S., 1991, PtK1 cells contain a nondiffusible, dominant factor that makes theGolgiapparatus resistant tobrefeldin A. J.Cell Biol. 113: 1009–1023.

    Google Scholar 

  • Ladinsky, M. S., and Howell, K. E., 1992, The trans-Golgi network can be dissected structurally and functionally from the cisternae of the Golgi complex by brefeldin A. Eur. J. Cell Biol. 59:92–105.

    Google Scholar 

  • Levine, T. P., and Munro, S., 1998, The pleckstrin homology domain of oxysterol-binding protein recognises a determinant specific to Golgi membranes. Curr. Biol. 8:729–739.

    Google Scholar 

  • Lewin, D. A., Sheff, D., Ooi, C. E., Whitney, J. A., Yamamoto, E., et al., 1998, Cloning, expression, and localization of a novel gamma-adaptin-like molecule. FEBS. Lett. 435:263–268.

    Google Scholar 

  • Lewis, M. J., and Pelham, H. R., 1990, A human homologue of the yeast HDEL receptor. Nature 348:162–163.

    Google Scholar 

  • Lewis, M. J., and Pelham, H. R., 1992, Ligand-induced redistribution of a human KDEL receptor from the Golgi complex to the endoplasmic reticulum. Cell 68:353–364.

    Google Scholar 

  • Lippincott-Schwartz, J., Donaldson, J. G., Schweizer, A., Berger, E. G., Hauri, H. P., et al., 1990, Microtubule-dependent retrograde transport of proteins into the ER in the presence of brefeldin A suggests an ER recycling pathway. Cell 60:821–836.

    Google Scholar 

  • Lippincott-Schwartz, J., Yuan, L., Tipper, C., Amherdt, M., Orci, L., and Klausner, R. D., 1991, Brefeldin A’s effects on endosomes, lysosomes, and the TGN suggest a general mechanism for regulating organelle structure and membrane traffic. Cell 67:601–616.

    Google Scholar 

  • Lippincott-Schwartz, J., Yuan, L. C., Bonifacino, J. S., and Klausner, R. D., 1989, Rapid redistribution of Golgi proteins into the ER in cells treated with brefeldin A: evidence for membrane cycling from Golgi to ER. Cell 56:801–813.

    Google Scholar 

  • Liu, L., and Pohajdak, B., 1992, Cloning and sequencing of a human cDNA from cytolytic NK/T cells with homology to yeast SEC7. Biochirn. Biophys. Acta. 1132:75–78.

    Google Scholar 

  • Love, H. D., Lin, C. C., Short, C. S., and Ostermann, J., 1998, Isolation of functional Golgi-derived vesicles with a possible role in retrograde transport. J. Cell Biol. 140:541–551.

    Google Scholar 

  • Low, S. H., Tang, B. L., Wong, S. H., and Hong, W., 1992, Selective inhibition of protein targeting to the apical domain of MDCK cells by brefeldin A. J. Cell Biol. 118:51–62.

    Google Scholar 

  • Lupashin, V. V., Hamamoto, S., and Schekman, R. W., 1996, Biochemical requirements for the targetin gand fusion of ER-derived transport vesicles with purified yeast Golgi membranes. J. Cell Biol. 132:277–289.

    Google Scholar 

  • Lupashin, V. V., Kononova, S. V., Ratner Ye, N., Tsiomenko, A. B., and Kulaev, I. S., 1992, Identification of a novel secreted glycoprotein of the yeast Saccharomyces cerevisiae stimulated by heat shock. Yeast 8:157–169.

    Google Scholar 

  • Mansour, S. J., Herbrick, J. A., Scherer, S. W., and Melancon, P., 1998, Human GBF1 is a ubiquitously expressed gene of the Sec7 domain family mapping to 10q24. Genomics 54:323–327.

    Google Scholar 

  • Meacci, E., Tsai, S. C., Adamik, R., Moss, J., and Vaughan, M., 1997, Cytohesin-1, a cytosolic guanine nucleotide-exchange protein for ADP-ribosylation factor. Proc. Natl. Acad. Sci. U. S. A. 94:1745–1748.

    Google Scholar 

  • Miller, S. G., Carnell, L., and Moore, H. H., 1992, Post-Golgi membrane traffic: brefeldin A inhibits export from distal Golgi compartments to the cell surface but not recycling. J. Cell Biol. 118:267–283.

    Google Scholar 

  • Mironov, A., Colanzi, A., Silletta, M. G., Fiucci, G., Flati, S., et al., 1997, Role of NAD+ and ADP-ribosylation in the maintenance of the Golgi structure. J. Cell Biol. 1391109–1118.

    Google Scholar 

  • Misumi, Y., Miki, K., Takatsuki, A., Tamura, G., and Ikehara, Y., 1986, Novel blockade by brefeldin A of intracellular transport of secretory proteins in cultured rat hepatocytes. J. Biol. Chem. 261:11398–11403.

    Google Scholar 

  • Morin-Ganet, M. N., Rambourg, A., Clermont, Y., and Kepes, F., 1998, Role of endoplasmic reticulum-derived vesicles in the formation of Golgi elements in Sec23 and Sec18 Saccharomyces Cerevisiae mutants. Anat. Rec. 251:256–264.

    Google Scholar 

  • Morinaga, N., Moss, J., and Vaughan, M., 1997, Cloning and expression of a cDNA encoding a bovine brain brefeldin A-sensitive guanine nucleotide-exchange protein for ADP-ribosylation factor. Proc. Natl. Acad. Sci. USA 94:12926–12931.

    Google Scholar 

  • Morinaga, N., Tsai, S. C., Moss, J., and Vaughan, M., 1996, Isolation of a brefeldin A-inhibited guanine nucleotide-exchange protein for ADP ribosylation factor (ARF) 1 and ARF3 that contains a Sec7-like domain. Proc. Natl. Acad. Sci. USA 93:12856–12860.

    Google Scholar 

  • Mossessova, E., Gulbis, J. M., and Goldberg, J., 1998, Structure of the guanine nucleotide exchange factor Sec7 domain of human arnoand analysis of the interaction with ARF GTPase. Cell 92:415–423.

    Google Scholar 

  • Mundigl, O., Matteoli, M., Daniell, L., Thomas-Reetz, A., Metcalf, A., et al., 1993, Synaptic vesicle proteins and early endosomes in cultured hippocampal neurons: differential effects of Brefeldin A in axon and dendrites. J. Cell Biol. 122:1207–1221.

    Google Scholar 

  • Munro, S., and Nichols, B. J., 1999, The GRIP domain-a novel golgi-targeting domain found in several coiled-coil proteins. Curr. Biol. 9:377–380.

    Google Scholar 

  • Munro, S., and Pelham, H. R., 1987, A Gterminal signal prevents secretion of luminal ER proteins. Cell 48:5499–907.

    Google Scholar 

  • Musch, A., Cohen, D., and Rodriguez-Boulan, E., 1997, Myosin II is involved in the production of constitutive transport vesicles from the TGN. J. Cell Biol. 138:291–306.

    Google Scholar 

  • Nagao, K., Taguchi, Y., Arioka, M., Kadokura, H., Takatsuki, A., et al., 1995, bfr1+, a novel gene of Schizosaccharomyces pombe which confers brefeldin A resistance, is structurally related to the ATP-binding cassette superfamily. J. Bacteriol 177:1536–1543.

    Google Scholar 

  • Nagel, W., Schilcher, P., Zeitlmann, L., and Kolanus, W., 1998, The PH domain and the poly-basic c domain of cytohesin-1 cooperate specifically in plasma membrane association and cellular function. Mol. Biol. Cell 9:1981–1994.

    Google Scholar 

  • Narula, N., McMorrow, I., Plopper, G., Doherty, J., Matlin, K. S., et al., 1992, Identification of a 200-kD, brefeldin-sensitive protein on Golgi membranes. J. Cell Biol. 117:97–38.

    Google Scholar 

  • Narula, N., and Stow, J. L., 1995, Distinct coated vesicles labeled for p200 bud from trans-Golgi network membranes. Proc. Natl. Acad. Sci. USA 92:28762–878.

    Google Scholar 

  • Nilsson, T., Pypaert, M., Hoe, M. H., Slusarewicz, P., Berger, E. G., and Warren, G., 1993, Over-lapping distribution of two glycosyltransferases in the Golgi apparatus of HeLa cells. J. Cell Biol. 120:5–13.

    Google Scholar 

  • Nishikawa, S., Umemoto, N., Ohsumi, Y., Nakano, A., and Anraku, Y., 1990, Biogenesis of vacuolar membrane glycoproteins of yeast Saccharomyces cerevisiae. J. Biol. Chem. 265:7440–7448.

    Google Scholar 

  • Novick, P., Ferro, S., and Schekman, R., 1981, Order of events in the yeast secretory pathway. Cell 25:461–469.

    Google Scholar 

  • Novick, P., Field, C., and Schekman, R., 1980, Identification of 23 complementation groups required for post-translational events in the yeast secretory pathway. Cell 21205–215.

    Google Scholar 

  • Ooi, C. E., Dell’Angelica, E. C., and Bonifacino, J. S., 1998, ADP-Ribosylation factor 1 (ARF1) regulates recruitment of the AP-3 adaptor complex to membranes. J. Cell Biol. 142:391–402.

    Google Scholar 

  • Oprins, A., Duden, R., Kreis, T. E., Geuze, H. J., and Slot, J. W., 1993, Beta-COP localizes mainly to the cis-Golgi side in exocrine pancreas. J. Cell Biol. 121:49–59.

    Google Scholar 

  • Orci, L., Perrelet, A., Ravazzola, M., Wieland, F. T., Schekman, R., and Rothman, J. E., 1993, “BFA bodies”: a subcompartment of the endoplasmic reticulum. Proc. Natl. Acad. Sci. USA 90:11089–11093.

    Google Scholar 

  • Orci, L., Tagaya, M., Amherdt, M., Perrelet, A., Donaldson, J. G., et al., 1991, Brefeldin A, a drug that blocks secretion, prevents the assembly of non-clathrin-coated buds on Golgi cisternae. Cell 64:2183–1195.

    Google Scholar 

  • Orzech, E., Schlessinger, K., Weiss, A,, Okamoto, C.T., and Aroeti, B., 1999, Interactions of the AP-1 Golgi adaptor with the polymeric immunoglobulin receptor and their possible role in mediating brefeldin A-sensitive basolateral targeting from the trans-Golgi network. J. Biol. Chem. 274:2201–2215.

    Google Scholar 

  • Palade, G., 1975, Intracellular aspects of the process of protein synthesis. Science 189:347–358.

    Google Scholar 

  • Palmer, D. J., Helms, J. B., Beckers, C. J., Orci, L., and Rothman, J. E., 1993, Binding of coatomer to Golgi membranes requires ADP-ribosylation factor. J. Biol. Chem. 268:12083–12089.

    Google Scholar 

  • Paris, S., Beraud-Dufour, S., Robineau, S., Bigay, J., Antonny, B., et al., 1997, Role of protein-phospholipid interactions in the activation of ARF1 by the guanine nucleotide exchange factor Arno. J. Biol. Chem. 272:22221–22226.

    Google Scholar 

  • Pavelka, M., and Ellinger, A., 1993, Early and late transformations occurring at organelles of the Golgi area under the influence of brefeldin A: an ultrastructural and lectin cytochemical study. J. Histochem Cytochem 41:1031–1042.

    Google Scholar 

  • Pelham, H. R., 1988, Evidence that luminal ER proteins are sorted from secreted proteins in a post-ER compartment. Embo. J. 7:913–918.

    Google Scholar 

  • Pelham, H. R., 1998, Getting through the Golgi complex. Trends. Cell Biol. 8:45–49.

    Google Scholar 

  • Peyroche, A., Antonny, B., Robineau, S., Acker, J., Cherfils, J., and Jackson, C. L., 1999, Brefeldin A acts to stabilize an abortive ARF-GDP-Sec7 domain protein complex: involvement of specific residues of the Sec7 domain. Mol. Cell 3:275–285.

    Google Scholar 

  • Peyroche, A., Paris, S., and Jackson, C. L., 1996, Nucleotide exchange on ARF mediated by yeast Gea1 protein. Nature 384:479–431.

    Google Scholar 

  • Podos, S. D., Reddy, P., Ashkenas, J., and Krieger, M., 1994, LDLC encodes a brefeldin A-sensitive, peripheral Golgi protein required for normal Golgi function. J. Cell Biol. 127:679–491.

    Google Scholar 

  • Presley, J. F., Smith, C., Hirschberg, K., Miller, C., Cole, N. B., and et al., 1998, Golgi membrane dynamics. Mol. Biol. Cell 9:3617–1626.

    Google Scholar 

  • Prydz, K., Hansen, S. H., Sandvig, K., and van Deurs, B., 1992, Effects of brefeldin A on endocytosis, transcytosis and transport to the Golgi complex in polarized MDCK cells. J. Cell Biol. 119:259–272.

    Google Scholar 

  • Rabouille, C., Hui, N., Hunte, F., Kieckbusch, R., Berger, E. G., and et al., 1995, Mapping the distribution of Golgi enzymes involved in the construction of complex oligosaccharides. J. Cell Sci. 108:1617–1627.

    Google Scholar 

  • Rambourg, A., and Clermont, Y., 1990, Three-dimensional electron microscopy: structure of the Golgi apparatus. Eur. J. Cell Biol. 51:189–200.

    Google Scholar 

  • Rambourg, A., Clermont, Y., Chretien, M., and Olivier, L., 1993a, Modulation of the Golgi apparatus in stimulated and nonstimulated prolactin cells of female rats. Anat. Rec. 235:353–362.

    Google Scholar 

  • Rambourg, A., Clermont, Y., Hermo, L., and Segretain, D., 1987, Tridimensional architecture of the Golgi apparatus and its components in mucous cells of Brunner’s glands of the mouse. Am. J. Anat. 179:95–107.

    Google Scholar 

  • Rambourg, A., Clermont, Y., Jackson, C. L., and Kepes, F., 1995, Effects of brefeldin A on the three-dimensional structure of the Golgi apparatus in a sensitive strain of Saccharomyces cerevisiae. Anat. Rec. 241:1–9.

    Google Scholar 

  • Rambourg, A., Clermont, Y., and Kepes, F., 1993b, Modulation of the Golgi apparatus in Saccharomyces cerevisiae Sec7 mutants as seen by three-dimensional electron microscopy. Anat. Rec. 237:441–452.

    Google Scholar 

  • Randazzo, P. A., Yang, Y. C., Rulka, C., and Kahn, R. A., 1993, Activation of ADP-ribosylation factor by Golgi membranes. Evidence for a brefeldin A-and protease-sensitive activating factor on Golgi membranes. J. Biol. Chem. 268:9555–9563.

    Google Scholar 

  • Reaves, B., and Banting, G., 1992, Perturbation of the morphology of the trans-Golgi network followingBrefeldinAtreatment: redistribution of a TGN-specificintegralmembrane protein, TGN38. J. Cell Biol. 116:85–94.

    Google Scholar 

  • Roa, M., Comet, V., Yang, C. Z., and Goud, B., 1993, The small GTP-binding protein rab6p is redistributed in the cytosol by brefeldin A. J. Cell Sci. 106:789–802.

    Google Scholar 

  • Roberts, C. J., Pohlig, G., Rothman, J. H., and Stevens, T. H., 1989, Structure, biosynthesis, and localization of dipeptidyl aminopeptidase B, an integral membrane glycoprotein of the yeast vacuole. J. CeIl Biol. 108:1363–1373.

    Google Scholar 

  • Rossanese, O. W., Soderholm, J., Bevis, B. J., Sears, I. B., O’Connor, J., et al., 1999, Golgi structure correlates with transitional endoplasmic reticulum organization in Pichia pastoris and Saccharomyces cerevisiae. J. Cell Biol. 145:69–81.

    Google Scholar 

  • Rothman, J. H., Raymond, C. K., Gilbert, T., O’Hara, P. J., and Stevens, T. H., 1990, A putative GTP binding protein homologous to interferon-inducible Mx proteins performs an essential function in yeast protein sorting. Cell 61:1063–1074.

    Google Scholar 

  • Russ, G., Bennink, J. R., Bachi, T., and Yewdell, J. W., 1991, Influenza virus hemagglutinin trimers and monomers maintain distinct biochemical modifications and intracellular distribution in brefeldin A-treated cells. Cell Regul. 2:549–563.

    Google Scholar 

  • Russo, P., Kalkkinen, N., Sareneva, H., Paakkola, J., and Makarow, M., 1992, A heat shock gene from Saccharomyces cerevisiae encoding a secretory glycoprotein [published erratum appears in Proc. Natl. Acad. Sci. USA 1992 Sep 15;89(18): 8857]. Proc. Natl. Acad. Sci. USA 89:3671–3675.

    Google Scholar 

  • Sacher, M., Jiang, Y., Barrowman, J., Scarpa, A., Burston, J., et al., 1998, TRAPP, a highly conserved novel complex on the cis-Golgi that mediates vesicle docking and fusion. Embo. J. 17:2494–2503.

    Google Scholar 

  • Sandvig, K., Prydz, K., Hansen, S. H., and van Deurs, B., 1991, Ricin transport in brefeldin A-treated cells: correlation between Golgi structure and toxic effect. J. Cell Biol. 115:971–981.

    Google Scholar 

  • Sata, M., Donaldson, J. G., Moss, J., and Vaughan, M., 1998, Brefeldin A-inhibited guanine nucleotide-exchange activity of Sec7 domain from yeast Sec7 with yeast and mammalian ADP ribosylation factors. Proc. Natl. Acad. Sci. USA 95:4204–4208.

    Google Scholar 

  • Sata, M., Moss, J., and Vaughan, M., 1999, Structural basis for the inhibitory effect of brefeldin A on guanine nucleotide-exchange proteins for ADP-ribosylation factors. Proc. Natl. Acad. Sci. USA 96:12752–2757.

    Google Scholar 

  • Sato, K., Nishikawa, S., and Nakano, A., 1995, Membrane protein retrieval from the Golgi apparatus to the endoplasmic reticulum (ER): characterization of the RER1 gene product as a component involved in ER localization of Sec12p. Mol. Biol. Cell 61:1459–1477.

    Google Scholar 

  • Scheel, J., Pepperkok, R., Lowe, M., Griffiths, G., and Kreis, T. E., 1997, Dissociation of coatomer from membranes is required for brefeldin A-induced transfer of Golgi enzymes to the endoplasmic reticulum. J. Cell Biol. 137:319–333.

    Google Scholar 

  • Sciaky, N., Presley, J., Smith, C., Zaal, K. J., Cole, N., et al., 1997, Golgi tubule traffic and the effects of brefeldin A visualized in living cells. J. Cell Biol. 139:1137–1155.

    Google Scholar 

  • Segev, N., Mulholland, J., and Botstein, D., 1988, The yeast GTP-binding YPT1 protein and a mammalian counterpart are associated with the secretion machinery. Cell 52:915–924.

    Google Scholar 

  • Serafini, T., Orci, L., Amherdt, M., Brunner, M., Kahn, R. A., and Rothman, J. E., 1991a, ADP-ribosylation factor is a subunit of the coat of Golgi-derived COP-coated vesicles: a novel role for a GTP-binding protein. Cell 67:239–253.

    Google Scholar 

  • Serafini, T., Stenbeck, G., Brecht, A., Lottspeich, F., Orci, L., et al., 1991b, A coat subunit of Golgi-derived non-clathrin-coated vesicles with homology to theclathrin-coated vesicle coat protein beta-adaptin. Nature 349:215–220.

    Google Scholar 

  • Shevell, D. E., Leu, W. M., Gillmor, C. S., Xia, G., Feldmann, K. A,, and Chua, N. H., 1994, EMB30 is essential for normal cell division, cell expansion, and cell adhesion in Arabidopsis and encodes a protein that has similarity to Sec. Cell 77:1051–1062.

    Google Scholar 

  • Singleton, V. L., Bohonos, N., and Ullstrup, A. J., 1958, Decumbin, a New Compound from a Species of Penicillium. Nature 181:1072–1073.

    Google Scholar 

  • Stevens, T., Esmon, B., and Schekman, R., 1982, Early stages in the yeast secretory pathwayarerequired fortransport of carboxypeptidase Y to the vacuole. Cell 30439–448.

    Google Scholar 

  • Strous, G. J., van Kerkhof, P., van Meer, G., Rijnboutt, S., and Stoorvogel, W., 1993, Differential effects of brefeldin A on transport of secretory and lysosomal proteins. J. Biol. Chem. 268:2341–2347.

    Google Scholar 

  • Takatsu, H., Sakurai, M., Shin, H. W., Murakami, K., and Nakayama, K., 1998, Identification and characterization of novel clathrin adaptor-related proteins. J. Biol. Chem. 273:24693–24700.

    Google Scholar 

  • Takatsuki, A., and Tamura, G., 1985, Brefeldin A, a Specific Inhibitor of Intracellular Translocation of Vesicular Stomatitis Virus G Protein: Intracellular Accumulation of Highmannose Type G Protein and Inhibition of Its Cell Surface Expression. Agric. Biol. Chem. 49:899–902.

    Google Scholar 

  • Tang, B. L., Low, S. H., and Hong, W., 1995, Differential response of resident proteins and cycling proteins of the Golgi to brefeldin A. Eur. J. Cell Biol. 68:199–205.

    Google Scholar 

  • Tang, B. L., Wong, S. H., Qi, X. L., Low, S. H., and Hong, W., 1993, Molecular cloning, characterization, subcellular localization and dynamics of p23, the mammalian KDEL receptor. J. Cell Biol. 120:325–328.

    Google Scholar 

  • Taylor, T. C., Kanstein, M., Weidman, P., and Melancon, P., 1994, Cytosolic ARFs are required for vesicle formation but not for cell-free intra-Golgi transport: evidence for coated vesicle-independent transport. Mol. Biol. Cell 5:237–252.

    Google Scholar 

  • Tooze, J., and Hollinshead, M., 1992, In AtT20 and HeLa cells brefeldin A induces the fusion of tubular endosomes and changes their distribution and some of their endocytic properties. J. Cell Biol. 118:813–830.

    Google Scholar 

  • Torii, S., Banno, T., Watanabe, T., Ikehara, Y., Murakami, K., and Nakayama, K., 1995, Cytotoxicity of brefeldin A correlates with its inhibitory effect on membrane binding of COP coat proteins. J. Biol. Chem. 270:11574–11580.

    Google Scholar 

  • Tsai, S. C., Adamik, R., Hong, J. X., Moss, J., Vaughan, M., et al., 1998, Effects of arfaptin 1 on guanine nucleotide-dependent activation of phospholipase D and cholera toxin by ADP-ribosylation factor. J. Biol. Chem. 273:20697–20701.

    Google Scholar 

  • Tbri, T. G., and Rose, J. K., 1995, Characterization of a novel Schizosaccharomyces pombe multidrug resistance transporter conferring brefeldin A resistance. Biochem. Biophys. Res. Commun. 213:410–418.

    Google Scholar 

  • Tbri, T. G., Webster, P., and Rose, J. K., 1994, Brefeldin A sensitivity and resistance in Schizosac-charomyces pombe. Isolation of multiple genes conferring resistance. J. Biol. Chem. 269:24229–24236.

    Google Scholar 

  • Ulmer, J. B., and Palade, G. E., 1991, Effects of Brefeldin A on the Golgi complex, endoplasmic reticulum and viral envelope glycoproteins in murine erythroleukemia cells. Eur. J. Cell Biol. 54:38–54.

    Google Scholar 

  • Velasco, A., Hendricks, L., Moremen, K. W., Tulsiani, D. R., Touster, O., and Farquhar, M. G., 1993, Cell type-dependent variations in the subcellular distribution of alpha-mannosidase I and II. J. Cell Biol. 122:39–51.

    Google Scholar 

  • Vogel, J. P., Lee, J. N., Kirsch, D. R., Rose, M. D., and Sztul, E. S., 1993, Brefeldin A causes a defect in secretion in Saccharomyces cerevisiae. J. Biol. Chem. 268:3040–3043.

    Google Scholar 

  • Waters, M. G., Serafini, T., and Rothman, J. E., 1991, “Coatomer”: a cytosolic protein complex containing subunits of non-clathrin-coated Golgi transport vesicles. Nature 349:248–251.

    Google Scholar 

  • Wieland, F. T., Gleason, M. L., Serafini, T. A., and Rothman, J. E., 1987, The rate of bulk flow from the endoplasmic reticulum to the cell surface. Cell 50:289–300.

    Google Scholar 

  • Wood, S. A,, and Brown, W. J., 1992, The morphology but not the function of endosomes and lysosomes is altered by brefeldin A. J. Cell Biol. 119:273–285.

    Google Scholar 

  • Wood, S. A., Park, J. E., and Brown, W. J., 1991, Brefeldin A causes a microtubule-mediated fusion of the trans-Golgi network and early endosomes. Cell 67:591–600.

    Google Scholar 

  • Yan, J. P., Colon, M. E., Beebe, L. A., and Melancon, P., 1994, Isolation and characterization of mutant CHO cell lines with compartment-specific resistance to brefeldin A. J. Cell Biol. 126:65–75.

    Google Scholar 

  • Zagulski, M., Babinska, B., Gromadka, R., Migdalski, A., Rytka, J., et al., 1995, The sequence of 24.3 kb from chromosome X reveals five complete open reading frames, all of which correspond to new genes, and a tandem insertion of aTy1 transposon. Yeast 11:1179–1186.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Jackson, C.L. (2002). Brefeldin A Revealing the Fundamental Principles Governing Membrane Dynamics and Protein Transport. In: Hilderson, H., Fuller, S. (eds) Fusion of Biological Membranes and Related Problems. Subcellular Biochemistry, vol 34. Springer, Boston, MA. https://doi.org/10.1007/0-306-46824-7_6

Download citation

  • DOI: https://doi.org/10.1007/0-306-46824-7_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46313-6

  • Online ISBN: 978-0-306-46824-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics