Skip to main content

Cannabinoids in neurodegeneration and neuroprotection

  • Chapter
Cannabinoids as Therapeutics

Part of the book series: Milestones in Drug Therapy MDT ((MDT))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Guzmán M, Sánchez C, Galve-Roperh I (2001) Control of the cell survival/death decision by cannabinoids. J Mol Med 78: 613–625

    Article  PubMed  Google Scholar 

  2. Maccarrone M, Finazzi-Agro A (2003) The endocannabinoid system, anandamide and the regulation of mammalian cell apoptosis. Cell Death Differ 10: 946–955

    Article  PubMed  Google Scholar 

  3. De Petrocellis L, Melck D, Bisogno T, Di Marzo V (2000) Endocannabinoids and fatty acid amides in cancer, inflammation and related disorders. Chem Phys Lipids 108: 191–209

    Article  PubMed  Google Scholar 

  4. Grundy RI, Rabuffeti M, Beltramo M (2001) Cannabinoids and neuroprotection. Mol Neurobiol 24: 29–52

    Article  PubMed  Google Scholar 

  5. Mechoulam R, Panikashivili A, Shohami E (2002) Cannabinoids and brain injury: therapeutic implications. Trends Mol Med 8: 58–61

    Article  PubMed  Google Scholar 

  6. Grundy RI (2002) The therapeutic potential of the cannabinoids in neuroprotection. Expert Opin Investig Drugs 11: 1–10

    Article  PubMed  Google Scholar 

  7. Fernández-Ruiz JJ, Lastres-Becker I, Cabranes A, González S, Ramos JA (2002) Endocannabinoids and basal ganglia functionality. Prost Leukot Essent Fatty Acids 66: 263–273

    Google Scholar 

  8. Hansen HS, Moesgaard B, Petersen G, Hansen HH (2002) Putative neuroprotective actions of N-acyl-ethanolamines. Pharmacol Ther 95: 119–126

    Article  PubMed  Google Scholar 

  9. van der Stelt M, Veldhuis WB, Maccarrone M, Bar PR, Nicolay K, Veldink GA, Di Marzo V, Vliegenthart JF (2002) Acute neuronal injury, excitotoxicity, and the endocannabinoid system. Mol Neurobiol 26: 317–346

    Article  PubMed  Google Scholar 

  10. van der Stelt M, Veldhuis WB, van Haaften GW, Fezza F, Bisogno T, Bär PR, Veldink GA, Vliegenthart JF, Di Marzo V, Nicolay K (2001) Exogenous anandamide protects rat brain against acute neuronal injury in vivo. J Neurosci 21: 8765–8771

    PubMed  Google Scholar 

  11. Hansen HS, Moesgaard B, Hansen HH, Schousboe A, Petersen G (1999) Formation of N-acyl-phosphatidylethanolamine and N-acylethanolamine (including anandamide) during glutamate-induced neurotoxicity. Lipids 34: S327–S330

    PubMed  Google Scholar 

  12. Hansen HH, Schmid PC, Bittigau P, Lastres-Becker I, Berrendero F, Manzanares J, Ikonomidou C, Schmid HH, Fernandez-Ruiz JJ, Hansen HS (2001) Anandamide, but not 2-arachidonoylglycerol, accumulates during in vivo neurodegeneration. J Neurochem 78: 1415–1427

    Article  PubMed  Google Scholar 

  13. Marsicano G, Goodenough S, Monory K, Hermann H, Eder M, Cannich A, Azad SC, Cascio MG, Gutierrez SO, van der Stelt M et al. (2003) CB1 cannabinoid receptors and on-demand defense against excitotoxicity. Science 302: 84–88

    Article  PubMed  Google Scholar 

  14. Gubellini P, Picconi B, Bari M, Battista N, Calabresi P, Centonze D, Bernardi G, Finazzi-Agrò A, Maccarrone M (2002) Experimental parkinsonism alters endocannabinoid degradation: implications for striatal glutamatergic transmission. J Neurosci 22: 6900–6907

    PubMed  Google Scholar 

  15. Panikashvili D, Simeonidou C, Ben-Shabat S, Hanuš L, Breuer A, Mechoulam R, Shohami E (2001) An endogenous cannabinoid (2-AG) is neuroprotective after brain injury. Nature 413: 527–531

    Article  PubMed  Google Scholar 

  16. Schabitz WR, Giuffrida A, Berger C, Aschoff A, Schwaninger M, Schwab S, Piomelli D (2002) Release of fatty acid amides in a patient with hemispheric stroke: a microdialysis study. Stroke 33: 2112–2124

    Article  PubMed  Google Scholar 

  17. Jin KL, Mao XO, Goldsmith PC, Greenberg DA (2000) CB1 cannabinoid receptor induction in experimental stroke. Ann Neurol 48: 257–261

    Article  PubMed  Google Scholar 

  18. Benito C, Nuñez E, Tolon RM, Carrier EJ, Rabano A, Hillard CJ, Romero J (2003) Cannabinoid CB2 receptors and fatty acid amide hydrolase are selectively overexpressed in neuritic plaque-associated glia in Alzheimer’s disease brains. J Neurosci 23: 11136–11141

    PubMed  Google Scholar 

  19. Aroyo I, González S, Nuñez E, Lastres-Becker I, Sagredo O, Mechoulam R, Romero J, Ramos JA, Brouillet E, Fernández-Ruiz J (2005) Involvement of CB2 receptors in the neuroprotective effects of cannabinoids in rats with striatal atrophy induced by local application of malonate, an experimental model of Huntington’s disease. J Neurosci; submitted

    Google Scholar 

  20. Sánchez C, Galve-Roperh I, Canova C, Brachet P, Guzman M (1998) D9-tetrahydrocannabinol induces apoptosis in C6 glioma cells. FEBS Lett 436: 6–10

    Article  PubMed  Google Scholar 

  21. Galve-Roperh I, Sanchez C, Cortes ML, del Pulgar TG, Izquierdo M, Guzman M (2000) Anti-tumoral action of cannabinoids: involvement of sustained ceramide accumulation and extra-cellular signal-regulated kinase activation. Nat Med 6: 313–319

    Article  PubMed  Google Scholar 

  22. Blázquez C, Casanova ML, Planas A, Del Pulgar TG, Villanueva C, Fernandez-Acenero MJ, Aragones J, Huffman JW, Jorcano JL, Guzman M (2003) Inhibition of tumor angiogenesis by cannabinoids. FASEB J 17: 529–531

    PubMed  Google Scholar 

  23. Guzmán M, Sanchez C (1999) Effects of cannabinoids on energy metabolism. Life Sci 65: 657–664

    Article  PubMed  Google Scholar 

  24. Witting A, Stella N (2005) Cannabinoid signaling in glial cells in health and disease. Curr Neuropharmacol; in press

    Google Scholar 

  25. Fowler CJ (2003) Plant-derived, synthetic and endogenous cannabinoids as neuroprotective agents. Non-psychoactive cannabinoids, ‘entourage’ compounds and inhibitors of N-acyl ethanolamine breakdown as therapeutic strategies to avoid pyschotropic effects. Brain Res Rev 41: 26–43

    Article  PubMed  Google Scholar 

  26. Doble A (1999) The role of excitotoxicity in neurodegenerative disease: implications for therapy. Pharmacol Ther 81: 163–221

    Article  PubMed  Google Scholar 

  27. Romero J, Lastres-Becker I, de Miguel R, Bernándero F, Ramos JA, Fernindez-Ruiz JJ (2002) The endogenous cannabinoid system and the basal ganglia: biochemical, pharmacological and therapeutic aspects. Pharmacol Ther 95: 137–152

    Article  PubMed  Google Scholar 

  28. Shen M, Thayer SA (1998) Cannabinoid receptor agonists protect cultured rat hippocampal neurons from excitotoxicity. Mol Pharmacol 54: 459–462

    PubMed  Google Scholar 

  29. Abood ME, Rizvi G, Sallapudi N, McAllister SD (2001) Activation of the CB1 cannabinoid receptor protects cultured mouse spinal neurons against excitotoxicity. Neurosci Lett 309: 197–201

    Article  PubMed  Google Scholar 

  30. Nagayama T, Sinor AD, Simon RP, Chen J, Graham SH, Jin KL, Greenberg DA (1999) Cannabinoids and neuroprotection in global and focal cerebral ischemia and in neuronal cultures. J Neurosci 19: 2987–2995

    PubMed  Google Scholar 

  31. Schlicker E, Kathmann M (2001) Modulation of transmitter release via presynaptic cannabinoid receptors. Trends Pharmacol Sci 22: 565–572

    Article  PubMed  Google Scholar 

  32. Lastres-Becker I, Bizat N, Boyer F, Hantraye P, Brouillet E, Fernández-Ruiz J (2003) Effects of cannabinoids in the rat model of Huntington’s disease generated by an intrastriatal injection of malonate. Neuroreport 14: 813–816

    Article  PubMed  Google Scholar 

  33. Hansen HH, Azcoitia I, Pons S, Romero J, Garcia-Segura LM, Ramos JA, Hansen HS, Fernandez-Ruiz J (2002) Blockade of cannabinoid CB1 receptor function protects against in vivo disseminating brain damage following NMDA-induced excitotoxicity. J Neurochem 82: 154–158

    Article  PubMed  Google Scholar 

  34. Shohami E, Mechoulam R (2000) A non-psychotropic cannabinoid with neuroprotective properties. Drug Dev Res 50: 211–215

    Article  Google Scholar 

  35. Nadler V, Mechoulam R, Sokolovsky M (1993) Blockade of 45Ca2+ influx through the N-methyl-D-aspartate receptor ion channel by the non-psychoactive cannabinoid HU-211. Brain Res 622: 79–85

    Article  PubMed  Google Scholar 

  36. Nadler V, Biegon A, Beit-Yannai E, Adamchik J, Shohami E (1995) 45Ca accumulation in rat brain after closed head injury; attenuation by the novel neuroprotective agent HU-211. Brain Res 685: 1–11

    Article  PubMed  Google Scholar 

  37. Eshhar N, Striem S, Kohen R, Tirosh O, Biegon A (1995) Neuroprotective and antioxidant activities of HU-211, a novel NMDA receptor antagonist. Eur J Pharmacol 283: 19–29

    Article  PubMed  Google Scholar 

  38. Hampson AJ, Bornheim LM, Scanziani M, Yost CS, Gray AT, Hansen BM, Leonoudakis DJ, Bickler PE (1998) Dual effects of anandamide on NMDA receptor-mediated responses and neurotransmission. J Neurochem 70: 671–676

    PubMed  Google Scholar 

  39. Battaglia G, Bruno V, Pisani A, Centonze D, Catania MV, Calabresi P, Nicoletti F (2001) Selective blockade of type-1 metabotropic glutamate receptors induces neuroprotection by enhancing gabaergic transmission. Mol Cell Neurosci 17: 1071–1083

    Article  PubMed  Google Scholar 

  40. Maneuf YP, Nash JE, Croosman AR, Brotchie JM (1996) Activation of the cannabinoid receptor by D9-THC reduces GABA uptake in the globus pallidus. Eur J Pharmacol 308: 161–164

    Article  PubMed  Google Scholar 

  41. Romero J, de Miguel R, Ramos JA, Fernández-Ruiz J (1998) The activation of cannabinoid receptors in striatonigral neurons inhibited GABA uptake. Life Sci 62: 351–363

    Article  PubMed  Google Scholar 

  42. Saji M, Blau AD, Volpe BT (1996) Prevention of transneuronal degeneration of neurons in the substantial nigra reticulata by ablation of the subthalamic nucleus. Exp Neurol 141: 120–129

    Article  PubMed  Google Scholar 

  43. Mackie K, Hille B (1992) Cannabinoids inhibit N-type calcium channels in neuroblastoma-glioma cells. Proc Natl Acad Sci USA 89: 3825–3829

    PubMed  Google Scholar 

  44. Mackie K, Lai Y, Westenbroek R, Mitchell R (1995) Cannabinoids activate an inwardly rectifying potassium conductance and inhibit Q-type calcium currents in AtT20 cells transfected with rat brain cannabinoid receptor. J Neurosci 15: 6552–6561

    PubMed  Google Scholar 

  45. Pan X, Ikeda SR, Lewis DL (1996) Rat brain cannabinoid receptor modulates N-type Ca2+ channels in a neuronal expression system. Mol Pharmacol 49: 707–714

    PubMed  Google Scholar 

  46. Gebremedhin D, Lange AR, Campbell WB, Hillard CJ, Harder DR (1999) Cannabinoid CB1 receptor of cat cerebral arterial muscle functions to inhibit L-type Ca2+ channel current. Am J Physiol Heart Circ Physiol 276: H2085–H2093

    Google Scholar 

  47. Chemin J, Monteil A, Perez-Reyes E, Nargeot J, Lory P (2001) Direct inhibition of T-type calcium channels by the endogenous cannabinoid anandamide. EMBO J 20: 7033–7040

    Article  PubMed  Google Scholar 

  48. Deadwyler SA, Hampson RE, Bennett BA, Edwards TA, Mu J, Pacheco MA, Ward SJ, Childers SR (1993) Cannabinoids modulate potassium current in cultured hippocampal neurons. Recept Channel 1:121–134

    Google Scholar 

  49. McAllister SD, Griffin G, Satin LS, Abood ME (1999) Cannabinoid receptors can activate and inhibit G protein-coupled inwardly rectifying potassium channels in a xenopus oocyte expression system. J Pharmacol Exp Ther 291: 618–626

    PubMed  Google Scholar 

  50. van der Stelt M, Veldhuis WB, Bar PR, Veldink GA, Vliegenthart JF, Nicolay K (2001) Neuroprotection by D9-tetrahydrocannabinol, the main active compound in marijuana, against ouabain-induced in vivo excitotoxicity. J Neurosci 21: 6475–6579

    PubMed  Google Scholar 

  51. Hampson AJ, Grimaldi M (2001) Cannabinoid receptor activation and elevated cyclic AMP reduce glutamate neurotoxicity. Eur JNeurosci 13: 1529–1536

    Article  Google Scholar 

  52. Pong K (2003) Oxidative stress in neurodegenerative diseases: therapeutic implications for superoxide dismutase mimetics. Expert Opin Biol Ther 3: 127–139

    Article  PubMed  Google Scholar 

  53. Klein JA, Ackerman SL (2003) Oxidative stress, cell cycle, and neurodegeneration. J Clin Invest 111:785–793

    Article  PubMed  Google Scholar 

  54. Chan PH (2001) Reactive oxygen radicals in signaling and damage in the ischemic brain. J Cereb Blood Flow Metab 21: 2–14

    Article  PubMed  Google Scholar 

  55. Marsicano G, Moosmann B, Hermann H, Lutz B, Behl C (2002) Neuroprotective properties of cannabinoids against oxidative stress: role of the cannabinoid receptor CB1. J Neurochem 80:448–456

    Article  PubMed  Google Scholar 

  56. Hampson AJ, Grimaldi M, Axelrod J, Wink D (1998) Cannabidiol and (−)D9-tetrahydrocannabinol are neuroprotective antioxidants. Proc Natl Acad Sci USA 95: 8268–8273

    Article  PubMed  Google Scholar 

  57. Chen Y, Buck J (2000) Cannabinoids protect cells from oxidative cell death: a receptor-independent mechanism. J Pharmacol Exp Ther 293: 807–812

    PubMed  Google Scholar 

  58. Belayev L, Bar-Joseph A, Adamchik J, Biegon A (1995) HU-211, a nonpsychotropic cannabinoid, improves neurological signs and reduces brain damage after severe forebrain ischemia in rats. Mol Chem Neuropathol 25: 19–33

    PubMed  Google Scholar 

  59. Braida D, Pegorini S, Arcidiacono MV, Consalez GG, Croci L, Sala M (2003) Post-ischemic treatment with cannabidiol prevents electroencephalographic flattening, hyperlocomotion and neuronal injury in gerbils. Neurosci Lett 346: 61–64

    Article  PubMed  Google Scholar 

  60. Malfait AM, Gallily R, Sumariwalla PF, Malik AS, Andreakos E, Mechoulam R, Feldmann M (2000) The nonpsychoactive cannabis constituent cannabidiol is an oral anti-arthritic therapeutic in murine collagen-induced arthritis. Proc Natl Acad Sci USA 97: 9561–9566

    Article  PubMed  Google Scholar 

  61. Adams IB, Martin BR (1996) Cannabis: pharmacology and toxicology in animals and humans. Addiction 91: 1585–1614

    Article  PubMed  Google Scholar 

  62. Bisogno T, Hanuš L, De Petrocellis L, Tchilibon S, Ponde DE, Brandi I, Moriello AS, Davis JB, Mechoulam R, Di Marzo V (2001) Molecular targets for cannabidiol and its synthetic analogues: effects on vanilloid VR1 receptors and on the cellular uptake and enzymatic hydrolysis of anandamide. Brit JPharmacol 134: 845–852

    Article  Google Scholar 

  63. Mechoulam R, Parker LA, Gallily R (2002) Cannabidiol: an overview of some pharmacological aspects. J Clin Pharmacol 42: 11S–19S

    PubMed  Google Scholar 

  64. Lastres-Becker I, Molina-Holgado F, Ramos JA, Mechoulam R, Fernández-Ruiz J (2005) Cannabinoids provide neuroprotection against 6-hydroxydopamine toxicity in vivo and in vitro: Relevance to Parkinson’s disease. Neurobiol Dis; in press

    Google Scholar 

  65. Lastres-Becker I, Bizat N, Boyer F, Hantraye P, Fernández-Ruiz JJ, Brouillet E (2004) Potential involvement of cannabinoid receptors in 3-nitropropionic acid toxicity in vivo: implication for Huntington’s disease. Neuroreport 15: 2375–2379

    Article  PubMed  Google Scholar 

  66. Reddy PH, Williams M, Tagle DA (1999) Recent advances in understanding the pathogenesis of Huntington’s disease. Trends Neurosci 22: 248–255

    Article  PubMed  Google Scholar 

  67. Liu B, Hong JS (2003) Role of microglia in inflammation-mediated neurodegenerative diseases: mechanisms and strategies for therapeutic intervention. J Pharmacol Exp Ther 304: 1–7

    Article  PubMed  Google Scholar 

  68. Walter L, Stella N (2004) Cannabinoids and neuroinflammation. Br J Pharmacol 141: 775–785

    Article  PubMed  Google Scholar 

  69. Aloisi F (1999) The role of microglia and astrocytes in CNS immune surveillance and immunopathology. Adv Exp Med Biol 468: 123–133

    PubMed  Google Scholar 

  70. ladecola C, Alexander M (2001) Cerebral ischemia and inflammation. Curr Opin Neurol 14: 89–94

    Article  PubMed  Google Scholar 

  71. Dusart I, Schwab ME (1994) Secondary cell death and the inflammatory reaction after dorsal hemisection of the rat spinal cord. Eur J Neurosci 6: 712–724

    PubMed  Google Scholar 

  72. McGeer PL, Yasojima K, McGeer EG (2001) Inflammation in Parkinson’s disease. Adv Neurol 86: 83–89

    PubMed  Google Scholar 

  73. Sapp E, Kegel KB, Aronin N, Hashikawa T, Uchiyama Y, Tohyama K, Bhide PG, Vonsattel JP, DiFiglia M (2001) Early and progressive accumulation of reactive microglia in the Huntington disease brain. J Neuropathol Exp Neurol 60: 161–172

    PubMed  Google Scholar 

  74. McGeer PL, Rogers J (1992) Anti-inflammatory agents as a therapeutic approach to Alzheimer’s disease. Neurology 42: 447–449

    PubMed  Google Scholar 

  75. Eikelenboom P, Bate C, Van Gool WA, Hoozemans JJ, Rozemuller JM, Veerhuis R, Williams A (2002) Neuroinflammation in Alzheimer’s disease and prion disease. Glia 40: 232–239

    Article  PubMed  Google Scholar 

  76. Baker D, Pryce G (2003) The therapeutic potential of cannabis in multiple sclerosis. Expert Opin Investig Drugs 12: 561–567

    Article  PubMed  Google Scholar 

  77. Gómez Del Pulgar T, De Ceballos ML, Guzman M, Velasco G (2002) Cannabinoids protect astrocytes from ceramide-induced apoptosis through the phosphatidylinositol 3-kinase/protein kinase B pathway. J Biol Chem 277: 36527–36533

    Article  PubMed  Google Scholar 

  78. Molina-Holgado E, Vela JM, Arevalo-Martin A, Almazan G, Molina-Holgado F, Borrell J, Guaza C (2002) Cannabinoids promote oligodendrocyte progenitor survival: involvement of cannabinoid receptors and phosphatidylinositol-3 kinase/Akt signaling. J Neurosci 22: 9742–9753

    PubMed  Google Scholar 

  79. Smith SR, Terminelli C, Denhardt G (2000) Effects of cannabinoid receptor agonist and antagonist ligands on production of inflammatory cytokines and anti-inflammatory interleukin-10 in endotoxemic mice. J Pharmacol Exp Ther 293: 136–150

    PubMed  Google Scholar 

  80. Klein TW, Lane B, Newton CA, Friedman H (2000) The cannabinoid system and cytokine network. Proc Soc Exp Biol Med 225: 1–8

    Article  PubMed  Google Scholar 

  81. Puffenbarger RA, Boothe AC, Cabral GA (2000) Cannabinoids inhibit LPS-inducible cytokine mRNA expression in rat microglial cells. Glia 29: 58–69

    Article  PubMed  Google Scholar 

  82. Waksman Y, Olson JM, Carlisle SJ, Cabral GA (1999) The central cannabinoid receptor (CB1) mediates inhibition of nitric oxide production by rat microglial cells. J Pharmacol Exp Ther 288: 1357–1366

    PubMed  Google Scholar 

  83. Molina-Holgado F, Lledo A, Guaza C (1997) Anandamide suppresses nitric oxide and TNF-alpha responses to Theiler’s virus or endotoxin in astrocytes. Neuroreport 8: 1929–1933

    PubMed  Google Scholar 

  84. Hillard CJ, Muthian S, Kearn CS (1999) Effects of CB(1) cannabinoid receptor activation on cerebellar granule cell nitric oxide synthase activity. FEBS Lett 459: 277–281

    Article  PubMed  Google Scholar 

  85. Coffey RG, Snella E, Johnson K, Pross S (1996) Inhibition of macrophage nitric oxide production by tetrahydrocannabinol in vivo and in vitro. Int J Immunopharmacol 18: 749–752

    Article  PubMed  Google Scholar 

  86. Polazzi E, Gianni T, Contestabile A (2001) Microglial cells protect cerebellar granule neurons from apoptosis: evidence for reciprocal signaling. Glia 36: 271–280

    Article  PubMed  Google Scholar 

  87. Molina-Holgado F, Pinteaux E, Moore JD, Molina-Holgado E, Guaza C, Gibson RM, Rothwell NJ (2003) Endogenous interleukin-1 receptor antagonist mediates anti-inflammatory and neuro-protective actions of cannabinoids in neurons and glia. J Neurosci 23: 6470–6474

    PubMed  Google Scholar 

  88. Skaper SD, Buriani A, Dal Toso R, Petrelli L, Romanello S, Facci L, Leon A (1996) The ALIAmide palmitoylethanolamide and cannabinoids, but not anandamide, are protective in a delayed postglutamate paradigm of excitotoxic death in cerebellar granule neurons. Proc Natl Acad Sci USA 93: 3984–3989

    Article  PubMed  Google Scholar 

  89. Sánchez C, de Ceballos ML, del Pulgar TG, Rueda D, Corbacho C, Velasco G, Galve-Roperh I, Huffman JW, Ramon y Cajal S, Guzman M (2001) Inhibition of glioma growth in vivo by selective activation of the CB2 cannabinoid receptor. Cancer Res 61: 5784–5789

    PubMed  Google Scholar 

  90. Nuñez E, Benito C, Pazos MR, Barbachano A, Fajardo O, González S, Tolón RM, Romero J (2004) Cannabinoid CB2 receptors are expressed by perivascular microglial cells in the human brain: an immunohistochemical study. Synapse 53: 208–213

    Article  PubMed  Google Scholar 

  91. Benveniste EN, Nguyen VT, O’Keefe GM (2001) Immunological aspects of microglia: relevance to Alzheimer’s disease. Neurochem Int 39: 381–391

    Article  PubMed  Google Scholar 

  92. Walter L, Franklin A, Witting A, Wade C, Xie Y, Kunos G, Mackie K, Stella N (2003) Nonpsychotropic cannabinoid receptors regulate microglial cell migration. J Neurosci 23: 1398–1405

    PubMed  Google Scholar 

  93. Carrier EJ, Kearn CS, Barkmeier AJ, Breese NM, Yang W, Nithipatikom K, Pfister SL, Campbell WB, Hillard CJ (2004) Cultured rat microglial cells synthesize the endocannabinoid 2-arachi-donylglycerol, which increases proliferation via a CB2 receptor-dependent mechanism. Mol Pharmacol 65: 999–1007

    Article  PubMed  Google Scholar 

  94. Giulian D (1999) Microglia and the immune pathology of Alzheimer disease. Am J Hum Genet 65: 13–18

    Article  PubMed  Google Scholar 

  95. Rubanyi GM, Polokoff MA (1994) Endothelins: molecular biology, biochemistry, pharmacology, physiology, and pathophysiology. Pharmacol Rev 46: 325–415

    PubMed  Google Scholar 

  96. Schinelli S (2002) The brain endothelin system as potential target for brain-related pathologies. Curr Drug Targets CNS Neurol Disord 1: 543–553

    Article  PubMed  Google Scholar 

  97. Wagner JA, Varga K, Kunos G (1998) Cardiovascular actions of cannabinoids and their generation during shock. J Mol Med 76: 824–836

    Article  PubMed  Google Scholar 

  98. Randall MD, Harris D, Kendall DA, Ralevic V (2002) Cardiovascular effects of cannabinoids. Pharmacol Ther 95: 191–202

    Article  PubMed  Google Scholar 

  99. Mechoulam R, Spatz M, Shohami E (2002) Endocannabinoids and neuroprotection. Sci STKE 129/RE5

    Google Scholar 

  100. Chen Y, McCarron RM, Ohara Y, Bembry J, Azzam N, Lenz FA, Shohami E, Mechoulam R, Spatz M (2000) Human brain capillary endothelium: 2-arachidonoglycerol (endocannabinoid) interacts with endothelin-1. Circ Res 87: 323–327

    PubMed  Google Scholar 

  101. Hillard CJ (2000) Endocannabinoids and vascular function. J Pharmacol Exp Ther 294: 27–32

    PubMed  Google Scholar 

  102. Graham DI, McIntosh TK, Maxwell WL, Nicoll JA (2000) Recent advances in neurotrauma. J Neuropathol Exp Neurol 59: 641–651

    PubMed  Google Scholar 

  103. Janardhan V, Qureshi AI (2004) Mechanisms of ischemic brain injury. Curr Cardiol Rep 6: 117–123

    PubMed  Google Scholar 

  104. Alexi T, Borlongan CV, Faull RL, Williams CE, Clark RG, Gluckman PD, Hughes PE (2000) Neuroprotective strategies for basal ganglia degeneration: Parkinson’s and Huntington’s disease. Prog Neurobiol 60: 409–470

    Article  PubMed  Google Scholar 

  105. Moosmann B, Behl C (2002) Antioxidants as treatment for neurodegenerative disorders. Expert Opin Invest Drugs 11: 1407–1435

    Article  Google Scholar 

  106. Rodnitzky RL (1999) Can calcium antagonists provide a neuroprotective effect in Parkinson’s disease? Drugs 57: 845–849

    PubMed  Google Scholar 

  107. Galea E, Heneka MT, Dello Russo C, Feinstein DL (2003) Intrinsic regulation of brain inflammatory responses. Cell Mol Neurobiol 23: 625–635

    Article  PubMed  Google Scholar 

  108. Gagliardi RJ (2000) Neuroprotection, excitotoxicity and NMDA antagonists. Arq Neuropsiquiatr 58: 583–588

    PubMed  Google Scholar 

  109. Louw DF, Yang FW, Sutherland GR (2000) The effect of D9-tetrahydrocannabinol on forebrain ischemia in rat. Brain Res 857: 183–187

    Article  PubMed  Google Scholar 

  110. Mauler F, Mittendorf J, Horvath E, De Vry J (2002) Characterization of the diarylether sulfonylester (−)-(R)-3-(2-hydroxymethylindanyl-4-oxy)phenyl-4,4,4-trifluoro-l-sulfonate (BAY 38–7271) as a potent cannabinoid receptor agonist with neuroprotective properties. J Pharmacol Exp Ther 302: 359–368

    Article  PubMed  Google Scholar 

  111. Sinor AD, Irvin SM, Greenberg DA (2000) Endocannabinoids protect cerebral cortical neurons from in vitro ischemia in rats. Neurosci Lett 278: 157–160

    Article  PubMed  Google Scholar 

  112. Ben-Shabat S, Fride E, Sheskin T, Tamiri T, Rhee MH, Vogel Z, Bisogno T, De Petrocellis L, Di Marzo V, Mechoulam R (1998) An entourage effect: inactive endogenous fatty acid glycerol esters enhance 2-arachidonoyl-glycerol cannabinoid activity. Eur JPharmacol 353: 23–31

    Article  Google Scholar 

  113. Parmentier-Batteur S, Jin K, Mao XO, Xie L, Greenberg DA (2002) Increased severity of stroke in CB1 cannabinoid receptor knock-out mice. J Neurosci 22: 9771–9775

    PubMed  Google Scholar 

  114. Knoller N, Levi L, Shoshan I, Reichenthal E, Razon N, Rappaport ZH, Biegon A (2002) Dexanabinol (HU-211) in the treatment of severe closed head injury: a randomized, placebo-controlled, phase II clinical trial. Crit Care Med 30: 548–554

    Article  PubMed  Google Scholar 

  115. Berardelli A, Noth J, Thompson PD, Bollen EL, Curra A, Deuschl G, van Dijk JG, Topper R, Schwartz M, Roos RA (1999) Pathophysiology of chorea and bradykinesia in Huntington’s disease. Mov Disord 14: 398–403

    Article  PubMed  Google Scholar 

  116. Cattaneo E, Rigamonti D, Goffredo D, Zuccato C, Squitieri F, Sipion S (2001) Loss of normal huntingtin function: new developments in Huntington’s disease research. Trends Neurosci 24: 182–188

    Article  PubMed  Google Scholar 

  117. Blandini F, Nappi G, Tassorelli C, Martignoni E (2000) Functional changes in the basal ganglia circuitry in Parkinson’s disease. Prog Neurobiol 62: 63–88

    Article  PubMed  Google Scholar 

  118. Wyss-Coray T, Mucke L (2002) Inflammation in neurodegenerative disease — a double-edged sword. Neuron 35: 419–432

    Article  PubMed  Google Scholar 

  119. Rieckmann P, Smith KJ (2001) Multiple sclerosis: more than inflammation and demyelination. Trends Neurosci 24: 435–437

    Article  PubMed  Google Scholar 

  120. Martino G, Adorini L, Rieckmann P, Hillert J, Kallmann B, Comi G, Filippi M (2002) Inflammation in multiple sclerosis: the good, the bad, and the complex. Lancet Neurol 1: 499–509

    Article  PubMed  Google Scholar 

  121. Yong VW (2004) Prospects for neuroprotection in multiple sclerosis. Front. Bioscience 9: 864–872

    Google Scholar 

  122. Carri MT, Ferri A, Cozzolino M, Calabrese L, Rotilio G (2003) Neurodegeneration in amyotrophic lateral sclerosis: the role of oxidative stress and altered homeostasis of metals. Brain Res Bull 61: 365–374

    Article  PubMed  Google Scholar 

  123. Strong M, Rosenfeld J (2003) Amyotrophic lateral sclerosis: a review of current concepts. Amyotroph Lateral Scler Other Motor Neuron Disord 4: 136–143

    Article  PubMed  Google Scholar 

  124. Lastres-Becker I, Hansen HH, Berrendero F, de Miguel R, Pérez-Rosado A, Manzanares J, Ramos JA, Fernández-Ruiz J (2002) Loss of cannabinoid CB 1 receptors and alleviation of motor hyperactivity and neurochemical deficits by endocannabinoid uptake inhibition in a rat model of Huntington’s disease. Synapse 44: 23–35

    Article  PubMed  Google Scholar 

  125. Lastres-Becker I, de Miguel R, De Petrocellis L, Maklriyannis A, Di Marzo V, Fernández-Ruiz J (2003) Compounds acting at the endocannabinoid and/or endovanilloid systems reduce hyperkinesia in a rat model of Huntington’s disease. J Neurochem 84: 1097–1109

    Article  PubMed  Google Scholar 

  126. Volicer L, Stelly M, Morris J, McLaughlin J, Volicer BJ (1997) Effects of dronabinol on anorexia and disturbed behavior in patients with Alzheimer’s disease. Int J Geriatr Psychiatry 12: 913–919

    Article  PubMed  Google Scholar 

  127. Baker D, Pryce G, Croxford JL, Brown P, Pertwee RG, Huffman JW, Layward L (2000) Cannabinoids control spasticity and tremor in a multiple sclerosis model. Nature 404: 84–87

    Article  PubMed  Google Scholar 

  128. Baker D, Pryce G, Croxford JL, Brown P, Pertwee RG, Makriyannis A, Khanolkar A, Layward L, Fezza F, Bisogno T, Di Marzo V (2001) Endocannabinoids control spasticity in experimental multiple sclerosis. FASEB J 15: 300–302

    PubMed  Google Scholar 

  129. Brooks JW, Pryce G, Bisogno T, Jaggar SI, Hankey DJ, Brown P, Bridges D, Ledent C, Bifulco M, Rice AS et al. (2002) Arvanil-induced inhibition of spasticity and persistent pain: evidence for therapeutic sites of action different from the vanilloid VR1 receptor and cannabinoid CB 1/CB2 receptors. Eur J Pharmacol 439: 83–92

    Article  PubMed  Google Scholar 

  130. de Lago E, Ligresti A, Ortar G, Morera E, Cabranes A, Pryce G, Bifulco M, Baker D, Fernandez-Ruiz J, Di Marzo V (2004) In vivo pharmacological actions of two novel inhibitors of anandamide cellular uptake. Eur J Pharmacol 484: 249–257

    Article  PubMed  Google Scholar 

  131. Di Marzo V, Hill MP, Bisogno T, Crossman AR, Brotchie JM (2000) Enhanced levels of endocannabinoids in the globus pallidus are associated with a reduction in movement in an animal model of Parkinson’s disease. FASEB J 14: 1432–1438

    Article  PubMed  Google Scholar 

  132. Brotchie JM (2000) The neural mechanisms underlying levodopa-induced dyskinesia in Parkinson’s disease. Ann Neurol 47: S105–S114

    PubMed  Google Scholar 

  133. Mazzola C, Micale V, Drago F (2003) Amnesia induced by beta-amyloid fragments is counter-acted by cannabinoid CB1 receptor blockade. Eur J Pharmacol 477: 219–225

    Article  PubMed  Google Scholar 

  134. Herkenham M, Lynn AB, Little MD, Melvin LS, Johnson MR, de Costa DR, Rice KC (1991) Characterization and localization of cannabinoid receptors in rat brain: a quantitative in vitro autoradiographic study. J Neurosci 11: 563–583

    PubMed  Google Scholar 

  135. Factor SA, Firedman JH (1997) The emerging role of clozapine in the treatment of movement disorders. Mov Disord 12: 483–496

    Article  PubMed  Google Scholar 

  136. Kieburtz K (1999) Antiglutamate therapies in Huntington’s disease. J Neural Transm Suppl 55: 97–102

    Google Scholar 

  137. Lastres-Becker I, De Miguel R, Fernández-Ruiz J (2003) The endocannabinoid system and Huntington’s disease. Curr Drug Target CNS Neurol Disord 2: 335–347

    Article  Google Scholar 

  138. Glass M, Faull RLM, Dragunow M (1993) Loss of cannabinoid receptors in the substantial nigra in Huntington’s disease. Neuroscience 56: 523–527

    Article  PubMed  Google Scholar 

  139. Richfield EK, Herkenham M (1994) Selective vulnerability in Huntington’s disease: preferential loss of cannabinoid receptors in lateral globus pallidus. Ann Neurol 36: 577–584

    Article  PubMed  Google Scholar 

  140. Glass M, Dragunow M, Faull RLM (2000) The pattern of neurodegeneration in Huntington’s disease: a comparative study of cannabinoid, dopamine, adenosine and GABA-A receptor alterations in the human basal ganglia in Huntington’s disease. Neuroscience 97: 505–519

    Article  PubMed  Google Scholar 

  141. Lastres-Becker I, Berrendero F, Lucas JJ, Martin E, Yamamoto A, Ramos JA, Fernandez-Ruiz J (2002) Loss of mRNA levels, binding and activation of GTP-binding proteins for cannabinoid CB1 receptors in the basal ganglia of a transgenic model of Huntington’s disease. Brain Res 929: 236–242

    Article  PubMed  Google Scholar 

  142. Denovan-Wright EM, Robertson HA (2000) Cannabinoid receptor messenger RNA levels decrease in subset neurons of the lateral striatum, cortex and hippocampus of transgenic Huntington’s disease mice. Neuroscience 98: 705–713

    Article  PubMed  Google Scholar 

  143. Page KJ, Besret L, Jain M, Monaghan EM, Dunnett SB, Everitt BJ (2000) Effects of systemic 3-nitropropionic acid-induced lesions of the dorsal striatum on cannabinoid and mu-opioid receptor binding in the basal ganglia. Exp Brain Res 130: 142–150

    Article  PubMed  Google Scholar 

  144. Lastres-Becker I, Fezza F, Cebeira M, Bisogno T, Ramos JA, Milone A, Fernández-Ruiz J, Di Marzo V (2001) Changes in endocannabinoid transmission in the basal ganglia in a rat model of Huntington’s disease. Neuroreport 12: 2125–2129

    Article  PubMed  Google Scholar 

  145. Lastres-Becker I, Gómez M, de Miguel R, Ramos JA, Fernindez-Ruiz J (2002) Loss of cannabinoid CB1 receptors in the basal ganglia in the late akinetic phase of rats with experimental Huntington’s disease. Neurotox Res 4: 601–608

    Article  PubMed  Google Scholar 

  146. Gu M, Gash MT, Mann VM, Javoy-Agid F, Cooper JM, Schapira AH (1996) Mitochondrial defect in Huntington’s disease caudate nucleus. Ann Neurol 39: 385–389

    Article  PubMed  Google Scholar 

  147. Bizat N, Hermel JM, Humbert S, Jacquard C, Creminon C, Escartin C, Saudou F, Krajewski S, Hantraye P, Brouillet E (2003) In vivo calpain/caspase cross-talk during 3-nitropropionic acid-induced striatal degeneration: implication of a calpain-mediated cleavage of active caspase-3. J Biol Chem 278: 43245–43253

    Article  PubMed  Google Scholar 

  148. Galas MC, Bizat N, Cuvelier L, Bantubungi K, Brouillet E, Schiffmann SN, Blum D (2004) Death of cortical and striatal neurons induced by mitochondrial defect involves differential molecular mechanisms. Neurobiol Dis 15: 152–159

    Article  PubMed  Google Scholar 

  149. Toulmond S, Tang K, Bureau Y, Ashdown H, Degen S, O’Donnell R, Tam J, Han Y, Colucci J, Giroux A et al. (2004) Neuroprotective effects of M826, a reversible caspase-3 inhibitor, in the rat malonate model of Huntington’s disease. Br J Pharmacol 141: 689–697

    Article  PubMed  Google Scholar 

  150. Rajkowska G, Selemon LD, Goldman-Rakic PS (1998) Neuronal and glial somal size in the prefrontal cortex: a postmortem morphometric study of schizophrenia and Huntington disease. Arch Gen Psychiatry 55: 215–224

    Article  PubMed  Google Scholar 

  151. Sherer TB, Betarbet R, Greenamyre JT (2001) Pathogenesis of Parkinson’s disease. Curr Opin Investig Drugs 2: 657–662

    PubMed  Google Scholar 

  152. Sethi KD (2002) Clinical aspects of Parkinson disease. Curr Opin Neurol 15: 457–460

    Article  PubMed  Google Scholar 

  153. Carlsson A (2002) Treatment of Parkinson’s with L-DOPA. The early discovery phase, and a comment on current problems. J Neural Transm 109: 777–787

    Article  PubMed  Google Scholar 

  154. Vajda FJ (2002) Neuroprotection and neurodegenerative disease. J Clin Neurosci 9: 4–8

    Article  PubMed  Google Scholar 

  155. Tintner R, Jankovic J (2002) Treatment options for Parkinson’s disease. Curr Opin Neurol 15: 467–476

    Article  PubMed  Google Scholar 

  156. Consroe P (1998) Brain cannabinoid systems as targets for the therapy of neurological disorders. Neurobiol Dis 5: 534–551

    Article  PubMed  Google Scholar 

  157. Mbiller-Vahl KR, Kolbe H, Schneider U, Emrich HM (1999) Cannabis in movement disorders. Forsch Komplementdirmed 6: 23–27

    Article  Google Scholar 

  158. Lastres-Becker I, Cebeira M, de Ceballos M, Zeng B-Y, Jenner P, Ramos JA, Fernández-Ruiz J (2001) Increased cannabinoid CB1 receptor binding and activation of GTP-binding proteins in the basal ganglia of patients with Parkinson’s disease and MPTP-treated marmosets. Eur J Neurosci 14: 1827–1832

    Article  PubMed  Google Scholar 

  159. Romero J, Berrendero F, Pérez-Rosado A, Manzanares J, Rojo A, Fernández-Ruiz J, de Yébenes JG, Ramos JA (2000) Unilateral 6-hydroxydopamine lesions of nigrostriatal dopaminergic neurons increased CB1 receptor mRNA levels in the caudate-putamen. Life Sci 66: 485–494

    Article  PubMed  Google Scholar 

  160. Mailleux P, Vanderhaeghen JJ (1993) Dopaminergic regulation of cannabinoid receptor mRNA levels in the rat caudate-putamen: an in situ hybridization study. J Neurochem 61: 1705–1712

    PubMed  Google Scholar 

  161. Brotchie JM (2003) CB1 cannabinoid receptor signalling in Parkinson’s disease. Curr Opin Pharmacol 3: 54–61

    Article  PubMed  Google Scholar 

  162. Meschler JP, Howlett AC, Madras BK (2001) Cannabinoid receptor agonist and antagonist effects on motor function in normal and 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine (MPTP)-treated non-human primates. Psychopharmacology 156: 79–85

    Article  PubMed  Google Scholar 

  163. Sañudo-Peña MC, Patrick SL, Khen S, Patrick RL, Tsou K, Walker JM (1998) Cannabinoid effects in basal ganglia in a rat model of Parkinson’s disease. Neurosci Lett 248: 171–174

    Article  PubMed  Google Scholar 

  164. Frankel JP, Hughes A, Lees AJ, Stern GM (1990) Marijuana for parkinsonian tremor. J Neurol Neurosurg Psychiat 53: 436

    Google Scholar 

  165. Gao HM, Jiang J, Wilson B, Zhang W, Hong JS, Liu B (2002) Microglial activation-mediated delayed and progressive degeneration of rat nigral dopaminergic neurons: relevance to Parkinson’s disease. J Neurochem 81: 1285–1297

    Article  PubMed  Google Scholar 

  166. Kim WG, Mohney RP, Wilson B, Jeohn GH, Liu B, Hong JS (2000) Regional difference in susceptibility to lipopolysaccharide-induced neurotoxicity in the rat brain: role of microglia. J Neurosci 20: 6309–6316

    PubMed  Google Scholar 

  167. Nagatsu T, Mogi M, Ichinose H, Togari A (2000) Changes in cytokines and neurotrophins in Parkinson’s disease. J Neural Transm 60: 277–290

    Google Scholar 

  168. Maccioni RB, Mufioz JP, Barbeito L (2001) The molecular bases of Alzheimer’s disease and other neurodegenerative disorders. Arch Med Res 32: 367–381

    Article  PubMed  Google Scholar 

  169. Blount PJ, Nguyen CD, McDeavitt JT (2002) Clinical use of cholinomimetic agents: a review. J Head Trauma Rehabil 17: 314–321

    PubMed  Google Scholar 

  170. Reisberg B, Doody R, Stoffler A, Schmitt F, Ferris S, Mobius HJ (2003) Memantine in moderate-to-severe Alzheimer’s disease. N Engl JMed 348: 1333–1341

    Article  Google Scholar 

  171. Pazos MR, Núñez E, Benito C, Tolón RM, Romero J (2004) Role of the endocannabinoid system in Alzheimer’s disease: new perspectives. Life Sci 75: 1907–1915

    Article  PubMed  Google Scholar 

  172. Westlake TM, Howlett AC, Bonner TI, Matsuda LA, Herkenham M (1994) Cannabinoid receptor binding and messenger RNA expression in human brain: an in vitro receptor autoradiography and in situ hybridization histochemistry study of normal aged and Alzheimer’s brains. Neuroscience 63: 637–652

    Article  PubMed  Google Scholar 

  173. Romero J, Berrendero F, García-Gil L, de la Cruz P, Ramos JA, Fernández-Ruiz J (1998) Loss of cannabinoid receptor binding and messenger RNA levels and cannabinoid agonist-stimulated [35S]-GTPgS binding in the basal ganglia of aged rats. Neuroscience 84: 1075–1083

    Article  PubMed  Google Scholar 

  174. Williams K, Alvarez X, Lackner AA (2001) Central nervous system perivascular cells are immunoregulatory cells that connect the CNS with the peripheral immune system. Glia 36: 156–164

    Article  PubMed  Google Scholar 

  175. Sullivan JM (2000) Cellular and molecular mechanisms underlying learning and memory impairments produced by cannabinoids. Learn Memory 7: 132–139

    Article  Google Scholar 

  176. Milton NG (2002) Anandamide and noladin ether prevent neurotoxicity of the human amyloid-beta peptide. Neurosci Lett 332: 127–130

    PubMed  Google Scholar 

  177. Iuvone T, Esposito G, Esposito R, Santamaria R, Di Rosa M, Izzo AA (2004) Neuroprotective effect of cannabidiol, a non-psychoactive component from Cannabis sativa, on beta-amyloid-induced toxicity in PC12 cells. J Neurochem 89: 134–141

    PubMed  Google Scholar 

  178. Polman CH, Uitdehaag. Br Med J 2000) Drug treatment of multiple sclerosis. Br Med J 321: 490–494

    Google Scholar 

  179. Hafler DA (2004) Multiple sclerosis. J Clin Invest 113: 788–794

    PubMed  Google Scholar 

  180. Werner P, Pitt D, Raine CS (2001) Multiple sclerosis: altered glutamate homeostasis in lesions correlates with oligodendrocyte and axonal damage. Ann Neurol 50: 169–180

    PubMed  Google Scholar 

  181. Pitt D, Werner P, Raine CS (2000) Glutamate excitotoxicity in a model of multiple sclerosis. Nat Med 6: 67–70

    PubMed  Google Scholar 

  182. Matute C, Alberdi E, Domercq M, Pérez-Cerda F, Pérez-Samartin A, Sánchez-Gómez MV (2001) The link between excitotoxic oligodendroglial death and demyelinating diseases. Trends Neurosci 24: 224–230

    PubMed  Google Scholar 

  183. Pertwee RG (2002) Cannabinoids and multiple sclerosis. Pharmacol Ther 95: 165–174

    PubMed  Google Scholar 

  184. Pryce G, Ahmed Z, Hankey DJ, Jackson SJ, Croxford JL, Pocock JM, Ledent C, Petzold A, Thompson AJ, Giovannoni G et al. (2003) Cannabinoids inhibit neurodegeneration in models of multiple sclerosis. Brain 126: 2191–2202

    PubMed  Google Scholar 

  185. Zajicek J, Fox P, Sanders H, Wright D, Vickery J, Nunn A (2003) Thompson A. Cannabinoids for treatment of spasticity and other symptoms related to multiple sclerosis (CAMS study): multi-centre randomised placebo-controlled trial. Lancet 362: 1517–1526

    Article  PubMed  Google Scholar 

  186. Lyman WD, Sonett JR, Brosnan CF, Elkin R, Bornstein MB (1989) Δ9-Tetrahydrocannabinol: a novel treatment for experimental autoimmune encephalomyelitis. J Neuroimmunol 23: 73–81

    PubMed  Google Scholar 

  187. Wirguin I, Mechoulam R, Breuer A, Schezen E, Weidenfeld J, Brenner T (1994) Suppression of experimental autoimmune encephalomyelitis by cannabinoids. Immunopharmacology 28: 209–214

    PubMed  Google Scholar 

  188. Cabranes A, Venderova K, de Lago E, Fezza F, Valenti M, Sánchez A, García-Merino A, Ramos JA, Di Marzo V, Fernández-Ruiz J (2005) Decreased endocannabinoid levels in the brain and beneficial effects of certain endocannabinoid uptake inhibitors in a rat model of multiple sclerosis: involvement of vanilloid TRPV1 receptors. Neurobiol Dis; in press

    Google Scholar 

  189. Arévalo-Martin A, Vela JM, Molina-Holgado E, Borrell J, Guaza C (2003) Therapeutic action of cannabinoids in a murine model of multiple sclerosis. J Neurosci 23: 2511–2516

    PubMed  Google Scholar 

  190. Croxford JL, Miller SD (2003) Immunoregulation of a viral model of multiple sclerosis using the synthetic cannabinoid R+WIN55,212. J Clin Invest 111: 1231–1240

    PubMed  Google Scholar 

  191. Berrendero F, Sánchez A, Cabranes A, Puerta C, Ramos JA, García-Merino A, Fernández-Ruiz J (2001) Changes in cannabinoid CB1 receptors in striatal and cortical regions of rats with experimental allergic encephalomyelitis, an animal model of multiple sclerosis. Synapse 41: 195–202

    PubMed  Google Scholar 

  192. Raman C, McAllister SD, Rizvi G, Patel SG, Moore DH, Abood ME (2004) Amyotrophic lateral sclerosis: delayed disease progression in mice by treatment with a cannabinoid. Amyotroph Lateral Scler Other Motor Neuron Disord 5: 33–39

    PubMed  Google Scholar 

  193. Chou SM (1997) Neuropathology of amyotrophic lateral sclerosis: new perspectives on an old disease. J Formos Med Assoc 96: 488–498

    PubMed  Google Scholar 

  194. Maier CM, Chan PH (2002) Role of superoxide dismutases in oxidative damage and neurode-generative disorders. Neuroscientist 8: 323–334

    PubMed  Google Scholar 

  195. Witting A, Weydt P, Hong S, Kliot M, Moller T, Stella N (2004) Endocannabinoids accumulate in spinal cord of SOD1 transgenic mice. J Neurochem 89: 1555–1557

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Birkhäuser Verlag/Switzerland

About this chapter

Cite this chapter

Fernández-Ruiz, J., González, S., Romero, J., Ramos, J.A. (2005). Cannabinoids in neurodegeneration and neuroprotection. In: Mechoulam, R. (eds) Cannabinoids as Therapeutics. Milestones in Drug Therapy MDT. Birkhäuser Basel. https://doi.org/10.1007/3-7643-7358-X_5

Download citation

Publish with us

Policies and ethics