Skip to main content

Bioinformatics for Cancer Immunotherapy

  • Protocol
  • First Online:
Bioinformatics for Cancer Immunotherapy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2120))

Abstract

Our immune system plays a key role in health and disease as it is capable of responding to foreign antigens as well as acquired antigens from cancer cells. Latter are caused by somatic mutations, the so-called neoepitopes, and might be recognized by T cells if they are presented by HLA molecules on the surface of cancer cells. Personalized mutanome vaccines are a class of customized immunotherapies, which is dependent on the detection of individual cancer-specific tumor mutations and neoepitope (i.e., prediction, followed by a rational vaccine design, before on-demand production. The development of next generation sequencing (NGS) technologies and bioinformatic tools allows a large-scale analysis of each parameter involved in this process. Here, we provide an overview of the bioinformatic aspects involved in the design of personalized, neoantigen-based vaccines, including the detection of mutations and the subsequent prediction of potential epitopes, as well as methods for associated biomarker research, such as high-throughput sequencing of T-cell receptors (TCRs), followed by data analysis and the bioinformatics quantification of immune cell infiltration in cancer samples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70

    Article  CAS  PubMed  Google Scholar 

  2. Britten CM, Singh-Jasuja H, Flamion B et al (2013) The regulatory landscape for actively personalized cancer immunotherapies. Nat Biotechnol 31(10):880–882. https://doi.org/10.1038/nbt.2708

    Article  CAS  PubMed  Google Scholar 

  3. Castle JC, Kreiter S, Diekmann J et al (2012) Exploiting the mutanome for tumor vaccination. Cancer Res 72(5):1081–1091. https://doi.org/10.1158/0008-5472.CAN-11-3722

    Article  CAS  PubMed  Google Scholar 

  4. Kreiter S, Vormehr M, van de Roemer N et al (2015) Mutant MHC class II epitopes drive therapeutic immune responses to cancer. Nature 520(7549):692–696. https://doi.org/10.1038/nature14426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sahin U, Derhovanessian E, Miller M et al (2017) Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature 547(7662):222–226. https://doi.org/10.1038/nature23003

    Article  CAS  PubMed  Google Scholar 

  6. Sahin U, Türeci Ö (2018) Personalized vaccines for cancer immunotherapy. Science 359(6382):1355–1360. https://doi.org/10.1126/science.aar7112

    Article  CAS  PubMed  Google Scholar 

  7. Riaz N, Morris L, Havel JJ et al (2016) The role of neoantigens in response to immune checkpoint blockade. Int Immunol 28(8):411–419. https://doi.org/10.1093/intimm/dxw019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Park Y-J, Kuen D-S, Chung Y (2018) Future prospects of immune checkpoint blockade in cancer: from response prediction to overcoming resistance. Exp Mol Med 50(8):109. https://doi.org/10.1038/s12276-018-0130-1

    Article  CAS  PubMed Central  Google Scholar 

  9. Darvin P, Toor SM, Sasidharan Nair V et al (2018) Immune checkpoint inhibitors: recent progress and potential biomarkers. Exp Mol Med 50(12):165. https://doi.org/10.1038/s12276-018-0191-1

    Article  CAS  PubMed Central  Google Scholar 

  10. McGranahan N, Furness AJS, Rosenthal R et al (2016) Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science 351(6280):1463–1469. https://doi.org/10.1126/science.aaf1490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Löwer M, Renard BY, de Graaf J et al (2012) Confidence-based somatic mutation evaluation and prioritization. PLoS Comput Biol 8(9):e1002714. https://doi.org/10.1371/journal.pcbi.1002714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jurtz VI, Olsen LR (2019) Computational methods for identification of T cell neoepitopes in tumors. Methods Mol Biol 1878:157–172. https://doi.org/10.1007/978-1-4939-8868-6_9

    Article  CAS  PubMed  Google Scholar 

  13. Xu H, DiCarlo J, Satya RV et al (2014) Comparison of somatic mutation calling methods in amplicon and whole exome sequence data. BMC Genomics 15:244. https://doi.org/10.1186/1471-2164-15-244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Vormehr M, Schrörs B, Boegel S et al (2015) Mutanome engineered RNA immunotherapy: towards patient-centered tumor vaccination. J Immunol Res 2015:595363. https://doi.org/10.1155/2015/595363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kim S, Scheffler K, Halpern AL et al (2018) Strelka2: fast and accurate calling of germline and somatic variants. Nat Methods 15(8):591–594. https://doi.org/10.1038/s41592-018-0051-x

    Article  CAS  PubMed  Google Scholar 

  16. Cibulskis K, Lawrence MS, Carter SL et al (2013) Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat Biotechnol 31(3):213–219. https://doi.org/10.1038/nbt.2514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Poplin R, Chang P-C, Alexander D et al (2018) A universal SNP and small-indel variant caller using deep neural networks. Nat Biotechnol 36(10):983–987. https://doi.org/10.1038/nbt.4235

    Article  CAS  PubMed  Google Scholar 

  18. Kawaguchi S, Higasa K, Shimizu M et al (2017) HLA-HD: an accurate HLA typing algorithm for next-generation sequencing data. Hum Mutat 38(7):788–797. https://doi.org/10.1002/humu.23230

    Article  CAS  PubMed  Google Scholar 

  19. Boegel S, Löwer M, Schäfer M et al (2012) HLA typing from RNA-Seq sequence reads. Genome Med 4(12):102. https://doi.org/10.1186/gm403

    Article  PubMed  PubMed Central  Google Scholar 

  20. Jurtz V, Paul S, Andreatta M et al (2017) NetMHCpan-4.0: improved peptide-MHC class I interaction predictions integrating eluted ligand and peptide binding affinity data. J Immunol 199(9):3360–3368. https://doi.org/10.4049/jimmunol.1700893

    Article  CAS  PubMed  Google Scholar 

  21. Bjerregaard A-M, Nielsen M, Jurtz V et al (2017) An analysis of natural T cell responses to predicted tumor neoepitopes. Front Immunol 8:1566. https://doi.org/10.3389/fimmu.2017.01566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ghorani E, Rosenthal R, McGranahan N et al (2018) Differential binding affinity of mutated peptides for MHC class I is a predictor of survival in advanced lung cancer and melanoma. Ann Oncol 29(1):271–279. https://doi.org/10.1093/annonc/mdx687

    Article  CAS  PubMed  Google Scholar 

  23. Duan F, Duitama J, Al Seesi S et al (2014) Genomic and bioinformatic profiling of mutational neoepitopes reveals new rules to predict anticancer immunogenicity. J Exp Med 211(11):2231–2248. https://doi.org/10.1084/jem.20141308

    Article  PubMed  PubMed Central  Google Scholar 

  24. Karosiene E, Rasmussen M, Blicher T et al (2013) NetMHCIIpan-3.0, a common pan-specific MHC class II prediction method including all three human MHC class II isotypes, HLA-DR, HLA-DP and HLA-DQ. Immunogenetics 65(10):711–724. https://doi.org/10.1007/s00251-013-0720-y

    Article  CAS  PubMed  Google Scholar 

  25. Abelin JG, Keskin DB, Sarkizova S et al (2017) Mass spectrometry profiling of HLA-associated peptidomes in mono-allelic cells enables more accurate epitope prediction. Immunity 46(2):315–326. https://doi.org/10.1016/j.immuni.2017.02.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Vang YS, Xie X (2017) HLA class I binding prediction via convolutional neural networks. Bioinformatics 33(17):2658–2665. https://doi.org/10.1093/bioinformatics/btx264

    Article  CAS  PubMed  Google Scholar 

  27. Liu Z, Cui Y, Xiong Z et al (2019) DeepSeqPan, a novel deep convolutional neural network model for pan-specific class I HLA-peptide binding affinity prediction. Sci Rep 9(1):794. https://doi.org/10.1038/s41598-018-37214-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Woodsworth DJ, Castellarin M, Holt RA (2013) Sequence analysis of T-cell repertoires in health and disease. Genome Med 5(10):98. https://doi.org/10.1186/gm502

    Article  PubMed  PubMed Central  Google Scholar 

  29. Wieland A, Kamphorst AO, Adsay NV et al (2018) T cell receptor sequencing of activated CD8 T cells in the blood identifies tumor-infiltrating clones that expand after PD-1 therapy and radiation in a melanoma patient. Cancer Immunol Immunother 67(11):1767–1776. https://doi.org/10.1007/s00262-018-2228-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lin K-R, Pang D-M, Jin Y-B et al (2018) Circulating CD8+ T-cell repertoires reveal the biological characteristics of tumors and clinical responses to chemotherapy in breast cancer patients. Cancer Immunol Immunother 67(11):1743–1752. https://doi.org/10.1007/s00262-018-2213-1

    Article  CAS  PubMed  Google Scholar 

  31. Jin Y-B, Luo W, Zhang G-Y et al (2018) TCR repertoire profiling of tumors, adjacent normal tissues, and peripheral blood predicts survival in nasopharyngeal carcinoma. Cancer Immunol Immunother 67(11):1719–1730. https://doi.org/10.1007/s00262-018-2237-6

    Article  CAS  PubMed  Google Scholar 

  32. Rosati E, Dowds CM, Liaskou E et al (2017) Overview of methodologies for T-cell receptor repertoire analysis. BMC Biotechnol 17(1):61. https://doi.org/10.1186/s12896-017-0379-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Klausen MS, Anderson MV, Jespersen MC et al (2015) LYRA, a webserver for lymphocyte receptor structural modeling. Nucleic Acids Res 43(W1):W349–W355. https://doi.org/10.1093/nar/gkv535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jurtz VI, Jessen LE, Bentzen AK et al (2018) NetTCR: sequence-based prediction of TCR binding to peptide-MHC complexes using convolutional neural networks. Preprint available on bioRxiv. https://doi.org/10.1101/433706

  35. Han A, Glanville J, Hansmann L et al (2014) Linking T-cell receptor sequence to functional phenotype at the single-cell level. Nat Biotechnol 32(7):684–692. https://doi.org/10.1038/nbt.2938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Friedman AA, Letai A, Fisher DE et al (2015) Precision medicine for cancer with next-generation functional diagnostics. Nat Rev Cancer 15(12):747–756. https://doi.org/10.1038/nrc4015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Petitprez F, Sun C-M, Lacroix L et al (2018) Quantitative analyses of the tumor microenvironment composition and orientation in the era of precision medicine. Front Oncol 8:390. https://doi.org/10.3389/fonc.2018.00390

    Article  PubMed  PubMed Central  Google Scholar 

  38. Sturm G, Finotello F, Petitprez F et al (2019) Comprehensive evaluation of computational cell-type quantification methods for immuno-oncology. Bioinformatics 35(14):436–445. https://doi.org/10.1093/bioinformatics/btz363

    Article  PubMed  PubMed Central  Google Scholar 

  39. Aran D, Hu Z, Butte AJ (2017) xCell: digitally portraying the tissue cellular heterogeneity landscape. Genome Biol 18(1):220. https://doi.org/10.1186/s13059-017-1349-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Becht E, Giraldo NA, Lacroix L et al (2016) Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression. Genome Biol 17(1):218. https://doi.org/10.1186/s13059-016-1070-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Finotello F, Trajanoski Z (2018) Quantifying tumor-infiltrating immune cells from transcriptomics data. Cancer Immunol Immunother 67(7):1031–1040. https://doi.org/10.1007/s00262-018-2150-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Newman AM, Liu CL, Green MR et al (2015) Robust enumeration of cell subsets from tissue expression profiles. Nat Methods 12(5):453–457. https://doi.org/10.1038/nmeth.3337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Finotello F, Mayer C, Plattner C et al (2019) Molecular and pharmacological modulators of the tumor immune contexture revealed by deconvolution of RNA-seq data. Genome Med 11(1):34. https://doi.org/10.1186/s13073-019-0638-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Li B, Severson E, Pignon J-C et al (2016) Comprehensive analyses of tumor immunity: Implications for cancer immunotherapy. Genome Biol 17(1):174. https://doi.org/10.1186/s13059-016-1028-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Forbes SA, Beare D, Gunasekaran P et al (2015) COSMIC: exploring the world’s knowledge of somatic mutations in human cancer. Nucleic Acids Res 43(Database issue):D805–D811. https://doi.org/10.1093/nar/gku1075

    Article  CAS  PubMed  Google Scholar 

  46. Wala JA, Bandopadhayay P, Greenwald NF et al (2018) SvABA: genome-wide detection of structural variants and indels by local assembly. Genome Res 28(4):581–591. https://doi.org/10.1101/gr.221028.117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Rausch T, Zichner T, Schlattl A et al (2012) DELLY: structural variant discovery by integrated paired-end and split-read analysis. Bioinformatics 28(18):i333–i339. https://doi.org/10.1093/bioinformatics/bts378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Shen S, Park JW, Huang J et al (2012) MATS: a Bayesian framework for flexible detection of differential alternative splicing from RNA-Seq data. Nucleic Acids Res 40(8):e61. https://doi.org/10.1093/nar/gkr1291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Rogers MF, Thomas J, Reddy AS et al (2012) SpliceGrapher: detecting patterns of alternative splicing from RNA-Seq data in the context of gene models and EST data. Genome Biol 13(1):R4. https://doi.org/10.1186/gb-2012-13-1-r4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bjerregaard A-M, Nielsen M, Hadrup SR et al (2017) MuPeXI: prediction of neo-epitopes from tumor sequencing data. Cancer Immunol Immunother 66(9):1123–1130. https://doi.org/10.1007/s00262-017-2001-3

    Article  CAS  PubMed  Google Scholar 

  51. Kim S, Kim HS, Kim E et al (2018) Neopepsee: accurate genome-level prediction of neoantigens by harnessing sequence and amino acid immunogenicity information. Ann Oncol 29(4):1030–1036. https://doi.org/10.1093/annonc/mdy022

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Löwer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Holtsträter, C., Schrörs, B., Bukur, T., Löwer, M. (2020). Bioinformatics for Cancer Immunotherapy. In: Boegel, S. (eds) Bioinformatics for Cancer Immunotherapy. Methods in Molecular Biology, vol 2120. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0327-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0327-7_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0326-0

  • Online ISBN: 978-1-0716-0327-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics