Skip to main content

Processing and Analysis of RNA-seq Data from Public Resources

  • Protocol
  • First Online:
Deep Sequencing Data Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2243))

Abstract

Advances in next generation sequencing (NGS) technologies resulted in a broad array of large-scale gene expression studies and an unprecedented volume of whole messenger RNA (mRNA) sequencing data, or the transcriptome (also known as RNA sequencing, or RNA-seq). These include the Genotype Tissue Expression project (GTEx) and The Cancer Genome Atlas (TCGA), among others. Here we cover some of the commonly used datasets, provide an overview on how to begin the analysis pipeline, and how to explore and interpret the data provided by these publicly available resources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Schena M, Shalon D, Davis RW, Brown PO (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270:467. https://doi.org/10.1126/science.270.5235.467

    Article  CAS  PubMed  Google Scholar 

  2. Clark TA, Sugnet CW, Ares M (2002) Genomewide analysis of mRNA processing in yeast using splicing-specific microarrays. Science 296:907. https://doi.org/10.1126/science.1069415

    Article  CAS  PubMed  Google Scholar 

  3. Yamada K, Lim J, Dale JM et al (2003) Empirical analysis of transcriptional activity in the arabidopsis genome. Science 302:842. https://doi.org/10.1126/science.1088305

    Article  CAS  PubMed  Google Scholar 

  4. Cheng J, Kapranov P, Drenkow J et al (2005) Transcriptional maps of 10 human chromosomes at 5-nucleotide resolution. Science 308:1149. https://doi.org/10.1126/science.1108625

    Article  CAS  PubMed  Google Scholar 

  5. David L, Huber W, Granovskaia M et al (2006) A high-resolution map of transcription in the yeast genome. Proc Natl Acad Sci U S A 103:5320. https://doi.org/10.1073/pnas.0601091103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Clark TA, Schweitzer AC, Chen TX et al (2007) Discovery of tissue-specific exons using comprehensive human exon microarrays. Genome Biol 8:R64. https://doi.org/10.1186/gb-2007-8-4-r64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Liu S, Lin L, Jiang P et al (2011) A comparison of RNA-Seq and high-density exon array for detecting differential gene expression between closely related species. Nucleic Acids Res 39:578–588. https://doi.org/10.1093/nar/gkq817

    Article  CAS  PubMed  Google Scholar 

  8. Bertone P, Stolc V, Royce TE et al (2004) Global identification of human transcribed sequences with genome tiling arrays. Science 306:2242. https://doi.org/10.1126/science.1103388

    Article  CAS  PubMed  Google Scholar 

  9. Mockler TC, Ecker JR (2005) Applications of DNA tiling arrays for whole-genome analysis. Genomics 85:1–15. https://doi.org/10.1016/j.ygeno.2004.10.005

    Article  CAS  PubMed  Google Scholar 

  10. Edwards HD, Nagappayya SK, Pohl NLB (2011) Probing the limitations of the fluorous content for tag-mediated microarray formation. Chem Commun 48:510–512. https://doi.org/10.1039/C1CC16022B

    Article  Google Scholar 

  11. Khouja MH, Baekelandt M, Sarab A et al (2010) Limitations of tissue microarrays compared with whole tissue sections in survival analysis. Oncol Lett 1:827–831. https://doi.org/10.3892/ol_00000145

    Article  PubMed  PubMed Central  Google Scholar 

  12. Tanase CP, Albulescu R, Neagu M (2011) Application of 3D hydrogel microarrays in molecular diagnostics: advantages and limitations. Expert Rev Mol Diagn 11:461–464. https://doi.org/10.1586/erm.11.30

    Article  PubMed  Google Scholar 

  13. Weisenberg JLZ (2008) Diagnostic yield and limitations of chromosomal microarray: a retrospective chart review. Ann Neurol 64:S101

    Google Scholar 

  14. Okoniewski MJ, Miller CJ (2006) Hybridization interactions between probesets in short oligo microarrays lead to spurious correlations. BMC Bioinformatics 7:276. https://doi.org/10.1186/1471-2105-7-276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Royce TE, Rozowsky JS, Gerstein MB (2007) Toward a universal microarray: prediction of gene expression through nearest-neighbor probe sequence identification. Nucleic Acids Res 35:e99–e99. https://doi.org/10.1093/nar/gkm549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mardis ER (2008) The impact of next-generation sequencing technology on genetics. Trends Genet 24:133–141. https://doi.org/10.1016/j.tig.2007.12.007

    Article  CAS  PubMed  Google Scholar 

  17. Goodwin S, McPherson JD, McCombie WR (2016) Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet 17:333–351. https://doi.org/10.1038/nrg.2016.49

    Article  CAS  PubMed  Google Scholar 

  18. Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63. https://doi.org/10.1038/nrg2484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Marioni JC, Mason CE, Mane SM et al (2008) RNA-seq: An assessment of technical reproducibility and comparison with gene expression arrays. Genome Res 18:1509–1517. https://doi.org/10.1101/gr.079558.108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mortazavi A, Williams BA, McCue K et al (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5:621–628. https://doi.org/10.1038/nmeth.1226

    Article  CAS  PubMed  Google Scholar 

  21. Cloonan N, Forrest ARR, Kolle G et al (2008) Stem cell transcriptome profiling via massive-scale mRNA sequencing. Nat Methods 5:613–619. https://doi.org/10.1038/nmeth.1223

    Article  CAS  PubMed  Google Scholar 

  22. Stark R, Grzelak M, Hadfield J (2019) RNA sequencing: the teenage years. Nat Rev Genet 20:631–656. https://doi.org/10.1038/s41576-019-0150-2

    Article  CAS  PubMed  Google Scholar 

  23. Costa-Silva J, Domingues D, Lopes FM (2017) RNA-Seq differential expression analysis: an extended review and a software tool. PLoS One 12:e0190152. https://doi.org/10.1371/journal.pone.0190152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chang K, Creighton CJ, Davis C et al (2013) The Cancer Genome Atlas pan-cancer analysis project. Nat Genet 45:1113–1120. https://doi.org/10.1038/ng.2764

    Article  CAS  Google Scholar 

  25. Lonsdale J, Thomas J, Salvatore M et al (2013) The Genotype-Tissue Expression (GTEx) project. Nat Genet 45:580–585. https://doi.org/10.1038/ng.2653

    Article  CAS  Google Scholar 

  26. The GTEx Consortium (2015) The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science 348:648. https://doi.org/10.1126/science.1262110

    Article  CAS  Google Scholar 

  27. Rozenblatt-Rosen O, Stubbington MJT, Regev A, Teichmann SA (2017) The Human Cell Atlas: from vision to reality. Nature 550:451–453. https://doi.org/10.1038/550451a

    Article  CAS  PubMed  Google Scholar 

  28. Mereu E, Lafzi A, Moutinho C et al (2020) Benchmarking single-cell RNA-sequencing protocols for cell atlas projects. Nat Biotechnol 38(6):1–9. https://doi.org/10.1038/s41587-020-0469-4

    Article  CAS  Google Scholar 

  29. Papatheodorou I, Moreno P, Manning J et al (2020) Expression Atlas update: from tissues to single cells. Nucleic Acids Res 48:D77–D83. https://doi.org/10.1093/nar/gkz947

    Article  CAS  PubMed  Google Scholar 

  30. Franzén O, Gan L-M, Björkegren JLM (2019) PanglaoDB: a web server for exploration of mouse and human single-cell RNA sequencing data. Database 2019:baz046. https://doi.org/10.1093/database/baz046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Angermueller C, Pärnamaa T, Parts L, Stegle O (2016) Deep learning for computational biology. Mol Sys Biol 12:878. https://doi.org/10.15252/msb.20156651

    Article  Google Scholar 

  32. Chiu Y-C, Chen H-IH, Zhang T et al (2019) Predicting drug response of tumors from integrated genomic profiles by deep neural networks. BMC Med Genet 12:18. https://doi.org/10.1186/s12920-018-0460-9

    Article  Google Scholar 

  33. Sun Y, Zhu S, Ma K et al (2019) Identification of 12 cancer types through genome deep learning. Sci Rep 9:17256. https://doi.org/10.1038/s41598-019-53989-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhang Z, Pan Z, Ying Y et al (2019) Deep-learning augmented RNA-seq analysis of transcript splicing. Nat Methods 16:307–310. https://doi.org/10.1038/s41592-019-0351-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Xiong HY, Alipanahi B, Lee LJ et al (2015) The human splicing code reveals new insights into the genetic determinants of disease. Science 347:1254806. https://doi.org/10.1126/science.1254806

    Article  CAS  PubMed  Google Scholar 

  36. Ghandi M, Huang FW, Jané-Valbuena J et al (2019) Next-generation characterization of the Cancer Cell Line Encyclopedia. Nature 569:503–508. https://doi.org/10.1038/s41586-019-1186-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Streeter I, Harrison PW, Faulconbridge A et al (2017) The human-induced pluripotent stem cell initiative-data resources for cellular genetics. Nucleic Acids Res 45:D691–D697. https://doi.org/10.1093/nar/gkw928

    Article  CAS  PubMed  Google Scholar 

  38. Papatheodorou I, Fonseca NA, Keays M et al (2017) Expression Atlas: gene and protein expression across multiple studies and organisms. Nucleic Acids Res 46:D246–D251. https://doi.org/10.1093/nar/gkx1158

    Article  CAS  PubMed Central  Google Scholar 

  39. Wilks C, Cline MS, Weiler E et al (2014) The Cancer Genomics Hub (CGHub): overcoming cancer through the power of torrential data. Database 2014:bau093. https://doi.org/10.1093/database/bau093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Barretina J, Caponigro G, Stransky N et al (2012) The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483:603–607. https://doi.org/10.1038/nature11003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Andrews S, Krueger F, Segonds-Pichon A et al (2012) FastQC. Babraham, UK

    Google Scholar 

  42. Schmieder R, Edwards R (2011) Quality control and preprocessing of metagenomic datasets. Bioinformatics 27:863–864. https://doi.org/10.1093/bioinformatics/btr026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120. https://doi.org/10.1093/bioinformatics/btu170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chen S, Zhou Y, Chen Y, Gu J (2018) fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34:i884–i890. https://doi.org/10.1093/bioinformatics/bty560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Guo Y, Dai Y, Yu H et al (2017) Improvements and impacts of GRCh38 human reference on high throughput sequencing data analysis. Genomics 109:83–90. https://doi.org/10.1016/j.ygeno.2017.01.005

    Article  CAS  PubMed  Google Scholar 

  46. Dobin A, Davis CA, Schlesinger F et al (2012) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29:15–21. https://doi.org/10.1093/bioinformatics/bts635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kim D, Langmead B, Salzberg SL (2015) HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12:357–360. https://doi.org/10.1038/nmeth.3317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Liao Y, Smyth GK, Shi W (2013) featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30:923–930. https://doi.org/10.1093/bioinformatics/btt656

    Article  CAS  PubMed  Google Scholar 

  49. Anders S, Pyl PT, Huber W (2014) HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics 31:166–169. https://doi.org/10.1093/bioinformatics/btu638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550. https://doi.org/10.1186/s13059-014-0550-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Robinson MD, McCarthy DJ, Smyth GK (2009) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140. https://doi.org/10.1093/bioinformatics/btp616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Dillies M-A, Rau A, Aubert J et al (2012) A comprehensive evaluation of normalization methods for Illumina high-throughput RNA sequencing data analysis. Brief Bioinform 14:671–683. https://doi.org/10.1093/bib/bbs046

    Article  CAS  PubMed  Google Scholar 

  53. Wang Q, Armenia J, Zhang C et al (2018) Unifying cancer and normal RNA sequencing data from different sources. Sci Data 5:180061. https://doi.org/10.1038/sdata.2018.61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Leek JT (2014) svaseq: removing batch effects and other unwanted noise from sequencing data. Nucleic Acids Res 42:e161. https://doi.org/10.1093/nar/gku864

    Article  CAS  PubMed Central  Google Scholar 

  55. Leek JT, Johnson WE, Parker HS et al (2012) The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics 28:882–883. https://doi.org/10.1093/bioinformatics/bts034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Leek JT, Storey JD (2007) Capturing heterogeneity in gene expression studies by surrogate variable analysis. PLoS Genet 3:e161. https://doi.org/10.1371/journal.pgen.0030161

    Article  CAS  PubMed Central  Google Scholar 

  57. Chakraborty S (2019) Use of Partial Least Squares improves the efficacy of removing unwanted variability in differential expression analyses based on RNA-Seq data. Genomics 111:893–898. https://doi.org/10.1016/j.ygeno.2018.05.018

    Article  CAS  PubMed  Google Scholar 

  58. Gagnon-Bartsch JA, Speed TP (2012) Using control genes to correct for unwanted variation in microarray data. Biostatistics 13:539–552. https://doi.org/10.1093/biostatistics/kxr034

    Article  PubMed  PubMed Central  Google Scholar 

  59. Somekh J, Shen-Orr SS, Kohane IS (2019) Batch correction evaluation framework using a-priori gene-gene associations: applied to the GTEx dataset. BMC Bioinformatics 20:268. https://doi.org/10.1186/s12859-019-2855-9

    Article  PubMed  PubMed Central  Google Scholar 

  60. Johnson WE, Li C, Rabinovic A (2006) Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 8:118–127. https://doi.org/10.1093/biostatistics/kxj037

    Article  PubMed  Google Scholar 

  61. Oytam Y, Sobhanmanesh F, Duesing K et al (2016) Risk-conscious correction of batch effects: maximising information extraction from high-throughput genomic datasets. BMC Bioinformatics 17:332. https://doi.org/10.1186/s12859-016-1212-5

    Article  PubMed  PubMed Central  Google Scholar 

  62. Mostafavi S, Battle A, Zhu X et al (2013) Normalizing RNA-sequencing data by modeling hidden covariates with prior knowledge. PLoS One 8:e68141. https://doi.org/10.1371/journal.pone.0068141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Long Q, Argmann C, Houten SM et al (2016) Inter-tissue coexpression network analysis reveals DPP4 as an important gene in heart to blood communication. Genome Med 8:15. https://doi.org/10.1186/s13073-016-0268-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Chen C, Grennan K, Badner J et al (2011) Removing batch effects in analysis of expression microarray data: an evaluation of six batch adjustment methods. PLoS One 6:e17238. https://doi.org/10.1371/journal.pone.0017238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Rustici G, Kolesnikov N, Brandizi M et al (2013) ArrayExpress update—trends in database growth and links to data analysis tools. Nucleic Acids Res 41:D987–D990. https://doi.org/10.1093/nar/gks1174

    Article  CAS  PubMed  Google Scholar 

  66. Castillo D, Gálvez JM, Herrera LJ et al (2017) Integration of RNA-Seq data with heterogeneous microarray data for breast cancer profiling. BMC Bioinformatics 18:506. https://doi.org/10.1186/s12859-017-1925-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Thompson JA, Tan J, Greene CS (2016) Cross-platform normalization of microarray and RNA-seq data for machine learning applications. PeerJ 4:e1621. https://doi.org/10.7717/peerj.1621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Considerations for RNA-Seq read length and coverage. https://support.illumina.com/bulletins/2017/04/considerations-for-rna-seq-read-length-and-coverage-.html?langsel=/us/. Accessed 6 Apr 2020

  69. Conesa A, Madrigal P, Tarazona S et al (2016) A survey of best practices for RNA-seq data analysis. Genome Biol 17:13. https://doi.org/10.1186/s13059-016-0881-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Liu Y, Ferguson JF, Xue C et al (2013) Evaluating the impact of sequencing depth on transcriptome profiling in human adipose. PLoS One 8:e66883. https://doi.org/10.1371/journal.pone.0066883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Cock PJA, Fields CJ, Goto N et al (2009) The Sanger FASTQ file format for sequences with quality scores, and the Solexa/Illumina FASTQ variants. Nucleic Acids Res 38:1767–1771. https://doi.org/10.1093/nar/gkp1137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Li H, Handsaker B, Wysoker A et al (2009) The Sequence Alignment/Map format and SAMtools. Bioinformatics 25:2078–2079. https://doi.org/10.1093/bioinformatics/btp352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Uhlén M, Fagerberg L, Hallström BM et al (2015) Tissue-based map of the human proteome. Science 347:1260419. https://doi.org/10.1126/science.1260419

    Article  CAS  PubMed  Google Scholar 

  74. Dunham I, Kundaje A, Aldred SF et al (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489:57–74. https://doi.org/10.1038/nature11247

    Article  CAS  Google Scholar 

  75. Bradley RK, Merkin J, Lambert NJ, Burge CB (2012) Alternative splicing of RNA triplets is often regulated and accelerates proteome evolution. PLoS Biol 10:e1001229. https://doi.org/10.1371/journal.pbio.1001229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sheng X, Wu J, Sun Q et al (2016) MTD: a mammalian transcriptomic database to explore gene expression and regulation. Brief Bioinform 18:28–36. https://doi.org/10.1093/bib/bbv117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Stachelscheid H, Seltmann S, Lekschas F et al (2013) CellFinder: a cell data repository. Nucleic Acids Res 42:D950–D958. https://doi.org/10.1093/nar/gkt1264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Wan Q, Dingerdissen H, Fan Y et al (2015) BioXpress: an integrated RNA-seq-derived gene expression database for pan-cancer analysis. Database 2015:bav019. https://doi.org/10.1093/database/bav019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Yu NY-L, Hallström BM, Fagerberg L et al (2015) Complementing tissue characterization by integrating transcriptome profiling from the Human Protein Atlas and from the FANTOM5 consortium. Nucleic Acids Res 43:6787–6798. https://doi.org/10.1093/nar/gkv608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Barrett T, Wilhite SE, Ledoux P et al (2013) NCBI GEO: archive for functional genomics data sets—update. Nucleic Acids Res 41:D991–D995. https://doi.org/10.1093/nar/gks1193

    Article  CAS  PubMed  Google Scholar 

  81. Garalde DR, Snell EA, Jachimowicz D et al (2018) Highly parallel direct RNA sequencing on an array of nanopores. Nat Methods 15:201–206. https://doi.org/10.1038/nmeth.4577

    Article  CAS  PubMed  Google Scholar 

  82. Chatterjee A, Ahn A, Rodger EJ et al (2018) A guide for designing and analyzing RNA-Seq data. Methods Mol Biol 1783:35–80. https://doi.org/10.1007/978-1-4939-7834-2_3

    Article  PubMed  Google Scholar 

  83. Love MI, Anders S, Kim V, Huber W (2015) RNA-Seq workflow: gene-level exploratory analysis and differential expression. F1000Res 4:1070. https://doi.org/10.12688/f1000research.7035.1

    Article  PubMed  PubMed Central  Google Scholar 

  84. Law CW, Alhamdoosh M, Su S et al (2018) RNA-seq analysis is easy as 1-2-3 with limma, Glimma and edgeR. F1000Res 5:ISCB Comm J-1408. https://doi.org/10.12688/f1000research.9005.3

    Article  PubMed Central  Google Scholar 

  85. Chen Y, Lun ATL, Smyth GK (2014) Differential expression analysis of complex RNA-seq experiments using edgeR. In: Datta S, Nettleton D (eds) Statistical analysis of next generation sequencing data. Springer, Cham, pp 51–74

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noam Shomron .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zoabi, Y., Shomron, N. (2021). Processing and Analysis of RNA-seq Data from Public Resources. In: Shomron, N. (eds) Deep Sequencing Data Analysis. Methods in Molecular Biology, vol 2243. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1103-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1103-6_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1102-9

  • Online ISBN: 978-1-0716-1103-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics