Skip to main content

Study of Circular RNA Expression by Nonradioactive Northern Blot Procedure

  • Protocol
  • First Online:
Long Non-Coding RNAs in Cancer

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2348))

Abstract

Circular RNAs (circRNAs) are covalently closed transcripts generated by back-splicing reaction. The lack of free ends endows these RNA molecules with high stability thus allowing them to accumulate in tissues and body fluids. They are widely expressed in most organisms, are modulated during development and display tissue-specific expression, resulting particularly enriched in the nervous system. Deregulation of circRNA expression has also been associated with several pathological conditions including neurological diseases and cancer.

Here we present a Northern blot procedure that allows the analysis of the expression of bona fide circRNAs through the use of a digoxigenin-labeled RNA probe and the immunodetection of the signals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Guo JU, Agarwal V, Guo H et al (2014) Expanded identification and characterization of mammalian circular RNAs. Genome Biol 15:409

    Article  Google Scholar 

  2. Zhang XO, Dong R, Zhang Y et al (2016) Diverse alternative back-splicing and alternative splicing landscape of circular RNAs. Genome Res 26:1277–1287

    Article  CAS  Google Scholar 

  3. Jeck WR, Sorrentino JA, Wang K et al (2013) Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA 19:141–157

    Article  CAS  Google Scholar 

  4. Memczak S, Jens M, Elefsinioti A et al (2013) Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495:333–338

    Article  CAS  Google Scholar 

  5. Enuka Y, Lauriola M, Feldman ME et al (2016) Circular RNAs are long-lived and display only minimal early alterations in response to a growth factor. Nucleic Acids Res 44:1370–1383

    Article  CAS  Google Scholar 

  6. Wang PL, Bao Y, Yee MC et al (2014) Circular RNA is expressed across the eukaryotic tree of life. PLoS One e90859:9

    Google Scholar 

  7. Rybak-Wolf A, Stottmeister C, Glažar P et al (2015) Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed. Mol Cell 58:870–885

    Article  CAS  Google Scholar 

  8. You X, Vlatkovic I, Babic A et al (2015) Neural circular RNAs are derived from synaptic genes and regulated by development and plasticity. Nat Neurosci 18:603–610

    Article  CAS  Google Scholar 

  9. Hansen TB, Jensen TI, Clausen BH et al (2013) Natural RNA circles function as effi- cient microRNA sponges. Nature 495:384–388

    Article  CAS  Google Scholar 

  10. Ashwal-Fluss R, Meyer M, Pamudurti NR et al (2014) circRNA biogenesis competes with pre-mRNA splicing. Mol Cell 56:55–66

    Article  CAS  Google Scholar 

  11. Du WW, Fang L, Yang W et al (2017) Induction of tumor apoptosis through a circular RNA enhancing Foxo3 activity. Cell Death Differ 24:357–370

    Article  CAS  Google Scholar 

  12. Rossi F, Legnini I, Megiorni F et al (2019) Circ-ZNF609 regulates G1-S progression in rhabdomyosarcoma. Oncogene 38:3843–3854

    Article  CAS  Google Scholar 

  13. Liu CX, Li X, Nan F et al (2019) Structure and degradation of circular RNAs regulate PKR activation in innate immunity. Cell 177:865–880

    Article  CAS  Google Scholar 

  14. Chen N, Zhao G, Yan X et al (2018) A novel FLI1 exonic circular RNA promotes metastasis in breast cancer by coordinately regulating TET1 and DNMT1. Genome Biol 19:218

    Article  CAS  Google Scholar 

  15. Pamudurti NR, Bartok O, Jens M et al (2017) Translation of CircRNAs. Mol Cell 66:9

    Article  CAS  Google Scholar 

  16. Legnini I, Di Timoteo G, Rossi F et al (2017) Circ-ZNF609 is a circular RNA that can be translated and functions in myogenesis. Mol Cell 66:22

    Article  CAS  Google Scholar 

  17. Memczak S, Papavasileiou P, Peters O et al (2015) Identification and characterization of circular RNAs as a new class of putative biomarkers in human blood. PLoS One 10:e0141214

    Article  Google Scholar 

  18. Greene J, Baird A-M, Brady L et al (2017) Circular RNAs: biogenesis, function and role in human diseases. Front Mol Biosci 4:38

    Article  Google Scholar 

  19. D’Ambra E, Capauto D, Morlando M (2019) Exploring the regulatory role of circular RNAs in neurodegenerative disorders. Int J Mol Sci 20:5477

    Article  Google Scholar 

  20. Aufiero S, Reckman YJ, Pinto YM et al (2019) Circular RNAs open a new chapter in cardio-vascular biology. Nat Rev Cardiol 16:503–514

    Article  Google Scholar 

  21. Liu J, Zhang X, Yan M, Li H (2020) Emerging role of circular RNAs in cancer. Front Oncologia 10:663

    Article  CAS  Google Scholar 

  22. Kristensen LS, Hansen TB, Veno MT et al (2018) Circular RNAs in cancer: opportunities and challenges in the field. Oncogene 37:555–565

    Article  CAS  Google Scholar 

  23. Lei B, Tian Z, Fan W et al (2019) Circular RNA: a novel biomarker and therapeutic target for human cancers. Int J Med Sci 16:292–301

    Article  CAS  Google Scholar 

  24. Barrett SP, Salzman J (2016) Circular RNAs: analysis, expression and potential functions. Development 143:1838–1847

    Article  CAS  Google Scholar 

  25. Errichelli L, Dini Modigliani S, Laneve P et al (2017) FUS affects circular RNA expression in murine embryonic stem cell-derived motor neurons. Nat Commun 14741:8

    Google Scholar 

  26. Wichterle H, Peljto M (2008) Differentiation of mouse embryonic stem cells to spinal motor neurons. Curr Protoc Stem Cell Biol 223:1H.1.1–1H.1.9

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Lorenzo Errichelli and Ivano Legnini for the images in Fig. 3, panels c and d (reproduced respectively from ref. 25 which is licensed under the Creative Commons Attribution 4.0 International License and from ref. 16 with permission from Elsevier).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariangela Morlando .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

D’Ambra, E., Morlando, M. (2021). Study of Circular RNA Expression by Nonradioactive Northern Blot Procedure. In: Navarro, A. (eds) Long Non-Coding RNAs in Cancer. Methods in Molecular Biology, vol 2348. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1581-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1581-2_23

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1580-5

  • Online ISBN: 978-1-0716-1581-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics