Skip to main content

Vascular Liver Disease and the Liver Sinusoidal Endothelial Cell

  • Chapter
  • First Online:
Vascular Liver Disease

Abstract

The hepatic sinusoidal endothelial cell is highly differentiated, with unique morphology and function. It provides a porous barrier that facilitates access of the hepatocyte to oxygen and small molecules in the microcirculation. Other specialized functions include clearance of colloids and macromolecules, promotion of hepatic stellate cell quiescence, and induction of immune tolerance. The hepatic sinusoidal endothelial cell may be injured by a variety of toxins, ischemia–reperfusion, and even bacteria, leading to vascular liver diseases such as sinusoidal obstruction syndrome, nodular regenerative hyperplasia, and peliosis hepatis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wisse E. An electron microscopic study of the fenestrated endothelial lining of rat liver sinusoids. J Ultrastruct Res. 1970;31:125–50.

    Article  PubMed  CAS  Google Scholar 

  2. Wisse E. An ultrastructural characterization of the endothelial cell in the rat liver sinusoid under normal and various experimental conditions, as a contribution to the distinction between endothelial and Kupffer cells. J Ultrastruct Res. 1972;38:528–62.

    Article  PubMed  CAS  Google Scholar 

  3. Knook DL, Blansjaar N, Sleyster EC. Isolation and characterization of Kupffer and endothelial cells from the rat liver. Exp Cell Res. 1977;109:317–29.

    Article  PubMed  CAS  Google Scholar 

  4. Knook DL, Sleyster EC. Separation of the Kupffer and endothelial cells of the rat liver by centrifugal elutriation. Exp Cell Res. 1976;99:444–9.

    Article  PubMed  CAS  Google Scholar 

  5. Eriksson S, Fraser JRE, Laurent TC, Pertoft H, Smedsrød B. Endothelial cells are a site of uptake and degradation of hyaluronic acid in the liver. Exp Cell Res. 1983;144:223–8.

    Article  PubMed  CAS  Google Scholar 

  6. Vaporciyan AA, DeLisser HM, Yan HC, Mendiguren II, Thorn SR, Jones ML, et al. Involvement of platelet-endothelial cell adhesion molecule-1 in neutrophil recruitment in vivo. Science. 1993;262:1580–2.

    Article  PubMed  CAS  Google Scholar 

  7. DeLeve LD, Wang X, Hu L, McCuskey MK, McCuskey RS. Rat liver sinusoidal endothelial cell phenotype is under paracrine and autocrine control. Am J Physiol Gastrointest Liver Physiol. 2004;287:G757–63.

    Article  PubMed  CAS  Google Scholar 

  8. Harb R, Xie G, Lutzko C, Guo Y, Wang X, Hill C, et al. Bone marrow progenitor cells repair rat hepatic sinusoidal endothelial cells after liver injury. Gastroenterology. 2009;137:704–12.

    Article  PubMed  Google Scholar 

  9. Scoazec JY, Feldmann G. In situ immunophenotyping study of endothelial cells of the human hepatic sinusoid: results and functional implications. Hepatology. 1991;14:789–97.

    Article  PubMed  CAS  Google Scholar 

  10. McCourt PA, Smedsrod BH, Melkko J, Johansson S. Characterization of a hyaluronan receptor on rat sinusoidal liver endothelial cells and its functional relationship to scavenger receptors. Hepatology. 1999;30:1276–86.

    Article  PubMed  CAS  Google Scholar 

  11. Hansen B, Longati P, Elvevold K, Nedredal GI, Schledzewski K, Olsen R, et al. Stabilin-1 and stabilin-2 are both directed into the early endocytic pathway in hepatic sinusoidal endothelium via interactions with clathrin/AP-2, independent of ligand binding. Exp Cell Res. 2005;303:160–73.

    Article  PubMed  CAS  Google Scholar 

  12. Politz O, Gratchev A, McCourt PAG, Schledzewski K, Guillot P, Johansson S, et al. Stabilin-1 and -2 constitute a novel family of fasciclin-like hyaluronan receptor homologues. Biochem J. 2002;362:155–64.

    Article  PubMed  CAS  Google Scholar 

  13. Couvelard A, Scoazec JY, Feldmann G. Expression of cell-cell and cell-matrix adhesion proteins by sinusoidal endothelial cells in the normal and cirrhotic human liver. Am J Pathol. 1993;143:738–52.

    PubMed  CAS  Google Scholar 

  14. Weiss L, Chen LT. A scanning electron microscopic study of the spleen. Blood. 1974;43:665–91.

    PubMed  CAS  Google Scholar 

  15. Blue J, Weiss L. Electron microscopy of the red pulp of the dog spleen including vascular arrangements, peri-arterial macrophage sheaths, ellipsoids, and the contractive reticular meshwork. Am J Anat. 1981;161:189–218.

    Article  PubMed  CAS  Google Scholar 

  16. Blue J, Weiss L. Vascular pathways in nonsinusal red pulp: an electron microscopic study of the cat spleen. Am J Anat. 1981;161:135–68.

    Article  PubMed  CAS  Google Scholar 

  17. De Bruyn PP, Michelson S. Changes in the random distribution of sialic acid at the surface of the myeloid sinusoidal endothelium resulting from the presence of diaphragmed fenestrae. J Cell Biol. 1979;82:708–14.

    Article  PubMed  Google Scholar 

  18. Inoue S, Osmond DG. Basement membrane of mouse bone marrow sinusoids shows distinctive structure and proteoglycan composition: a high resolution ultrastructural study. Anat Rec. 2001;264:294–304.

    Article  PubMed  CAS  Google Scholar 

  19. Risau W. Development and differentiation of endothelium. Kidney Int Suppl. 1998;54:S3–6.

    Article  Google Scholar 

  20. Yamane A, Seetharam L, Yamaguchi S, Gotoh N, Takahashi T, Neufeld G, et al. A new communication system between hepatocytes and sinusoidal endothelial cells in liver through vascular endothelial growth factor and Flt tyrosine kinase receptor family (Flt-1 and KDR/Flk-1). Oncogene. 1994;9:2683–90.

    PubMed  CAS  Google Scholar 

  21. Schaffner F, Popper H. Capillarization of hepatic sinusoids in man. Gastroenterology. 1963;44:239–42.

    PubMed  CAS  Google Scholar 

  22. DeLeve LD, Wang X, Kanel GC, Atkinson RD, McCuskey RS. Prevention of hepatic fibrosis in a murine model of metabolic syndrome with non-alcoholic ­steatohepatitis. Am J Pathol. 2008;173:993–1001.

    Article  PubMed  CAS  Google Scholar 

  23. Dubuisson L, Boussarie L, Bedin C-A, Balabud C, Bioulac-Sage P. Transformation of sinusoids into capillaries in a rat model of selenium-induced nodular regenerative hyperplasia: an immunolight and immunoelectron microscopic study. Hepatology. 1995;21:805–14.

    PubMed  CAS  Google Scholar 

  24. Horn T, Christoffersen P, Henriksen JH. Alcoholic liver injury: defenestration in noncirrhotic livers-a scanning electron microscopic study. Hepatology. 1987;7:77–82.

    Article  PubMed  CAS  Google Scholar 

  25. Horn T, Junge J, Christoffersen P. Early alcoholic liver injury: changes of the Disse space in acinar zone 3. Liver. 1985;5:301–10.

    PubMed  CAS  Google Scholar 

  26. Urashima S, Tsutsumi M, Nakase K, Wang JS, Takada A. Studies on capillarization of the hepatic sinusoids in alcoholic liver disease. Alcohol Alcohol. 1993;S1B:77–84.

    Google Scholar 

  27. Xu B, Broome U, Uzunel M, Nava S, Ge X, Kumagai-Braesch M, et al. Capillarization of hepatic sinusoid by liver endothelial cell-reactive autoantibodies in patients with cirrhosis and chronic hepatitis. Am J Pathol. 2003;163:1275–89.

    Article  PubMed  CAS  Google Scholar 

  28. Froomes PRA, Morgan DJ, Smallwood RA, Angus PW. Comparative effects of oxygen supplementation on theophylline and acetaminophen clearance in human cirrhosis. Gastroenterology. 1999;116:915–20.

    Article  PubMed  CAS  Google Scholar 

  29. Hickey PL, Angus PW, McLean AJ, Morgan DJ. Oxygen supplementation restores theophylline clearance to normal in cirrhotic rats. Gastroenterology. 1995;108:1504–9.

    Article  PubMed  CAS  Google Scholar 

  30. Le Couteur DG, Hickey H, Harvey PJ, Gready J, McLean AJ. Hepatic artery flow and propranolol metabolism in perfused cirrhotic rat liver. J Pharmacol Exp Ther. 1999;289:1553–8.

    PubMed  Google Scholar 

  31. Le Couteur DG, Cogger VC, Markus AM, Harvey PJ, Yin ZL, Annselin AD, et al. Pseudocapillarization and associated energy limitation in the aged rat liver. Hepatology. 2001;33:537–43.

    Article  PubMed  Google Scholar 

  32. Fraser R, Bosanquet AG, Day WA. Filtration of chylomicrons by the liver may influence cholesterol metabolism and atherosclerosis. Atherosclerosis. 1978;29:113–23.

    Article  PubMed  CAS  Google Scholar 

  33. Redgrave TG. Formation of cholesteryl ester-rich particulate lipid during metabolism of chylomicrons. J Clin Investig. 1970;49:465–71.

    Article  PubMed  CAS  Google Scholar 

  34. Proctor SD, Mamo JC. Retention of fluorescent-labelled chylomicron remnants within the intima of the arterial wall – evidence that plaque cholesterol may be derived from post-prandial lipoproteins.[see comment]. Eur J Clin Investig. 1998;28:497–503.

    Article  CAS  Google Scholar 

  35. Botham KM, Wheeler-Jones CPD. Introduction to the Biochemical Society Focused Meeting on Diet and Cardiovascular Health: chylomicron remnants and their emerging roles in vascular dysfunction in atherosclerosis. Biochem Soc Trans. 2007;35:437–9.

    Article  PubMed  CAS  Google Scholar 

  36. Cogger VC, Warren A, Fraser R, Ngu M, McLean AJ, Le Couteur DG. Hepatic sinusoidal pseudocapillarization with aging in the non-human primate. Exp Gerontol. 2003;38:1101–7.

    Article  PubMed  Google Scholar 

  37. McLean AJ, Cogger VC, Chong GC, Warren A, Markus AM, Dahlstrom JE, et al. Age-related pseudocapillarization of the human liver. J Pathol. 2003;200:112–7.

    Article  PubMed  Google Scholar 

  38. Warren A, Bertolino P, Cogger VC, McLean AJ, Fraser R, Le Couteur DG. Hepatic pseudocapillarization in aged mice. Exp Gerontol. 2005;40:807–12.

    Article  PubMed  Google Scholar 

  39. Smedsrød B, Pertoft H, Gustafson S, Laurent TC. Scavenger functions of the liver endothelial cell. Biochem J. 1990;266:313–27.

    PubMed  Google Scholar 

  40. Knook DL, Sleyster EC. Isolated parenchymal, Kupffer and endothelial rat liver cells characterized by their lysosomal enzyme content. Biochem Biophys Res Commun. 1980;96:250–7.

    Article  PubMed  CAS  Google Scholar 

  41. Malovic I, Sorensen KK, Elvevold KH, Nedredal GI, Paulsen S, Erofeev AV, et al. The mannose receptor on murine liver sinusoidal endothelial cells is the main denatured collagen clearance receptor. Hepatology. 2007;45:1454–61.

    Article  PubMed  CAS  Google Scholar 

  42. Martens JH, Kzhyshkowska J, Falkowski-Hansen M, Schledzewski K, Gratchev A, Mansmann U, et al. Differential expression of a gene signature for scavenger/lectin receptors by endothelial cells and macrophages in human lymph node sinuses, the primary sites of regional metastasis. J Pathol. 2006;208:574–89.

    Article  PubMed  CAS  Google Scholar 

  43. Blomhoff R, Drevon CA, Eskild W, Helgerud P, Norum KR, Berg T. Clearance of acetyl low density lipoprotein by rat liver endothelial cells. Implications for hepatic cholesterol metabolism. J Biol Chem. 1984;259:8898–903.

    PubMed  CAS  Google Scholar 

  44. Nagelkerke JF, Barto KP, van Berkel TJ. In vivo and in vitro uptake and degradation of acetylated low density lipoprotein by rat liver endothelial, Kupffer, and parenchymal cells. J Biol Chem. 1983;258:12221–7.

    PubMed  CAS  Google Scholar 

  45. Van Berkel TJ, De Rijke YB, Kruijt JK. Different fate in vivo of oxidatively modified low density lipoprotein and acetylated low density lipoprotein in rats. Recognition by various scavenger receptors on Kupffer and endothelial liver cells. J Biol Chem. 1991;266:2282–9.

    PubMed  Google Scholar 

  46. Smedsrød B, Melkko J, Araki N, Sano H, Horiuchi S. Advanced glycation end products are eliminated by scavenger-receptor-mediated endocytosis in hepatic sinusoidal Kupffer and endothelial cells. Biochem J. 1997;322:567–73.

    PubMed  Google Scholar 

  47. Mousavi SA, Sporstøl M, Fladeby C, Kjeken R, Barois N, Berg T. Receptor-mediated endocytosis of immune complexes in rat liver sinusoidal endothelial cells is mediated by Fc?RIIb2. Hepatology. 2007;46:871–84.

    Article  PubMed  CAS  Google Scholar 

  48. March S, Hui EE, Underhill GH, Khetani S, Bhatia SN. Microenvironmental regulation of the sinusoidal endothelial cell phenotype in vitro. Hepatology. 2009;50:920–8.

    Article  PubMed  CAS  Google Scholar 

  49. Ito Y, Sørensen KK, Bethea NW, Svistounov D, McCuskey MK, Smedsrød BH, et al. Age-related changes in the hepatic microcirculation in mice. Exp Gerontol. 2007;42:789–97.

    Article  PubMed  CAS  Google Scholar 

  50. Tamaki S, Ueno T, Torimura T, Sata M, Tanikawa K. Evaluation of hyaluronic acid binding ability of hepatic sinusoidal endothelial cells in rats with liver cirrhosis. Gastroenterology. 1996;111:1049–57.

    Article  PubMed  CAS  Google Scholar 

  51. DeLeve LD, Wang X, Guo Y. Sinusoidal endothelial cells prevent rat stellate cell activation and promote reversion to quiescence. Hepatology. 2008;48:920–30.

    Article  PubMed  CAS  Google Scholar 

  52. Xie G, Kanel GC, DeLeve LD. cGMP Signaling Regulates Liver Sinusoidal Endothelial Cell (SEC) Phenotype and Accelerates Reversal of Cirrhosis. Gastroenterology. 2010 (abstract);138.

    Google Scholar 

  53. Knolle PA, Schmitt E, Jin S, Germann T, Duchmann R, Hegenbarth S, et al. Induction of cytokine production in naive CD4+ T cells by antigen-presenting murine liver sinusoidal endothelial cells but failure to induce differentiation toward Th1 cells. Gastroenterology. 1999;116:1428–40.

    Article  PubMed  CAS  Google Scholar 

  54. Knolle PA, Gerken G. Local control of the immune response in the liver. Immunol Rev. 2000;174:21–34.

    Article  PubMed  CAS  Google Scholar 

  55. Limmer A, Ohl J, Kurts C, Ljunggren HG, Reiss Y, Groettrup M, et al. Efficient presentation of exogenous antigen by liver endothelial cells to CD8+ T cells results in antigen-specific T-cell tolerance. Nat Med. 2000;6:1348–54.

    Article  PubMed  CAS  Google Scholar 

  56. Klugewitz K, Blumenthal-Barby F, Schrage A, Knolle PA, Hamann A, Crispe IN. Immunomodulatory effects of the liver: deletion of activated CD4+ effector cells and suppression of IFN-gamma-producing cells after intravenous protein immunization. J Immunol. 2002;169:2407–13.

    PubMed  CAS  Google Scholar 

  57. Uhrig A, Banafsche R, Kremer M, Hegenbarth S, Hamann A, Neurath M, et al. Development and functional consequences of LPS tolerance in sinusoidal endothelial cells of the liver.[Erratum appears in J Leukoc Biol. 2005 Jul;78(1):5A]. J Leukoc Biol. 2005;77:626–33.

    Article  PubMed  CAS  Google Scholar 

  58. Diehl L, Schurich A, Grochtmann R, Hegenbarth S, Chen L, Knolle PA. Tolerogenic maturation of liver sinusoidal endothelial cells promotes B7-homolog 1-dependent CD8+ T cell tolerance. Hepatology. 2008;47:296–305.

    Article  PubMed  CAS  Google Scholar 

  59. Schildberg FA, Hegenbarth SI, Schumak B, Limmer A, Knolle PA. Liver sinusoidal endothelial cells veto CD8 T cell activation by antigen-presenting dendritic cells. Eur J Immunol. 2008;38:957–67.

    Article  PubMed  CAS  Google Scholar 

  60. Onoe T, Ohdan H, Tokita D, Shishida M, Tanaka Y, Hara H, et al. Liver sinusoidal endothelial cells tolerize T cells across MHC barriers in mice. J Immunol. 2005;175:139–46.

    PubMed  CAS  Google Scholar 

  61. Knolle PA, Limmer A. Neighborhood politics: the immunoregulatory function of organ-resident liver endothelial cells. Trends Immunol. 2001;22:432–7.

    Article  PubMed  CAS  Google Scholar 

  62. Steinberg P, Lafranconi WM, Wolf CR, Waxman DJ, Oesch F, Friedberg T. Xenobiotic metabolizing enzymes are not restricted to parenchymal cells in rat liver. Mol Pharmacol. 1987;32:463–70.

    PubMed  CAS  Google Scholar 

  63. Steinberg P, Schramm H, Schladt L, Robertson LW, Thomas H, Oesch F. The distribution, induction and isoenzyme profile of glutathione S-transferase and glutathione peroxidase in isolated rat liver parenchymal, Kupffer and endothelial cells. Biochem J. 1989;264:737–44.

    PubMed  CAS  Google Scholar 

  64. DeLeve LD. Dacarbazine toxicity in murine liver cells: a novel model of hepatic endothelial injury and glutathione defense. J Pharmacol Exp Ther. 1994;268:1261–70.

    PubMed  CAS  Google Scholar 

  65. DeLeve LD, Wang X, Kaplowitz N, Shulman HM, Bart JA, van der Hoek A. Sinusoidal endothelial cells as a target for acetaminophen toxicity: direct action versus requirement for hepatocyte activation in different mouse strains. Biochem Pharmacol. 1997;53:1339–45.

    Article  PubMed  CAS  Google Scholar 

  66. DeLeve LD, Wang X, Kuhlenkamp JF, Kaplowitz N. Toxicity of azathioprine and monocrotaline in murine sinusoidal endothelial cells and hepatocytes: the role of glutathione and relevance to hepatic venooclusive disease. Hepatology. 1996;23:589–99.

    Article  PubMed  CAS  Google Scholar 

  67. DeLeve LD. Glutathione defense in non-parenchymal cells. Semin Liver Dis. 1998;18:403–13.

    Article  PubMed  CAS  Google Scholar 

  68. Shulman HM, Fisher LB, Schoch HG, Henne KW, McDonald GB. Venoocclusive disease of the liver after marrow transplantation: histological correlates of clinical signs and symptoms. Hepatology. 1994;19:1171–80.

    Article  PubMed  CAS  Google Scholar 

  69. DeLeve LD, Shulman HM, McDonald GB. Toxic injury to hepatic sinusoids: sinusoidal obstruction syndrome (veno-occlusive disease). Semin Liver Dis. 2002;22:27–42.

    Article  PubMed  Google Scholar 

  70. Willmot FC, Robertson GW. Senecio disease, or cirrhosis of the liver due to senecio poisoning. Lancet. 1920;2:848–9.

    Article  Google Scholar 

  71. McFarlane AL, Branday W. Hepatic enlargement with ascitic children. Br Med J. 1945;1:838–40.

    Article  PubMed  CAS  Google Scholar 

  72. Selzer G, Parker RGF. Senecio poisoning exhibiting as Chiari’s syndrome: a report on twelve cases. Am J Pathol. 1950;27:885–907.

    Google Scholar 

  73. DeLeve LD. Cellular target of cyclophosphamide toxicity in the murine liver: role of glutathione and site of metabolic activation. Hepatology. 1996;24:830–7.

    Article  PubMed  CAS  Google Scholar 

  74. DeLeve LD, McCuskey RS, Wang X, Hu L, McCuskey MK, Epstein RB, et al. Characterization of a reproducible rat model of hepatic veno-occlusive disease. Hepatology. 1999;29:1779–91.

    Article  PubMed  CAS  Google Scholar 

  75. Lamé MW, Jones AD, Wilson DW, Dunston SK, Segall HJ. Protein targets of monocrotaline pyrrole in pulmonary artery endothelial cells. J Biol Chem. 2000;275:29091–9.

    Article  PubMed  Google Scholar 

  76. DeLeve LD, Wang X, Tsai J, Kanel GC, Strasberg SM, Tokes ZA. Prevention of sinusoidal obstruction syndrome (hepatic venoocclusive disease) in the rat by matrix metalloproteinase inhibitors. Gastroenterology. 2003;125:882–90.

    Article  PubMed  CAS  Google Scholar 

  77. DeLeve LD, Ito I, Bethea NW, McCuskey MK, Wang X, McCuskey RS. Embolization by sinusoidal lining cell obstructs the microcirculation in rat sinusoidal obstruction syndrome. Am J Physiol Gastrointest Liver Physiol. 2003;284:G1045–52.

    PubMed  CAS  Google Scholar 

  78. DeLeve LD, Wang X, Kanel GC, Tokes ZA, Tsai J, Ito Y, et al. Decreased hepatic nitric oxide production contributes to the development of rat sinusoidal obstruction syndrome. Hepatology. 2003;38:900–8.

    PubMed  CAS  Google Scholar 

  79. Eberhardt W, Beeg T, Beck KF, Walpen S, Gauer S, Bohles H, et al. Nitric oxide modulates expression of matrix metalloproteinase-9 in rat mesangial cells. Kidney Int. 2000;57:59–69.

    Article  PubMed  CAS  Google Scholar 

  80. Gurjar MV, DeLeon J, Sharma RV, Bhalla RC. Mechanism of inhibition of matrix metalloproteinase-9 induction by NO in vascular smooth muscle cells. J Appl Physiol. 2001;91:1380–6.

    PubMed  CAS  Google Scholar 

  81. Upchurch Jr GR, Ford JW, Weiss SJ, Knipp BS, Peterson DA, Thompson RW, et al. Nitric oxide inhibition increases matrix metalloproteinase-9 expression by rat aortic smooth muscle cells in vitro. J Vasc Surg. 2001;34:76–83.

    Article  PubMed  Google Scholar 

  82. Upadhya GA, Strasberg SM. Glutathione, lactobionate, and histidine: cryptic inhibitors of matrix metalloproteinases contained in University of Wisconsin and histidine/tryptophan/ketoglutarate liver preservation solutions. Hepatology. 2000;31:1115–22.

    Article  PubMed  CAS  Google Scholar 

  83. McDonald GB. Review article: management of hepatic disease following haematopoietic cell transplant. Aliment Pharmacol Ther. 2006;24:441–52.

    Article  PubMed  CAS  Google Scholar 

  84. McKoy JM, Angelotta C, Bennett CL, Tallman MS, Wadleigh M, Evens AM, et al. Gemtuzumab ozogamicin-associated sinusoidal obstructive syndrome (SOS): an overview from the research on adverse drug events and reports (RADAR) project. Leuk Res. 2007;31:599–604.

    Article  PubMed  CAS  Google Scholar 

  85. Rajvanshi P, Shulman HM, Sievers EL, McDonald GB. Hepatic sinusoidal obstruction following Gemtuzumab Ozogamicin (Mylotarg®). Blood. 2002;99:2310–4.

    Article  PubMed  CAS  Google Scholar 

  86. Wadleigh M, Richardson PG, Zahrieh D, Lee SJ, Cutler C, Ho V, et al. Prior gemtuzumab ozogamicin exposure significantly increases the risk of veno-occlusive disease in patients who undergo myeloablative allogeneic stem cell transplantation. Blood. 2003;102:1578–82.

    Article  PubMed  CAS  Google Scholar 

  87. Czauderna P, Katski K, Kowalczyk J, Kurylak A, Lopatka B, Skotnicka-Klonowicz G, et al. Venoocclusive liver disease (VOD) as a complication of Wilms’ tumour management in the series of consecutive 206 patients. Eur J Pediatr Surg. 2000;10:300–3.

    Article  PubMed  CAS  Google Scholar 

  88. Tornesello A, Piciacchia D, Mastrangelo S, Lasorella A, Mastrangelo R. Veno-occlusive disease of the liver in right-sided Wilms’ tumours. Eur J Cancer. 1998;34:1220–3.

    Article  PubMed  CAS  Google Scholar 

  89. Jagt CT, Zuckermann M, Ten Kate F, Taminiau JAJM, Dijkgraaf MGW, Heij H, et al. Veno-occlusive disease as a complication of preoperative chemotherapy for Wilms tumor: a clinico-pathological analysis. Pediatr Blood Cancer. 2009;53:1211–5.

    Article  PubMed  Google Scholar 

  90. Bearman SI. The syndrome of hepatic veno-occlusive disease after marrow transplantation. Blood. 1995;85:3005–20.

    PubMed  CAS  Google Scholar 

  91. Bornhauser M, Storer B, Slattery JT, Appelbaum FR, Deeg HJ, Hansen J, et al. Conditioning with fludarabine and targeted busulfan for transplantation of allogeneic hematopoietic stem cells. Blood. 2003;102:820–6.

    Article  PubMed  CAS  Google Scholar 

  92. de Lima M, Couriel D, Thall PF, Wang X, Madden T, Jones R, et al. Once-daily intravenous busulfan and fludarabine: clinical and pharmacokinetic results of a myeloablative, reduced-toxicity conditioning regimen for allogeneic stem cell transplantation in AML and MDS. Blood. 2004;104:857–64.

    Article  PubMed  CAS  Google Scholar 

  93. Hogan WJ, Maris M, Storer B, Sandmaier BM, Maloney DG, Schoch HG, et al. Hepatic injury after nonmyeloablative conditioning followed by allogeneic hematopoietic cell transplantation: a study of 193 patients. Blood. 2004;103:78–84.

    Article  PubMed  CAS  Google Scholar 

  94. McCune JS, Batchelder A, Guthrie KA, Witherspoon R, Appelbaum FR, Phillips B, et al. Personalized dosing of cyclophosphamide in the total body irradiation-cyclophosphamide conditioning regimen: a phase II trial in patients with hematologic malignancy. Clin Pharmacol Ther. 2009;85:615–22.

    Article  PubMed  CAS  Google Scholar 

  95. McDonald GB, McCune JS, Batchelder A, Cole SL, Phillips B, Ren AG, et al. Metabolism-based cyclophosphamide dosing for hematopoietic cell transplant. Clin Pharmacol Ther. 2005;78:298–308.

    Article  PubMed  CAS  Google Scholar 

  96. Méresse V, Hartmann O, Vassal G, Benhamou E, Valteau-Couanet D, Brugieres L, et al. Risk factors for hepatic veno-occlusive disease after high-dose busulfan-containing regimens followed by autologous bone marrow transplantation: a study in 136 children. Bone Marrow Transplant. 1992;10:135–41.

    PubMed  Google Scholar 

  97. Chevallier P, Prebet T, Turlure P, Hunault M, Vigouroux S, Harousseau JL, et al. Prior treatment with gemtuzumab ozogamicin and the risk of veno-occlusive disease after allogeneic haematopoietic stem cell transplantation. Bone Marrow Transplant. 2010;45:165–70.

    Article  PubMed  CAS  Google Scholar 

  98. Satti MB, Weinbren K, Gordon-Smith EC. 6-thioguanine as a cause of toxic veno-occlusive disease of the liver. J Clin Pathol. 1982;35:1086–91.

    Article  PubMed  CAS  Google Scholar 

  99. Kao NL, Rosenblate HJ. 6-Thioguanine therapy for psoriasis causing toxic hepatic venoocclusive disease. J Am Acad Dermatol. 1993;28:1017–8.

    Article  PubMed  CAS  Google Scholar 

  100. Dubinsky MC, Vasiliauskas EA, Singh H, Abreu MT, Papadakis KA, Tran T, et al. 6-thioguanine can cause serious liver injury in inflammatory bowel disease patients. Gastroenterology. 2003;125:298–303.

    Article  PubMed  CAS  Google Scholar 

  101. Ingold JA, Reed Jr GB, Kaplan HS, Bagshaw MA. Radiation hepatitis. Am J Roentgenol. 1965;93:200–8.

    CAS  Google Scholar 

  102. Fajardo LF, Colby TV. Pathogenesis of veno-occlusive liver disease after radiation. Arch Pathol Lab Med. 1980;104:584–8.

    PubMed  CAS  Google Scholar 

  103. Lawrence TS, Robertson JM, Anscher MS, Jirtle RL, Ensminger WD, Fajardo LF. Hepatic toxicity resulting from cancer treatment. Int J Radiat Oncol Biol Phys. 1995;31:1237–48.

    Article  PubMed  CAS  Google Scholar 

  104. Hillaire S, Bonte E, Denninger MH, Casadevall N, Cadranel JF, Lebrec D, et al. Idiopathic non-cirrhotic intrahepatic portal hypertension in the West: a re-evaluation in 28 patients. Gut. 2002;51:275–80.

    Article  PubMed  CAS  Google Scholar 

  105. Ibarrola C, Colina F. Clinicopathological features of nine cases of non-cirrhotic portal hypertension: ­current definitions and criteria are inadequate. Histopathology. 2003;42:251–64.

    Article  PubMed  CAS  Google Scholar 

  106. Nakanuma Y, Hoso M, Sasaki M, Terada T, Katayanagi K, Nonomura A, et al. Histopathology of the liver in non-cirrhotic portal hypertension of unknown aetiology­. Histopathology. 1996;28:195–204.

    Article  PubMed  CAS  Google Scholar 

  107. Wanless IR. Micronodular transformation (nodular regenerative hyperplasia) of the liver: a report of 64 cases among 2, 500 autopsies and a new classification of benign hepatocellular nodules. Hepatology. 1990;11:787–97.

    Article  PubMed  CAS  Google Scholar 

  108. Shimamatsu K, Wanless IR. Role of ischemia in causing apoptosis, atrophy, and nodular hyperplasia in human liver. Hepatology. 1997;26:343–50.

    Article  PubMed  CAS  Google Scholar 

  109. Croquelois A, Blindenbacher A, Terracciano L, Wang X, Langer I, Radtke F, et al. Inducible ­inactivation of <I>Notch1</I> causes nodular ­regenerative hyperplasia in mice. Hepatology. 2005;41:487–96.

    Article  PubMed  CAS  Google Scholar 

  110. Nakanuma Y, Ohta G, Sasaki K. Nodular ­regenerative hyperplasia of the liver associated with polyarteritis nodosa. Arch Pathol Lab Med. 1984;108:133–5.

    PubMed  CAS  Google Scholar 

  111. Young ID, Segura J, Ford PM, Ford SE. The ­pathogenesis of nodular regenerative hyperplasia of the liver associated with rheumatoid vasculitis. J Clin Gastroenterol. 1992;14:127–31.

    Article  PubMed  CAS  Google Scholar 

  112. Scoazec JY, Marche C, Girard PM, Houtmann J, Durand-Schneider AM, Saimot AG, et al. Peliosis hepatis and sinusoidal dilation during infection by the human immunodeficiency virus (HIV). An ultrastructural study. Am J Pathol. 1988;131:38–47.

    PubMed  CAS  Google Scholar 

  113. Goerdt S, Sorg C. Endothelial heterogeneity and the acquired immunodeficiency syndrome: a paradigm for the pathogenesis of vascular disorders. Clin Investig. 1992;70:89–98.

    Article  PubMed  CAS  Google Scholar 

  114. Leong SS, Cazen RA, Yu GS, LeFevre L, Carson JW. Abdominal visceral peliosis associated with bacillary angiomatosis. Ultrastructural evidence of endothelial destruction by bacilli. Arch Pathol Lab Med. 1992;116:866–71.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurie D. DeLeve .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer New York

About this chapter

Cite this chapter

DeLeve, L.D. (2011). Vascular Liver Disease and the Liver Sinusoidal Endothelial Cell. In: DeLeve, L., Garcia-Tsao, G. (eds) Vascular Liver Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8327-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8327-5_2

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-8326-8

  • Online ISBN: 978-1-4419-8327-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics