Skip to main content

Hypoxic Regulation of Blood Flow in Humans

Skeletal muscle circulation and the role of epinephrine

  • Conference paper
Hypoxia

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 543))

Abstract

Vascular tone represents the balance between local vasodilator mechanisms which attempt to secure adequate blood flow for metabolic demand and neural vasoconstrictor reflexes attempting to maintain arterial pressure. Hypoxia alters vascular tone, shifting this balance in complex ways. Hypoxic vascular responses are not uniform across vascular beds and the mechanisms of hypoxic vasodilation appear to be tissue specific. In healthy humans, skeletal muscle vascular beds exhibit a graded vasodilation in response to hypoxia despite increases in sympathetic vasoconstrictor nerve activity. Previous studies have documented a number of vasodilator substances or systems that appear to be involved in this hypoxic vasodilation. My colleagues and I have conducted studies on the extent to which sympathetic vaso- constriction can mask hypoxic vasodilation, and how sympathetic vasoconstrictor activity interacts with local factors that mediate hypoxic vasodilation in humans. We have focused largely on β-adrenergic mediated vasodilation, noting that it produces some of its effects via a nitric oxide (NO) pathway. This review will explore the role of epinephrine in generating skeletal muscle vasodilation. How the many factors that determine vascular tone during hypoxic stress impact on the regulation of arterial pressure and how hypoxic vasodilation is altered in several pathophysiological conditions will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson D, Allen W, Barcroft H, Edholm OG, and Manning GW. Circulatory changes during fainting and coma caused by oxygen lack. J Physiol 104: 426-434, 1946.

    PubMed Central  Google Scholar 

  2. Axelrod DR, and Pitts RF. Effects of hypoxia on renal tubular function. J Appl Physiol 4: 593-601, 1952.

    CAS  PubMed  Google Scholar 

  3. Berger EY, Galdston M, and Horwitz SA. The effect of anoxic anoxia on the human kidney. J Clin Invest 28: 648–652, 1948.

    Article  Google Scholar 

  4. Blauw GJ, Westendorf RGJ, Simons M, Chang PC, Frölich M, and Meinders AE. β-adrenergic receptors contribute to hypoxaemia induced vasodilatation in man. Br J Clin Pharm 40: 453–458, 1995.

    CAS  Google Scholar 

  5. Blitzer ML, Lee SD, and Creager MA. Endothelium-derived nitric oxide mediates hypoxi vasodilation of resistance vessels in humans. Am J Physiol Heart Circ Physiol 271: H1182 H1185, 1996.

    CAS  Google Scholar 

  6. Bryan PT, and Marshall JM. Adenosine receptor subtypes and vasodilatation in rat skeletal muscle during systemic hypoxia: a role for A1 receptors. J Physiol 514: 151–162, 1999.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Bryan PT, and Marshall JM. Cellular mechanisms by which adenosine induces vasodilatation in rat skeletal muscle: significance for systemic hypoxia. J Physiol 514: 163–175, 1999.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Caldwell FT, Rolf D, and White HL. Effects of acute hypoxia in man. J Appl Physiol 1: 597–600, 1949.

    Google Scholar 

  9. Daugherty RM, Jr., Scott JB, Dabney JM, and Haddy FJ. Local effects of O2 and CO2 on limb, renal, and coronary vascular resistances. Am J Physiol 213: 1102–1110, 1967.

    PubMed  Google Scholar 

  10. Daut J, Maier-Rudolph W, VonBeckerath N, Mehrke G, Gunther K, and Goedel-Meinen L. Hypoxic dilation of coronary arteries is mediated by ATP-sensitive potassium channels. Science 247(4948): 1341–1344, 1990.

    Article  CAS  PubMed  Google Scholar 

  11. Dawes M, Chowienczyk PJ, and Ritter MM. Effects of inhibition of the L-arginine/nitric oxide pathway on vasodilation caused by β-adrenergic agonists in humans. Circulation 95: 2293–2297, 1997.

    Article  CAS  PubMed  Google Scholar 

  12. Dietz NM, Rivera JM, Eggener SE, Fix RT, Warner DO, and Joyner MJ. Nitric oxide contributes to the rise in forearm blood flow during mental stress in humans.J Physiol 480: 361–368, 1994.

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Dinenno FA. Hypoxic regulation of blood flow in humans: α-adrenergic receptors and functional sympatholysis in skeletal muscle. In: Hypoxia symposium, edited by Roach RC, Wagner PD and Hackett PH. New York: Kluwer Academic/Plenum Publishers, 2003.

    Google Scholar 

  14. Dinenno FA, Joyner MJ, and Halliwill JR. Failure of systemic hypoxia to blunt sympathetic neural vasoconstriction in the human forearm. J Physiol Submitted, 2003.

    Google Scholar 

  15. Freitas J, Costa O, Carvalho MJ, and DeFreitas AF. High altitude-related neurocardiogenic svncooe. Am J Cardiol 77: 1021, 1996.

    Article  CAS  PubMed  Google Scholar 

  16. Garovic VD, Joyner MJ, Dietz NM, Boerwinkle E, and Turner ST. β2-adrenergic receptor polymorphism and nitric oxide-dependent forearm blood flow responses to isoproterenol in humans. J Physiol In press, 2003.

    Google Scholar 

  17. Halliwill JR, Lawler LA, Eickhoff TJ, Dietz NM, Nauss LA, and Joyner MJ. Forearm sympathetic withdrawal and vasodilatation during mental stress in humans. J Physiol 504: 211–220, 1997.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Halliwill JR, and Minson CT. Effect of hypoxia on arterial baroreflex control of heart rate and muscle sympathetic nerve activity in humans. J Appl Physiol 93: 857–864, 2002.

    PubMed  Google Scholar 

  19. Heistad D, and Abboud F. Circulatory adjustments to hypoxia. Dickinson W. Richards Lecture. Circulation 61: 463–470, 1980.

    Article  CAS  PubMed  Google Scholar 

  20. Heistad DD, and Wheeler RC. Effect of acute hypoxia on vascular responsiveness in man. J Clin Invest 49: 1252–1265,1970.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Henderson Y, and Seibert K. Medical studies in aviation. JAMA 71: 1382–1401, 1918.

    Article  Google Scholar 

  22. Lamb LE, LeBlanc AD, Kelly RJ, Smith WL, and Johnson PC. Cardiac output and coronary blood flow during steady state hypoxia. Aero Med 40: 1060–1064, 1969.

    CAS  Google Scholar 

  23. Leuenberger U, Glesson K, Wroblewski K, Prophet S, Zelis R, Zwillich C, and Sinoway L. Norepinephrine clearance is increased during acute hypoxemia in humans. Am J Physiol Heart Circ Physiol 261: H1659–H1644, 1991.

    CAS  Google Scholar 

  24. Leuenberger U, Gray K, and Herr MD. Adenosine contributes to hypoxia-induced forearm va-sodilation in humans. J Appl Physiol 87: 2218–2224, 1999.

    CAS  PubMed  Google Scholar 

  25. MacLean DA, Sinoway LI, and Leuenberger U. Systemic hypoxia elevates skeletal muscle interstitial adenosine levels in humans. Circulation 98: 1990–1992, 1998.

    Article  CAS  PubMed  Google Scholar 

  26. Mancia G. Influence of carotid baroreceptors on vascular responses to carotid chemoreceptor stimulation in the dog. Circ Res 36: 270–276, 1975.

    Article  CAS  PubMed  Google Scholar 

  27. Minson CT. Hypoxic regulation of blood flow in humans: skin blood flow and temperature regulation. In: Hypoxia symposium, edited by Roach RC, Wagner PD and Hackett PH. New York: Kluwer Academic/Plenum Publishers, 2003.

    Google Scholar 

  28. Nair CS, Gopinath PM, and Kumar BR. Tilt table studies at 11000 ft. on subjects recovering from high altitude pulmonary oedema. Ind J Med Res 61: 1366–1373, 1973.

    CAS  Google Scholar 

  29. Nicholas R, O’Meara PD, and Calonge N. Is syncope related to moderate altitude exposure? JAMA 268: 904–906, 1992.

    Article  CAS  PubMed  Google Scholar 

  30. Ray CJ, Abbas MR, Coney AM, and Marshall JM. Interactions of adenosine, prostaglandins and nitric oxide in hypoxia-induced vasodilatation: in vivo and in vitro studies. J Physiol 544: 195–209,2002.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Reed AS, Tschakovsky ME, Minson CT, Halliwill JR, Torp KD, Nauss LA, and Joyner MJ. Skeletal muscle vasodilatation during sympathoexcitation is not neurally mediated in humans. J Physiol 525: 253–262, 2000.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Remsburg S, Launois SH, and Weiss JW Patients with obstructive sleep apnea have an abnormal peripheral vascular response to hypoxia. J Appl Physiol 87: 1148–1153, 1999.

    CAS  PubMed  Google Scholar 

  33. Richardson DW, Kontos HA, Raper AJ, and Patterson JL. Modification by beta-adrenergic blockade of the circulatory response to acute hypoxia in man. J Clin Invest 46: 77–85, 1967.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Rowell LB, and Blackmon JR. Hypotension induced by central hypovolaemia and hypoxaemia. Clin Physiol 9: 269–277, 1989.

    Article  CAS  PubMed  Google Scholar 

  35. Rowell LB, and Blackmon JR. Lack of sympathetic vasoconstriction in hypoxemic humans at rest. Am J Physiol Heart Circ Physiol 251: H562–H570, 1986.

    CAS  Google Scholar 

  36. Rowell LB, Johnson Du, Chase PB, Comess KA, and Seals DR. Hypoxemia raises muscle sympathetic activity but not norepinephrine in resting humans. J Appl Physiol 66: 1736–1743, 1989.

    CAS  PubMed  Google Scholar 

  37. Rowell LB, and Seals DR. Sympathetic activity during graded central hypovolemia in hypoxemic humans. Am J Physiol Heart Circ Physiol 259: H1197–H1206, 1990.

    CAS  Google Scholar 

  38. Sagawa S, and Shiraki K. Changes in cardiovascular responses to orthostasis in human at a simulated altitude of 3,700m. In: High Altitude Medicine, edited by Ueda G, Reeves J and Segiguchi M. Matsumoto, Japan: Shinshu University Press, 1992, p. 35–39.

    Google Scholar 

  39. Sagawa S, Shiraki K, and Konda N. Cutaneous vascular responses to heat simulated at high altitude of 5,600 m. J Appl Physiol 60: 1150–1154, 1986.

    CAS  PubMed  Google Scholar 

  40. Saito M, Mano T, Iwase S, Koga K, Abe H, and Yamazaki Y. Responses in muscle sympathetic activity to acute hypoxia in humans. J Appl Physiol 65: 1548–1552, 1988.

    CAS  PubMed  Google Scholar 

  41. Shapiro W, Wasserman AJ, Baker JP, and Patterson JL, Jr. Cerebrovascular response to acuteand eucapnic hypoxia in normal man. J Clin Invest 49: 2362–2358, 1970.

    Article  CAS  Google Scholar 

  42. Spina D, Fernandes LB, Preuss JMH, Hay DWP, Muccitelli RM, Page CP, and Goldie RG. Evidence that epithelium-dependent relaxation of vascular smooth muscle detected by co-axial bioassays is not attributable to hypoxia. Br J Pharm 105: 799–804, 1992.

    Article  CAS  Google Scholar 

  43. Vogel JA, Pulver RI, and Burton TM. Regional blood flow distribution during simulated high-altitude exposure. Fed Proc 28: 1155–1159, 1969.

    CAS  PubMed  Google Scholar 

  44. Weisbrod CJ, Minson CT, Joyner MJ, and Halliwill JR. Effects of regional phentolamine on hypoxic vasodilatation in healthy humans. J Physiol 537: 613–621, 2001.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Westendorp RGJ, Blauw GJ, Frolich M, and Simons R. Hypoxic syncope. Aviat Space Environ Med 68: 410–414,1997.

    CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this paper

Cite this paper

Halliwill, J.R. (2003). Hypoxic Regulation of Blood Flow in Humans. In: Roach, R.C., Wagner, P.D., Hackett, P.H. (eds) Hypoxia. Advances in Experimental Medicine and Biology, vol 543. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8997-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8997-0_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4753-8

  • Online ISBN: 978-1-4419-8997-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics