Skip to main content

Abstract

The term tissue remodeling describes transient or permanent changes in tissue architecture that involve breaching of histological barriers such as basement membranes, basal laminae, and interstitial stroma [extracellular matrix (ECM)]. Tissue remodeling is important to several stages of wound repair, such as inflammation and granulation tissue formation, and in a variety of other physiological or pathological states. These include ovulation, spermatogenesis, trophoblast implantation, mammary involution following lactation, uterine involution, nerve regeneration, rheumatoid arthritis, tumor invasion, and metastasis formation. A common feature of tissue remodeling involves the production of high levels of extracellular proteolytic activities by parenchymal and/or connective tissue cells. The ECM is organized into highly complex structures, each of which consists of different components including various collagen types, glycoproteins such as fibronectin and laminin, elastin, glycosaminoglycans (GAGs), and proteoglycans. Because these ECM components have distinct hydrolytic requirements for their degradation, remodeling of the ECM involves the action of an array of degradative enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Ã…gren, M. S., Taplin, C. J., Woessner, J. F., Eaglstein, W. H., and Mertz, P. M., 1992, Collagenase in wound healing: Effect of wound age and type, J. Invest. Dermatol. 99:709–714.

    PubMed  Google Scholar 

  • Alessandri, G., Rajn, K., and Gullino, P. M., 1983, Mobilization of capillary endothelium in vitro induced by effectors of angiogenesis in vivo, Cancer Res. 43:1790–1797.

    PubMed  CAS  Google Scholar 

  • Andrade-Gordon, P., and Strickland, S., 1986, Interaction of heparin with plasminogen activators and plasminogen: Effects on the activation of plasminogen, Biochemistry 25:4033–4040.

    PubMed  CAS  Google Scholar 

  • Andreasen, P. A., Nielsen, L. S., Grondahl-Hansen, J., Zenthen, J., Stephens, R., and Dano, K., 1984, Inactive proenzyme to tissue-type plasminogen activator from human melanoma cells, identified after affinity purification with a monoclonal antibody, EMBO J. 3:51–56.

    PubMed  CAS  Google Scholar 

  • Andreasen, P. A., Sottrup-Jensen, L., Kjoller, L., Nykjaer, A., Moestrup, S. K., Petersen, C. M., and Gliemann, J., 1994, Receptor-mediated endocytosis of plasminogen activators and activator/inhibitor complexes, FEBS Lett. 338:239–245.

    PubMed  CAS  Google Scholar 

  • Angel, P., and Karin, M. I., 1992, Specific members of the jun protein family regulate collagenase expression in response to various extracellular stimuli, in: Matrix Metalloproteinases and Inhibitors (H. Birkedahl-Hansen, Z. Werb, H. G. Welgus, and H. E. van Wart, eds.), pp. 156–164, Gustav Fisher, Stuttgart.

    Google Scholar 

  • Antalis, T. M., and Dickinson, J. L., 1992, Control of plasminogen-activator inhibitor type 2 gene expression in the differentiation of monocytic cells, Eur. J. Biochem. 205:203–209.

    PubMed  CAS  Google Scholar 

  • Appella, E., Robinson, E. A., Ullrich, S. J., Stoppelli, M. P., Corti, A., Cassani, G., and Blasi, F., 1987, The receptor-binding sequence of urokinase. A biological function for the growth factor module of proteases, J. Biol. Chem. 262:4437–4440.

    PubMed  CAS  Google Scholar 

  • Astedt, B., Lecander, I., Brodin, T., Ludblad, A., and Low, K., 1985, Purification of a specific placental plasminogen activator inhibitor by monoclonal antibody and its complex formation with plasminogen activator, Thromb. Haemost. 53:122–125.

    PubMed  CAS  Google Scholar 

  • Auble, D. T., and Brinkerhoff, C. E., 1991, The AP-1 sequence is necessary but not sufficient for phorbol induction of collagenase in fibroblasts, Biochemistry 30:4629–4635.

    PubMed  CAS  Google Scholar 

  • Ausprunk, D. H., and Folkman, J., 1977, Migration and proliferation of endothelial cells in preformed and newly formed blood vessels during tumor angiogenesis, Microvasc. Res. 14:53–65.

    PubMed  CAS  Google Scholar 

  • Bacharach, E., Itin, A., and Keshet, E., 1992, In vivo patterns of expression of urokinase and its inhibitor PAI-1 suggest a concerted role in regulating physiological angiogenesis, Proc. Natl. Acad. Sci. USA 89:10686–10690.

    PubMed  CAS  Google Scholar 

  • Baker, J. B., Low, D. A., Simmer, R. L., and Cunningham, D. D., 1980, Protease-nexin: A cellular component that links thrombin and plasminogen activator and mediates their binding to cells, Cell 21:37–45.

    PubMed  CAS  Google Scholar 

  • Baragi, V., Fliszar, C. J., Conroy, M. C., Ye, Q.-Z., Shipley, J. M., and Welgus, H. G., 1994, Contribution of the C-terminal domain of metalloproteinases to binding by TIMP: C-terminal truncated stromelysin and matrilysin exhibit equally compromised affinities as compared to full-length stromelysin, J. Biol. Chem. 269:12692–12697.

    PubMed  CAS  Google Scholar 

  • Bashkin, P., Doctrow, S., Klagsbrun, M., Svahn, C. M., Folkman, J., and Vlodavski, I., 1989, Basic fibroblast growth factor binds to subendothelial extracellular matrix and is released by heparitinase and heparin-like molecules, Biochemistry 28:1737–1743.

    PubMed  CAS  Google Scholar 

  • Basilico, C., and Moscatelli, D., 1992, The FGF family of growth factors and oncogenes, Adv. Cancer Res. 59:115–165.

    PubMed  CAS  Google Scholar 

  • Behrendt, N., Rønne, E., Ploug, M., Pétri, T., Løber, D., Nielsen, L. S., Schleuning, W. D., Blasi, F., Appella, E., and Danø, K., 1990, The human receptor for urokinase plasminogen activator. NH2-terminal sequence and glycosylation variants, J. Biol. Chem. 265:6453–6460.

    PubMed  CAS  Google Scholar 

  • Behrendt, N., Ploug, M., Patthy, L., Houen, G., Blasi, F., and Dano, K., 1991, The ligand-binding domain of the cell surface receptor for urokinase-type plasminogen activator, J. Biol. Chem. 266:7842–7847.

    PubMed  CAS  Google Scholar 

  • Behrendt, N., Ploug, M., Ronne, E., Høyer-Hansen, G., and Dano, K., 1993, Cellular receptor for urokinase-type plasminogen activator: Protein structure, Methods Enzymol. 223:207–222.

    PubMed  CAS  Google Scholar 

  • Berkenpas, M. B., and Quigley, J. P., 1991, Transformation-dependent activation of urokinase-type plasminogen activator by a plasmin-independent mechanism: Involvement of cell surface membranes, Proc. Natl. Acad. Sci. USA 88:7768–7772.

    PubMed  CAS  Google Scholar 

  • Birkedal-Hansen, H., Moore, W G. I., Bodden, M. K., Windsor, L. J., Birkedal-Hansen, B., DeCarlo, A., and Engler, J. A., 1993, Matrix metalloproteinases: A review, Crit. Rev. Oral Biol Med. 4:197–250.

    PubMed  CAS  Google Scholar 

  • Bizik, J., Stephens, R. W., Grofova, M., and Vaheri, A., 1993, Binding of tissue-type plasminogen activator to human melanoma cells, J. Cell Biochem. 51:326–335.

    PubMed  CAS  Google Scholar 

  • Bodden, M. K., Harber, G. J., Birkedal-Hansen, B., Windsor, L. J., Caterina, N. C. M., Engler, J. A., and Birkedal-Hansen, H., 1994, Functional domains of human TIMP-1 (tissue inhibitor of metalloproteinases), J. Biol. Chem. 269:18943–18952.

    PubMed  CAS  Google Scholar 

  • Boone, T. C., Johnson, M. J., DeClerck, Y. A., and Langley, K. E., 1990, cDNA cloning and expression of a metalloproteinase inhibitor related to tissue inhibitor of metalloproteinases, Proc. Natl. Acad. Sci. USA 87:2800–2804.

    PubMed  CAS  Google Scholar 

  • Bouma, B. N., and Griffin, J. H., 1978, Deficiency of factor XII-dependent plasminogen proactivator in prekallikrein-deficient plasma, J. Lab. Clin. Med. 91:148–155.

    PubMed  CAS  Google Scholar 

  • Bowersox, J. C., and Sorgente, N., 1982, Chemotaxis of aortic endothelial cells in response to fibronectin, Cancer Res. 42:2547–2551.

    PubMed  CAS  Google Scholar 

  • Brinckerhoff, C. E., Sirum-Connolly, K. L., Karmilowicz, M. J., and Auble, D., 1992, Expression of stromelysin and stromelysin-2 in rabbit and human fibroblasts, Matrix Suppl. 1:165–175.

    PubMed  CAS  Google Scholar 

  • Brown, P. D., Kleiner, D. E., Unsworth, E. J., and Stetler-Stevenson, W. G., 1993, Cellular activation of the 72 kDa type IV procollagenase/TIMP-2 complex, Kidney Int. 43:163–170.

    PubMed  CAS  Google Scholar 

  • Bu, G., Maksymovitch, E. A., and Schwartz, A. L., 1993, Receptor-mediated endocytosis of tissue-type plasminogen activator by low density lipoprotein receptor-related protein on human hepatoma HepG2 cells, J. Biol Chem. 268:13002–13009.

    PubMed  CAS  Google Scholar 

  • Buckley-Sturrock, A., Woodward, S. C., Senior, R. M., Griffin, G. L., Klagsbrun, M., and Davidson, J. M., 1989, Differential stimulation of collagenase and chemotactic activity in fibroblasts derived from rat wound repair tissue and human skin by growth factors, J. Cell. Physiol. 138:70–78.

    PubMed  CAS  Google Scholar 

  • Biirk, R. R., 1973, A factor from a transformed cell line that affects cell migration, Proc. Natl. Acad. Sci. USA 70:369–372.

    Google Scholar 

  • Burridge, K., Turner, C. E., and Romer, L. H., 1992, Tyrosine phosphorylation of paxillin and pp 125FAK accompanies cell adhesion to extracellular matrix: A role in cytoskeletal assembly, J. Cell Biol. 119:893–903.

    PubMed  CAS  Google Scholar 

  • Bussolino, F., Di Renzo, M. F., Ziche, M., Bocchietto, E., Olivero, M., Naldini, L., Gaudino, G., Tamagnone, L., Coffer, A., and Comoglio, P. M., 1992, Hepatocyte growth factor is a potent angiogenic factor which stimulates endothelial cell motility and growth, J. Cell Biol. 119:629–641.

    PubMed  CAS  Google Scholar 

  • Buttice, G., and Kurkinen, M., 1993, A polyomavirus enhancer A-binding protein-3 site and Ets-2 protein have a major role in the 12-0-tetradecanoylphorbol-13-acetate response of the human stromelysin gene, J. Biol. Chem. 268:7169–7204.

    Google Scholar 

  • Buttice, G., Quinones, S., and Kurkinen, M., 1991, The AP-1 site is required for basal expression but is not necessary for TPA-response of the human stromelysin gene, Nucleic Acids Res. 19:3723–3731.

    PubMed  CAS  Google Scholar 

  • Carmeliet, P., Schoonjans, L., Kieckens, L., Ream, B., Degen, J., Bronson, R., De Vos, R., van den Oord, J. J., Collen, D., and Mulligan, R. C., 1994, Physiological consequences of loss of plasminogen activator gene function in mice, Nature 386:419–425.

    Google Scholar 

  • Carmichael, D. F., Sommer, A., Thompson, R. C., Anderson, D. C., Smith, C. G., Welgus, H. G., and Stricklin, G. P., 1986, Primary structure and cDNA cloning of human fibroblast collagenase inhibitor, Proc. Natl. Acad. Sci. USA 83:2407–2411.

    PubMed  CAS  Google Scholar 

  • Carrel, R., and Travis, J., 1985, Alpha-1-antitrypsin and the serpins: Variation and countervariation, Trends Biol. Sci. 10:20–25.

    Google Scholar 

  • Carroll, P. M., Richards, W. G., Darrow, A. L., Wells, J. M., and Strickland, S., 1993, Preimplantation mouse embryos express a cell surface receptor for tissue-plasminogen activator, Development 119:191–198.

    PubMed  CAS  Google Scholar 

  • Cavani, A., Zambruno, G., Marconi, A., Manca, V., Marchetti, M., and Giannetti, A., 1993, Distinctive integrin expression in the newly forming epidermis during wound healing in humans, J. Invest. Der-matol. 101:600–604.

    CAS  Google Scholar 

  • Chapman, H. A., and Stone, Jr., O. L., 1984, Cooperation between plasmin and elastase in elastin degradation by intact murine macrophages, Biochem. J. 222:721–728.

    PubMed  CAS  Google Scholar 

  • Clark, R. A. F., Lanigan, J. M., DellaPelle, P., Manseau, E., Dvorak, H. F., and Colvin, R. B., 1982, Fibronectin and fibrin provide a provisional matrix for epidermal cell migration during wound re-epithelization, J. Invest. Dermatol 79:264–269.

    PubMed  CAS  Google Scholar 

  • Collier, I. E., Krasnov, P. A., Strongin, A. Y., Birkedal-Hansen, H., and Goldberg, G. I., 1992, Alanine scanning mutagenesis and functional analysis of the fibronectin-like collagen-binding domain from human 92 kDa type IV collagenase, J. Biol. Chem. 267:6776–6781.

    PubMed  CAS  Google Scholar 

  • Colman, R. W., 1969, Activation of plasminogen by human plasma kallikrein, Biochem. Biophys. Res. Commun. 35:273–279.

    PubMed  CAS  Google Scholar 

  • Corcoran, M. L., Stetler-Stevenson, W. G., Brown, P. D., and Wahl, L. M., 1992, Interleukin 4 inhibition of prostaglandin E2 synthesis block interstitial collagenase and 92-kDa type IV collagenase/gelatinase production by human monocytes, J. Biol. Chem. 267:515–519.

    PubMed  CAS  Google Scholar 

  • Cubellis, M. V., Nolli, M. L., Cassani, G., and Blasi, F., 1986, Binding of single-chain prourokinase to the urokinase receptor of human U937 cells, J. Biol. Chem. 261:15819–15822.

    PubMed  CAS  Google Scholar 

  • Cubellis, M. V., Wun, T. C., and Blasi, F., 1990, Receptor-mediated internalization and degradation of urokinase is caused by its specific inhibitor PAI-1, EMBO J. 9:1079–1085.

    PubMed  CAS  Google Scholar 

  • Danø, K., Andreasen, P. A., Grøndahl-Hansen, J., Kristensen, B., Nielsen, L. S., and Skriver, L., 1985, Plasminogen activators, tissue degradation and cancer, Adv. Cancer Res. 44:146–239.

    Google Scholar 

  • DiMario, J., Buffinger, N., Yamada, S., and Strohman, R. C., 1989, Fibroblast growth factor in the extracellular matrix of dystrophic (mdx) mouse muscle, Science 244:688–690.

    PubMed  CAS  Google Scholar 

  • Eaton, D. L., Scott, R. W., and Baker, J. B., 1984, Purification of human fibroblast urokinase proenzyme and analysis of its regulation by proteases and protease nexin, J. Biol. Chem. 259:6241–6247.

    PubMed  CAS  Google Scholar 

  • Edlund, T., Ny, T., Ranby, M., Hedén, L. O., Palm, G., Holmgren, E., and Josephson, S., 1983, Isolation of cDNA sequences coding for a part of human tissue plasminogen activator, Proc. Natl. Acad. Sci. USA 80:349–352.

    PubMed  CAS  Google Scholar 

  • Edwards, D. R., Murphy, G., Reynolds, J. J., Whitham, S. E., Docherty, A. J. P., Angel, P., and Heath, J. K., 1987, Transforming growth factor modulates the expression of collagenase and metalloproteinase inhibitor, EMBO J. 6:1899–1904.

    PubMed  CAS  Google Scholar 

  • Ellis, V., Behrendt, N., and Dano, K., 1991, Plasminogen activation by receptor-bound urokinase. A kinetic study with both cell-associated and isolated receptor, J. Biol. Chem. 266:12752–12758.

    PubMed  CAS  Google Scholar 

  • Ellis, V., Behrendt, N., and Dano, K., 1993, Cellular receptor for urokinase-type plasminogen activator: function in cell-surface proteolysis, Methods Enzymol. 223:223–233.

    PubMed  CAS  Google Scholar 

  • Emonard, H. P., Remade, A. G., Noel, A. C., Grimaud, J. A., Stetler-Stevenson, W. G., and Foidart, J. M., 1992, Tumor cell surface-associated binding site for the M(r) 72,000 type IV collagenase, Cancer Res. 52:5845–5848.

    PubMed  CAS  Google Scholar 

  • Estreicher, A., Wohlwend, A., Belin, D., Schleuning, W. D., and Vassalli, J. D., 1989, Characterization of the cellular binding site for the urokinase-type plasminogen activator, J. Biol. Chem. 264:1180–1189.

    PubMed  CAS  Google Scholar 

  • Estreicher, A., Miihlhauser, J., Carpentier, J. L., Orci, L., and Vassalli, J. D., 1990, The receptor for urokinase type plasminogen activator polarizes expression of the protease to the leading edge of migrating monocytes and promotes degradation of enzyme-inhibitor complexes, J. Cell Biol. 111:783–792.

    PubMed  CAS  Google Scholar 

  • Felez, J., Chanquia, C. J., Fabregas, P., Plow, E. F., and Miles, L. A., 1993, Competition between plasminogen and tissue plasminogen activator for cellular binding sites, Blood 82:2433–2441.

    PubMed  CAS  Google Scholar 

  • Fernandez, H. N., Henson, P. M., Otani, A., and Hugh, T. E., 1978, Chemotactic response to human C3a and C5a anaphylatoxins. I. Evaluation of C3a and C5a leukotaxis in vitro and under simulated in vivo conditions, J. Immunol. 120:109–115.

    PubMed  CAS  Google Scholar 

  • Ferrara, N., Houck, K. A., Jakeman, L. B., Winer, J., and Leung, D. W., 1991, The vascular endothelial cell growth factor family of polypeptides, J. Cell. Biochem. 47:211–218.

    PubMed  CAS  Google Scholar 

  • Fibbi, G., Ziche, M., Morbidelli, L., Magnelli, L., and Del Rosso, M., 1988, Interaction of urokinase with specific receptors stimulates mobilization of bovine adrenal capillary endothelial cells, Exp. Cell Res. 179:385–395. [Published erratum in Exp. Cell. Res. 186:196.]

    Google Scholar 

  • Fini, M. E., Girard, M. T., and Matsubara, M., 1992, Collagenolytic/gelatinolytic enzymes in corneal wound healing, Acta Ophthalmol. 70:26–33.

    Google Scholar 

  • Firestein, G. S., Paine, M. M., and Littman, B. H., 1991, Gene expression (collagenase, tissue inhibitor of metalloproteinases, complement, and HLA-DR) in rheumatoid arthritis and osteoarthritis synovium. Quantitative analysis and effect of intraarticular corticosteroids, Arthritis Rheum. 34:1094–1105.

    PubMed  CAS  Google Scholar 

  • Flaumenhaft, R., Moscatelli, D., and Rifkin, D. B., 1990, Heparin and heparan sulfate increase the radius of diffusion and action of basic fibroblast growth factor, J. Cell Biol. 111:1651–1659.

    PubMed  CAS  Google Scholar 

  • Flaumenhaft, R., Abe, M., Mignatti, P., and Rifkin, D. B., 1992, Basic fibroblast growth factor-induced activation of latent transforming growth factor β in endothelial cells: Regulation of plasminogen activator activity, J. Cell Biol. 118:901–909.

    PubMed  CAS  Google Scholar 

  • Freije, J. M. P., Diez-Itza, I., Balbin, M., Sanchez, L. M., Blasco, R., Tolivia, J., and Lopez-Otin, C., 1994, Molecular cloning and expression of collagenase-3, a novel human matrix metalloproteinase produced by breast carcinomas, J. Biol. Chem. 269:16766–16773.

    PubMed  CAS  Google Scholar 

  • Gaire, M., Magbanua, Z., McDonnell, S., McNeil, L., Lovett, D. H., and Matrisian, L. M., 1994, Structure and expression of the human gene for the matrix metalloproteinase matrilysin, J. Biol. Chem. 269:2032–2040.

    PubMed  CAS  Google Scholar 

  • Gherardi, E., Sharpe, M., and Lane, K., 1993, Properties and structure-function relationship of HGF-SF, EXS 65:31–48.

    PubMed  CAS  Google Scholar 

  • Goldberg, G. I., Wilhelm, S. M., Kronberger, A., Bauer, E. A., Grant, G. A., and Eisen, A. Z., 1986, Human fibroblast collagenase. Complete primary structure and homology to an oncogene transformation-induced rat protein, J. Biol. Chem. 261:6600–6605.

    PubMed  CAS  Google Scholar 

  • Golsen, J. B., and Bauer, E. A., 1986, Basal cell carcinoma and collagenase, J. Dermatol. Surg. Oncol. 12:812–817.

    Google Scholar 

  • Gordon, S., Unkeless, J. C., and Cohn, Z. A., 1974, Induction of macrophage plasminogen activator by endotoxin stimulation and phagocytosis, J. Exp. Med. 140:995–1010.

    PubMed  CAS  Google Scholar 

  • Gosline, J. M., 1978, Hydrophobic interaction and a model for the elasticity of elastin, Biopolymers 17:677–695.

    PubMed  CAS  Google Scholar 

  • Granelli-Piperno, A., Vassalli, J. D., and Reich, E., 1977, Secretion of plasminogen activator by human polymorphonuclear leukocytes. Modulation by glucocorticoids and other effectors, J. Exp. Med. 146:1693–1706.

    PubMed  CAS  Google Scholar 

  • Grant, D. S., Kleinman, H. K., Goldberg, I. D., Bhargava, M. M., Nickoloff, B. J., Kinsella, J. L., Polverini, P., and Rosen, E. M., 1993, Scatter factor induces blood vessel formation in vivo, Proc. Natl. Acad. Sci. USA 90:1937–1941.

    PubMed  CAS  Google Scholar 

  • Grant, G. A., Eisen, A. Z., Marnier, B. L., Roswit, W. T., and Goldberg, G. I., 1987, The activation of human skin fibroblast procollagenase. Sequence identification of the major conversion products, J. Biol. Chem. 262:5886–5889.

    PubMed  CAS  Google Scholar 

  • Grobmyer, S. R., Kuo, A., Orishimo, M., Okada, S. S., Cines, D. B., and Barnathan, E. S., 1993, Determinants of binding and internalization of tissue-type plasminogen activator by human vascular smooth muscle and endothelial cells, J. Biol. Chem. 268:13291–13300.

    PubMed  CAS  Google Scholar 

  • Grondahl-Hansen, J., Lund, L. R., Ralfkiaer, E., Ottevanger, V., and Dano, K., 1988, Urokinase-and tissue-type plasminogen activators in keratinocytes during wound reepithelization in vivo, J. Invest. Dermatol. 90:790–795.

    PubMed  CAS  Google Scholar 

  • Guo, M., Kim, L. T., Akiyama, S. K., Gralnick, H. R., Yamada, K. M., and Grinnell, F., 1991, Altered processing of integrin receptors during keratinocyte activation, Exp. Cell. Res. 195:315–322.

    PubMed  CAS  Google Scholar 

  • Hajjar, K. A., 1991, The endothelial cell tissue plasminogen activator receptor. Specific interaction with plasminogen, J. Biol. Chem. 266:21962–21970.

    PubMed  CAS  Google Scholar 

  • Hajjar, K. A., 1993, Homocysteine-induced modulation of tissue plasminogen activator binding to its endothelial cell membrane receptor, J. Clin. Invest. 91:2873–2879.

    PubMed  CAS  Google Scholar 

  • Hajjar, K. A., and Hamel, N. M., 1990, Identification and characterization of human endothelial cell membrane binding sites for tissue plasminogen activator and urokinase, J. Biol. Chem. 265(5):2908–2916.

    PubMed  CAS  Google Scholar 

  • Hajjar, K. A., Harpel, P. C., Jaffe, E. A., and Nachman, R. L., 1986, Binding of plasminogen to cultured human endothelial cells, J. Biol. Chem. 261:11656–11662.

    PubMed  CAS  Google Scholar 

  • Hamilton, J. A., Whitty, G. A., Stanton, H., Wojta, J., Gallichio, M., McGrath, K., and Ianches, G., 1993a, Macrophage colony-stimulating factor and granulocyte-macrophage colony-stimulating factor stimulate the synthesis of plasminogen-activator inhibitors by human monocytes, Blood 82:3616–3621.

    PubMed  CAS  Google Scholar 

  • Hamilton, J. A., Whitty, G. A., Wojta, J., Gallichio, M., McGrath, K., and Ianches, G., 1993b, Regulation of plasminogen activator inhibitor-1 levels in human monocytes, Cell. Immunol. 152:7–17.

    PubMed  CAS  Google Scholar 

  • Hashimoto, K., Singer, K., Lide, W. B., Shafran, K., Webber, P., Morioka, S., and Lazarus, G. S., 1983, Plasminogen activator in cultured epidermal cells, J. Invest. Dermatol. 81:424–429.

    PubMed  CAS  Google Scholar 

  • Hasty, K. A., Pourmotabbed, T. F., Goldberg, G. I., Thompson, J. P., Spinella, D. G., Stevens, R. M., and Mainardi, C. L., 1990, Human neutrophil collagenase. A distinct gene product with homology to other matrix metalloproteinases, J. Biol. Chem. 265:11421–11424.

    PubMed  CAS  Google Scholar 

  • Hayakawa, T., Yamashita, K., Tanzawa, K., Uchujima, E., and Iwata, K., 1992, Growth-promoting activity of tissue inhibitor of metalloproteinase-1 (TIMP-1) for a wide range of cells, FEBS Lett. 298:29–32.

    PubMed  CAS  Google Scholar 

  • He, C. S., Wilhelm, S. M., Pentland, A. P., Manner, B. L., Grant, G. A., Eisen, A. Z., and Goldberg, G. I., 1989, Tissue cooperation in a proteolytic cascade activating human interstitial collagenase, Proc. Natl. Acad. Sci. USA 86:2632–2636.

    PubMed  CAS  Google Scholar 

  • Hébert, C. A., and Baker, J. B., 1988, Linkage of extracellular plasminogen activator to the fibroblast cytoskeleton: Colocalization of cell surface urokinase with vinculin, J. Cell. Biol. 106:1241–1248.

    PubMed  Google Scholar 

  • Heckmann, M., Adelmann, G. B. C., Hein, R., and Krieg, T., 1993, Biphasic effects of interleukin-1 alpha on dermal fibroblasts: Enhancement of chemotactic responsiveness at low concentrations and of mRNA expression for collagenase at high concentrations, J. Invest. Dermatol. 100:780–784.

    PubMed  CAS  Google Scholar 

  • Heeb, M. J., Espana, F., Geiger, M., Collen, D., Stump, D. C., and Griffin, J. H., 1987, Immunological identity of heparin-dependent plasma and urinary protein C inhibitor and plasminogen activator inhibi-tor-3, J. Biol. Chem. 262:15813–15816.

    PubMed  CAS  Google Scholar 

  • Heimark, R. L., Twardzik, D. R., and Schwartz, S. M., 1986, Inhibition of endothelial cell regeneration by type-beta transforming growth factor from platelets, Science 233:1078–1080.

    PubMed  CAS  Google Scholar 

  • Hekman, C. M., and Loskutoff, D. J., 1985, Endothelial cells produce a latent inhibitor of plasminogen activators that can be activated by dénaturants, J. Biol. Chem. 260:11581–11587.

    PubMed  CAS  Google Scholar 

  • Hertle, M. D., Kubier, M.-D., Leigh, I. M., and Watt, F. M., 1992, Aberrant integrin expression during epidermal wound healing and in psoriatic epidermis, J. Clin. Invest. 89:1892–1901.

    PubMed  CAS  Google Scholar 

  • Herz, J., Clouthier, D. E., and Hammer, R. E., 1992, LDL receptor-related protein internalizes and degrades uPA-PAI-1 complexes and is essential for embryo implantation, Cell 71:411–421.

    PubMed  CAS  Google Scholar 

  • Howard, E. W., Bullen, E. C., and Banda, M. J., 1991, Regulation of the autoactivation of human 72 kDa progelatinase by tissue inhibitor of metalloproteinases-2, J. Biol. Chem. 266:13064–13069.

    PubMed  CAS  Google Scholar 

  • Høyer-Hansen, G., Rønne, E., Solberg, H., Behrendt, N., Ploug, M., Lund, L. R., Ellis, V., and Danø, K., 1992, Urokinase plasminogen activator cleaves its cell surface receptor releasing the ligand binding domain, J. Biol. Chem. 267:18224–18229.

    PubMed  Google Scholar 

  • Huhtala, P., Tuuttila, A., Chow, L. T., Lohi, J., Keski-Oja, J., and Tryggvason, K., 1991, Complete structure of the human gene for 92-kDa type IV collagenase, J. Biol. Chem. 266:16485–16490.

    PubMed  CAS  Google Scholar 

  • Iadonato, S. P., Bu, G., Maksymovitch, E. A., and Schwartz, A. L., 1993, Interaction of a 39 kDa protein with the low-density-lipoprotein-receptor-related protein (LRP) on rat hepatoma cells, Biochem. J. 296:867–875.

    PubMed  CAS  Google Scholar 

  • Ichinose, A., 1992, Multiple members of the plasminogen-apolipoprotein(a) gene family associated with thrombosis, Biochemistry 31:3113–3118.

    PubMed  CAS  Google Scholar 

  • Ichinose, A., Kisiel, W., and Fjuikawa, K., 1984, Proteolytic activation of tissue plasminogen activator by plasma and tissue enzymes, FEBS Lett. 175:412–418.

    PubMed  CAS  Google Scholar 

  • Isseroff, R. R., and Rifkin, D. B., 1983, Plasminogen is present in the basal layer of epidermis, J. Invest. Dermatol. 80:297–299.

    PubMed  CAS  Google Scholar 

  • Isseroff, R. R., Fusenig, N. E., and Rifkin, D. B., 1983, Plasminogen activator in differentiating mouse keratinocytes, J. Invest. Dermatol. 80:217–222.

    PubMed  CAS  Google Scholar 

  • Juhasz, I., Murphey, G. F., Yan, H.-C., Herlyn, M., and Albelda, S. M., 1993, Regulation of extracellular matrix proteins and integrin cell substratum adhesion receptors on epithelium during cutaneous wound healing in vivo, Am. J. Pathol. 143:1458–1469.

    PubMed  CAS  Google Scholar 

  • Kanalas, J. J., and Makker, S. P., 1991, Identification of the rat Heymann nephritis autoantigen (gp330) as a receptor site for plasminogen, J. Biol. Chem. 266:10825–10829.

    PubMed  CAS  Google Scholar 

  • Kawano, T., Morimoto, K., and Uemura, Y., 1970, Partial purification and properties of urokinase inhibitor from human placenta, J. Biochem. 67:333–342.

    PubMed  CAS  Google Scholar 

  • Kim, J. P., Zhang, K., Kramer, R. H., Schall, T. J., and Woodley, D. T., 1992, Integrin receptors and RGD sequences in human keratinocyte migration: Unique anti-migratory function of a3bl epiligrin receptor, J. Invest. Dermatol. 5:764–770.

    Google Scholar 

  • Kim, K. J., Li, B., Houck, K., Winer, J., and Ferrara, N., 1992, The vascular endothelial growth factor proteins: Identification of biologically relevant regions by neutralizing monoclonal antibodies, Growth Factors 7:53–64.

    PubMed  CAS  Google Scholar 

  • Kirchheimer, J. C., Nong, Y. H., and Remold, H. G., 1988, IFN-gamma, tumor necrosis factor alpha, and urokinase regulate the expression of urokinase receptors on human monocytes, J. Immunol. 141:4229–4234.

    PubMed  CAS  Google Scholar 

  • Kobayashi, H., Schmitt, M., Goretzki, L., Chucholowski, N., Calvete, J., Kramer, M., Günzler, W. A., Jänicke, F., and Graeff, H., 1991, Cathepsin B efficiently activates the soluble and the tumor cell receptor-bound form of the proenzyme urokinase-type plasminogen activator (pro-uPA), J. Biol. Chem. 266:5147–5152.

    PubMed  CAS  Google Scholar 

  • Kounnas, M. Z., Henkin, J., Argraves, W. S., and Strickland, D. K., 1993, Low density lipoprotein receptor-related protein/alpha 2-macroglobulin receptor mediates cellular uptake of prourokinase, J. Biol. Chem. 268:21862–21867.

    PubMed  CAS  Google Scholar 

  • Kristensen, P., Larsson, L. I., Nielsen, L. S., Grøndahl-Hansen, J., Andreasen, P. A., and Danø, K., 1984, Human endothelial cells contain one type of plasminogen activator, FEBS Lett. 168:33–37.

    PubMed  CAS  Google Scholar 

  • Kruithof, E. K. O., Vassalli, J. D., Schleuning, W. D., Mattaliano, R. J., and Bachman, F., 1986, Purification and characterization of a plasminogen activator inhibitor from the histiocytic lymphoma cell line U-937, J. Biol. Chem. 261:11207–11213.

    PubMed  CAS  Google Scholar 

  • Küpper, T., 1990, The activated keratinocyte: A model for inducible cytokine production by non-bone marrow-derived cells in cutaneous inflammatory and immune responses, J. Invest. Dermatol. 94(Suppl. 6):146S–149S.

    PubMed  Google Scholar 

  • Lacraz, S., Nicod, L., Galve-de Rochemonteix, B., Baumberger, C., Dayer, J.-M., and Welgus, H. G., 1992, Suppression of metalloproteinase biosynthesis in human alveolar macrophages by interleukin-4, J. Clin. Invest. 90:382–388.

    PubMed  CAS  Google Scholar 

  • Lacraz, S., Isler, P., Welgus, H. G., and Dayer, J.-M., 1994a, Direct contact between T-lymphocytes and monocytes is a major pathway for the induction of metalloproteinase expression, J. Biol. Chem. 269:22027–22033.

    PubMed  CAS  Google Scholar 

  • Lacraz, S., Nicod, L., Welgus, H. G., and Dayer, J.-M., 1995, IL-10 inhibits metalloproteinase and stimulates TIMP-1 production in human mononuclear phagocytes, J. Clin. Invest, in press.

    Google Scholar 

  • Larjava, H., Salo, T., Haapasalmi, K., Kramer, R. H., and Heino, J., 1993, Expression of integrins and basement membrane components by wound keratinocytes, J. Clin. Invest. 92:1425–1435.

    PubMed  CAS  Google Scholar 

  • Leco, K. J., Khokha, R., Pavloff, N., Hawkes, S. P., and Edwards, D. R., 1994, TIMP-3 is an extracellular matrix-associated protein with a distinctive pattern of expression in mouse cells and tissues, J. Biol. Chem. 269:9352–9360.

    PubMed  CAS  Google Scholar 

  • Lee, S. W., Ellis, V., and Dichek, D. A., 1994, Characterization of plasminogen activation by glycosyl-phosphatidylinositol-anchored urokinase, J. Biol. Chem. 269:2411–2418.

    PubMed  CAS  Google Scholar 

  • Li, W. H., and Graur, D., 1991, Evolution by gene duplication and exon shuffling. Exon shuffling, in: Fundamentals of Molecular Evolution, pp. 153-155, Sinauer Associates, Sunderland, Massachusetts.

    Google Scholar 

  • Lipton, A., Klinger, I., Paul, D., and Holley, R. W., 1971, Migration of mouse 3T3 fibroblasts in response to a serum factor, Proc. Natl. Acad. Sci. USA 68:2799–2801.

    PubMed  CAS  Google Scholar 

  • Loskutoff, D. J., and Edgington, T. S., 1977, Synthesis of a fibrinolytic activator and inhibitor by endothelial cells, Proc. Natl. Acad. Sci. USA 74:3903–3907.

    PubMed  CAS  Google Scholar 

  • Low, D. A., Baker, J. B., Koonce, W. C., and Cunningham, D. D., 1981, Release of protease nexin regulates cellular binding, internalization, and degradation of serine proteinases, Proc. Natl. Acad. Sci. USA 78:2340–2344.

    PubMed  CAS  Google Scholar 

  • Lu, H., Misrhahi, M. C., Krief, P., Soria, C., Soria, J., Mishal, Z., Bertrand, O., Perrot, J. Y., Li, H., Pujade, E., Bernadou, A., and Caen, J. P., 1988, Parallel induction of fibrinolysis and receptors for plasminogen and urokinase by interferon gamma on U937 cells, Biochem. Biophys. Res. Commun. 155:418–422.

    PubMed  CAS  Google Scholar 

  • Lund, L. R., Romer, J., Ronne, E., Ellis, V., Blasi, F., and Dano, K., 1991a, Urokinase-receptor biosynthesis, mRNA level and gene transcription are increased by transforming growth factor βl in human A549 lung carcinoma cells, EMBO J. 10:3399–3407.

    PubMed  CAS  Google Scholar 

  • Lund, L. R., Rønne, E., Roldan, A. L., Behrendt, N., Romer, J., Blasi, F., and Dano, K., 1991b, Urokinase receptor mRNA level and gene transcription are strongly and rapidly increased by phorbol myristate acetate in human monocyte-like U937 cells, J. Biol. Chem. 266:5177–5181.

    PubMed  CAS  Google Scholar 

  • Lyons, R. M., Keski-Oja, J., and Moses, H. L., 1988, Proteolytic activation of latent transforming growth factor-β from fibroblast conditioned medium, J. Cell Biol. 106:1659–1665.

    PubMed  CAS  Google Scholar 

  • Lyons, R. M., Gentry, L. E., Purchio, A. F., and Moses, H. L., 1990, Mechanism of activation of latent recombinant transforming growth factor β-1 by plasmin, J. Cell Biol. 110:1361–1367.

    PubMed  CAS  Google Scholar 

  • Maciag, T., 1984, Angiogenesis: The phenomenon, in: Progress in Thrombosis and Haemostasis (T. H. Spaet, ed.), pp. 167–182, New York, Grune and Stratton.

    Google Scholar 

  • Mandle, R. J., and Kaplan, A. P., 1977, Hageman factor substrates. Human plasma prekallikrein: Mechanism of activation by Hageman factor and participation in Hageman factor-dependent fibrinolysis, J. Biol. Chem. 252:6097–6104.

    PubMed  CAS  Google Scholar 

  • Marcotte, P. A., Kozan, I. M., Dorwin, S. A., and Ryan, J. M., 1992, The matrix metalloproteinase Pump-1 catalyzes formation of low molecular weight (pro)urokinase in cultures of normal human kidney cells, J. Biol. Chem. 267:13803–13806.

    PubMed  CAS  Google Scholar 

  • Matrisian, L. M., 1990, Metalloproteinases and their inhibitors in matrix remodeling, Trends Genet. 6:121–125.

    PubMed  CAS  Google Scholar 

  • Matrisian, L. M., 1992, The matrix-degrading metalloproteinases, BioEssays 14:455–463.

    PubMed  CAS  Google Scholar 

  • Mauch, C., Adelmann, G. B., Hatamochi, A., and Krieg, T., 1989, Collagenase gene expression in fibroblasts is regulated by a three-dimensional contact with collagen, FEBS Lett. 250:301–305.

    PubMed  CAS  Google Scholar 

  • Mauviel, A., 1993, Cytokine regulation of metalloproteinase gene expression, J. Cell. Biochem. 53:288–295.

    PubMed  CAS  Google Scholar 

  • Mauviel, A., and Uitto, J., 1993, The extracellular matrix in wound healing: Role of the cytokine network, Wounds 5:137–152.

    Google Scholar 

  • Mauviel, A., Kähäri, V.-M., Evans, C. H., and Uitto, J., 1992, Transcriptional activation of fibroblast collagenase gene expression by a novel lymphokine, leukoregulin, J. Biol. Chem. 267:5644–5648.

    PubMed  CAS  Google Scholar 

  • Mauviel, A., Halcin, C., Vasiloudes, P., Parks, W. C., Kurkinen, M., and Uitto, J., 1994, Uncoordinated regulation of collagenase, stromelysin, tissue inhibitor of metalloproteinases, and interleukin-8 genes by prostaglandin E2. Selective enhancement of collagenase gene expression in human dermal fibroblasts in culture, J. Cell. Biochem. 54:465–472.

    PubMed  CAS  Google Scholar 

  • McKay, I. A., and Leigh, I. M., 1991, Epidermal cytokines and their roles in cutaneous wound healing, Br. J. Dermatol. 124:513–518.

    PubMed  CAS  Google Scholar 

  • McNeill, H., and Jensen, P. J., 1990, A high-affinity receptor for urokinase plasminogen activator on human keratinocytes: Characterization and potential modulation during migration, Cell Regul. 1:843–852.

    PubMed  CAS  Google Scholar 

  • Mignatti, P., and Rifkin, D. B., 1993, Biology and biochemistry of proteinases in tumor invasion, Physiol. Rev. 73:161–195.

    PubMed  CAS  Google Scholar 

  • Mignatti, P., Robbins, E., and Rifkin, D. B., 1986, Tumor invasion through the human amniotic membrane: Requirement for a proteinase cascade, Cell 47:487–498.

    PubMed  CAS  Google Scholar 

  • Mignatti, P., Tsuboi, R., Robbins, E., and Rifkin, D. B., 1989, In vitro angiogenesis on the human amniotic membrane: Requirement for basic fibroblast growth factor-induced proteinases, J. Cell Biol. 108:671–682.

    PubMed  CAS  Google Scholar 

  • Mignatti, P., Mazzieri, R., and Rifkin, D. B., 1991, Expression of the urokinase receptor in vascular endothelial cells is stimulated by basic fibroblast growth factor, J. Cell Biol. 113:1193–1201.

    PubMed  CAS  Google Scholar 

  • Miles, L. A., and Plow, E. F., 1985, Binding and activation of plasminogen on the platelet surface, J. Biol. Chem. 260:4303–4311.

    PubMed  CAS  Google Scholar 

  • Miles, L. A., Dahlberg, C. M., Plescia, J., Felez, J., Kato, K., and Plow, E. F., 1991, Role of cell-surface lysines in plasminogen binding to cells: Identification of alpha-enolase as a candidate plasminogen receptor, Biochemistry 30:1682–1691.

    PubMed  CAS  Google Scholar 

  • Miyazono, K., Hellman, U., Westedt, C., and Heldin, C. H., 1988, Latent high molecular weight complex of transforming growth factor β1, J. Biol. Chem. 263:6407–6415.

    PubMed  CAS  Google Scholar 

  • Mizuno, K., and Nakamura, T., 1993, Molecular characteristics of HGF and the gene, and its biochemical aspects, EXS 65:1–29.

    PubMed  CAS  Google Scholar 

  • Møller, L. B., Pöllanen, J., Rønne, E., Pedersen, N., and Blasi, F., 1993, N-linked glycosylation of the ligand-binding domain of the human urokinase receptor contributes to the affinity for its ligand, J. Biol. Chem. 268:11152–11159.

    PubMed  Google Scholar 

  • Monsky, W. L., Kelly, T., Lin, C. Y., Yeh, Y., Stetler-Stevenson, W. G., Mueller, S. C., and Chen, W. T., 1993, Binding and localization of M(r) 72,000 matrix metalloproteinase at cell surface invadopodia, Cancer Res. 53:3159–3164.

    PubMed  CAS  Google Scholar 

  • Montesano, R., Vassalli, J. D., Baird, A., Guillemin, R., and Orci, L., 1986, Basic fibroblast growth factor induces angiogenesis in vitro, Proc. Natl. Acad. Sci. USA 83:7297–7301.

    PubMed  CAS  Google Scholar 

  • Montesano, R., Pepper, M. S., Möhle-Steinlein, U., Risau, W., Wagner, E. F., and Orci, L., 1990, Increased proteolytic activity is responsible for the aberrant morphogenetic behavior of endothelial cells expressing the middle T oncogene, Cell 62:435–445.

    PubMed  CAS  Google Scholar 

  • Morton, P. A., Owensby, D. A., Wun, T. C., Billadello, J., and Schwartz, A. L., 1990, Identification of determinants involved in binding of tissue-type plasminogen activator-plasminogen activator inhibitor type 1 complexes to HepG2 cells, J. Biol. Chem. 265:14093–14099.

    PubMed  CAS  Google Scholar 

  • Moscatelli, D., and Rifkin, D. B., 1988, Membrane and matrix localization of proteinases: A common theme in tumor cell invasion and angiogenesis, Biochim. Biophys. Acta 948:67–85.

    PubMed  CAS  Google Scholar 

  • Moscatelli, D., Presta, M., and Rifkin, D. B., 1986, Purification of a factor from human placenta that stimulates capillary endothelial cell protease production, DNA synthesis and migration, Proc. Natl. Acad. Sci. USA 83:2091–2095.

    PubMed  CAS  Google Scholar 

  • Moser, T. L., Enghild, J. J., Pizzo, S.V., and Stack, M. S., 1993, The extracellular matrix proteins laminin and fibronectin contain binding domains for human plasminogen and tissue plasminogen activator, J. Biol. Chem. 268:18917–18923.

    PubMed  CAS  Google Scholar 

  • Müller, G., Behrens, J., Nussbaumer, U., Bohlen, P., and Birchmeyer, W., 1987, Inhibitory action of transforming growth factor β on endothelial cells, Proc. Natl. Acad. Sci. USA 84:5600–5604.

    PubMed  Google Scholar 

  • Mullins, D. E., and Rohrlich, S. T., 1983, The role of proteinases in cellular invasiveness, Biochim. Biophys. Acta 695:177–214.

    PubMed  CAS  Google Scholar 

  • Murphy, G., Cockett, M. I., Stephens, P. E., Smith, B. J., and Docherty, A. J., 1987, Stromelysin is an activator of procollagenase. A study with natural and recombinant enzymes, Biochem. J. 248:265–268.

    PubMed  CAS  Google Scholar 

  • Murphy, G., Cockett, M. I., Ward, R. V., and Docherty, A. J. P., 1991, Matrix metalloproteinase degradation of elastin, type IV collagen and proteoglycan. A quantitative comparison of the activities of 95 kDa and 75 kDa gelatinases, stromelysins-1 and-2 and punctuated metalloproteinase (PUMP), Biochem. J. 277:277–279.

    PubMed  CAS  Google Scholar 

  • Murphy, G., Allan, J. A., Willenbrock, F., Cockett, M. I., O’Connell, J. P., and Docherty, A. J. P., 1992a, The C-terminal domain in collagenase and stromelysin specificity, J. Biol. Chem. 267:9612–9618.

    PubMed  CAS  Google Scholar 

  • Murphy, G., Ward, R., Gavrilovic, J., and Atkinson, S., 1992b, Physiological mechanisms for metalloproteinase activation, Matrix (Suppl.) 1:224–230.

    PubMed  CAS  Google Scholar 

  • Murphy, G., Willenbrock, F., Ward, R. V., Cockett, M. I., Eaton, D., and Docherty, A. J. P., 1992c, The C-terminal domain of 72 kDa gelatinase A is not required for catalysis, but is essential for membrane activation and modulates interactions with tissue inhibitors of metalloproteinases, Biochem. J. 283:637–641.

    PubMed  CAS  Google Scholar 

  • Murphy, G., Segain, J. P., O’Shea, M., Cockett, M., Ioannou, C., Lefebvre, O., Chambon, P., and Basset, P., 1993, The 28 kDa N-terminal domain of mouse stromelysin-3 has the general properties of a weak metalloproteinase, J. Biol. Chem. 268:15435–15441.

    PubMed  CAS  Google Scholar 

  • Murphy, G., Nguyen, Q., Cockett, M. I., Atkinson, S. J., Allan, J. A., Knight, C. G., Willenbrock, F., and Docherty, A. J. P., 1994, Assessment of the role of the fibronectin-like domain of gelatinase A by analysis of a deletion mutant, J. Biol. Chem. 269:6632–6636.

    PubMed  CAS  Google Scholar 

  • Nakamura, T., 1991, Structure and function of hepatocyte growth factor, Prog. Growth Factor Res. 3:67–85.

    PubMed  CAS  Google Scholar 

  • Naldini, L., Tamagnone, L., Vigna, E., Sachs, M., Hartmann, G., Birchmeier, W., Daikuhara, Y., Tsubouchi, H., Blasi, F., and Comoglio, P. M., 1992, Extracellular proteolytic cleavage by urokinase is required for activation of hepatocyte growth factor/scatter factor, EMBO J. 11:4825–4833.

    PubMed  CAS  Google Scholar 

  • Nielsen, L. S., Kellerman, G. M., Behrendt, N., Picone, R., Danø, K., and Blasi, F., 1988, A 55,000-60,000 M r receptor protein for urokinase-type plasminogen activator: Identification in human tumor cell lines and partial purification, J. Biol. Chem. 263:2358–2363.

    PubMed  CAS  Google Scholar 

  • Norris, D. A., Clark, R. A. F., Swigart, L. M., Huff, J. C., Westin, W. L., and Howell, S. E., 1982, Fibronectin fragments are chemotactic for human peripheral blood monocytes, J. Immunol. 129:1612–1618.

    PubMed  CAS  Google Scholar 

  • O’Connell, J. P., Willenbrock, F., Docherty, A. J. P., Eaton, D., and Murphy, G., 1994, Analysis of the role of the COOH-terminal domain in the activation, proteolytic activity, and tissue inhibitor of metalloproteinase interactions of gelatinase B, J. Biol. Chem. 269:14967–14973.

    PubMed  Google Scholar 

  • Odekon, L. E., Sato, Y., and Rifkin, D. B., 1992, Urokinase-type plasminogen activator mediates basic fibroblast growth factor-induced bovine endothelial cell migration independent of its proteolytic activity, J. Cell. Physiol. 150:258–263.

    PubMed  CAS  Google Scholar 

  • O’Shea, M. O., Willenbrock, F., Williamson, R. A., Cockett, M. I., Freedman, R. B., Reynolds, J. J., Docherty, A. J. P., and Murphy, G., 1992, Site-directed mutations that alter the inhibitory activity of the tissue inhibitor of metalloproteinases-1: importance of the n-terminal region between cystein 3 and cystein 13, Biochemistry 31:10146–10152.

    PubMed  Google Scholar 

  • Ossowski, L., Quigley, J. P., Kellerman, G. M., and Reich, E., 1973, Fibrinolysis associated with oncogenic transformation. Requirement of plasminogen for correlated changes in cellular morphology, colony formation in agar and cell migration, J. Exp. Med. 138:1056–1064.

    PubMed  CAS  Google Scholar 

  • Overall, C. M., Wrana, J. L., and Sodek, J., 1991, Transcriptional and post-transcriptional regulation of 72-kDa gelatinase/type IV collagenase by transforming growth factor-beta 1 in human fibroblasts. Comparisons with collagenase and tissue inhibitor of matrix metalloproteinase gene expression, J. Biol. Chem. 266:14064–14071.

    PubMed  CAS  Google Scholar 

  • Pellegrini, G., De Luca, M., Orecchia, G., Balzac, F., Cremona, O., Savoia, P., Cancedda, R., and Marchisio, P. C., 1992, Expression, topography, and function of integrin receptors are severely altered in ker-atinocytes from involved and uninvolved psoriatic skin, J. Clin. Invest. 89:1783–1795.

    PubMed  CAS  Google Scholar 

  • Pennica, D., Holmens, W. E., Kohr, W. J., Harkins, R. N., Vehar, G. A., Ward, C. A., Bennet, W. F., Yelverton, E., Seeburg, P. H., Heyneker, H. L., Goeddel, D. V., and Collen, D., 1983, Cloning and expression of human tissue-type plasminogen activator cDNA in E. coli, Nature 301:214–221.

    PubMed  CAS  Google Scholar 

  • Pepper, M. S., Belin, D., Montesano, R., Orci, L., and Vassalli, J. D., 1990, Transforming growth factor-beta 1 modulates basic fibroblast growth factor-induced proteolytic and angiogenic properties of endothelial cells in vitro, J. Cell Biol. 111:743–755.

    PubMed  CAS  Google Scholar 

  • Pepper, M. S., Ferrara, N., Orci, L., and Montesano, R., 1991, Vascular endothelial cell growth factor (VEGF) induces plasminogen activators and plasminogen activator inhibitor-1 in microvascular endothelial cells, Biochem. Biophys. Res. Commun. 181:902–906.

    PubMed  CAS  Google Scholar 

  • Pepper, M. S., Ferrara, N., Orci, L., and Montesano, R., 1992a, Potent synergism between vascular endothelial growth factor and basic fibroblast growth factor in the induction of angiogenesis in vitro, Biochem. Biophys. Res. Commun. 189:824–831.

    PubMed  CAS  Google Scholar 

  • Pepper, M. S., Matsumoto, K., Nakamura, T., Orci, L., and Montesano, R., 1992b, Hepatocyte growth factor increases urokinase-type plasminogen activator (u-PA) and u-PA receptor expression in Madin-Darby canine kidney epithelial cells, J. Biol. Chem. 267:20493–20496.

    PubMed  CAS  Google Scholar 

  • Pepper, M. S., Sappino, A. P., Montesano, R., Orci, L., and Vassalli, J. D., 1992c, Plasminogen activator inhibitor-1 is induced in migrating endothelial cells, J. Cell. Physiol. 153:129–139.

    PubMed  CAS  Google Scholar 

  • Pepper, M. S., Sappino, A. P., Stocklin, R., Montesano, R., Orci, L., and Vassalli, J. D., 1993, Up-regulation of urokinase receptor expression on migrating endothelial cells, J. Cell Biol. 122:673–684.

    PubMed  CAS  Google Scholar 

  • Petersen, L. C., Lund, L. R., Nielsen, L. S., Dano, K., and Skriver, L., 1988, One chain urokinase-type plasminogen activator from human sarcoma cells is a proenzyme with little or no intrinsic activity, J. Biol. Chem. 263:11189–11195.

    PubMed  CAS  Google Scholar 

  • Petersen, M. J., Woodley, D. T., Stricklin, G. P., and O’Keefe, E. J., 1990, Enhanced synthesis of collagenase by human keratinocytes cultured on type I or type IV collagen, J. Invest. Dermatol. 94:341–346.

    PubMed  CAS  Google Scholar 

  • Peverali, F. A., Mandriota, S., Ciana, P., Marelli, R., Quax, P., Rifkin, D. B., Delia Valle, G., and Mignatti, P., 1994, Tumor cells secrete an angiogenic factor that stimulates basic fibroblast growth factor and urokinase expression in vascular endothelial cells, J. Cell. Physiol. 161:1–14.

    PubMed  CAS  Google Scholar 

  • Philips, M., Juul, A. G., and Thorsen, S., 1984, Human endothelial cells produce a plasminogen activator inhibitor and a tissue plasminogen activator-inhibitor complex, Biochim. Biophys. Acta 802:99–110.

    PubMed  CAS  Google Scholar 

  • Picone, R., Kajtaniak, E. L., Nielsen, L. S., Behrendt, N., Mastronicola, M. R., Cubellis, M. V., Stoppelli, M. P., Pedersen, S., Danø, K., and Blasi, F., 1989, Regulation of urokinase receptors in monocyte-like U937 cells by the phorbol ester phorbol myristate acetate, J. Cell Biol. 108:693–702.

    PubMed  CAS  Google Scholar 

  • Ploug, M., Ronne, E., Behrendt, N., Jensen, A. L., Blasi, F., and Dano, K., 1991, Cellular receptor for urokinase plasminogen activator. Carboxyl-terminal processing and membrane anchoring by glycosyl-phosphatidylinositol, J. Biol. Chem. 266:1926–1933.

    PubMed  CAS  Google Scholar 

  • Plow, E. F., and Miles, L. A., 1990, Plasminogen receptors in the mediation of pericellular proteolysis, Cell. Differ. Dev. 32:293–298.

    PubMed  CAS  Google Scholar 

  • Plow, E. F., Freaney, D. E., Plescia, J., and Miles, L. A., 1986, The plasminogen system and cell surfaces: Evidence for plasminogen and urokinase receptors on the same cell type, J. Cell Biol. 103:2411–2420.

    PubMed  CAS  Google Scholar 

  • Pollack, R., and Rifkin, D. B., 1975, Actin-containing cables within anchorage-dependent rat embryo cells are dissociated by plasmin and trypsin, Cell 6:495–506.

    Google Scholar 

  • Pöllanen, J. J., 1993, The N-terminal domain of human urokinase receptor contains two distinct regions critical for ligand recognition, Blood 82:2719–2729.

    PubMed  Google Scholar 

  • Pöllanen, J., Hedman, K., Nielsen, L. N., Danø, K., and Vaheri, A., 1988, Ultrastructural localization of plasma membrane-associated urokinase-type plasminogen activator at focal contacts, J. Cell Biol. 106:87–95.

    PubMed  Google Scholar 

  • Ponting, C. P., Marshall, J. M., and Cederholm-Williams, S. A., 1992, Plasminogen: A structural review, Blood Coagul. Fibrinolysis 3:605–614.

    PubMed  CAS  Google Scholar 

  • Porras-Reyez, B. H., Blair, H. C., Jeffrey, J. J., and Mustoe, T. A., 1991, Collagenase production at the border of granulation tissue in a healing wound: Macrophage and mesenchymal collagenase production in vivo, Connect. Tissue Res. 27:63–71.

    Google Scholar 

  • Postlethwaite, A. E., and Kang, A. H., 1976, Collagen and collagen peptide-induced chemotaxis of human blood monocytes, J. Exp. Med. 143:1299–1307.

    PubMed  CAS  Google Scholar 

  • Quinn, C. O., Scott, D. K., Brinckerhoff, C. E., Matrisian, L. M., Jeffrey, J. J., and Partridge, N. C., 1990, Rat collagenase: Cloning, amino acid sequence comparison and parathyroid hormone regulation in osteo-blastic cells, J. Biol. Chem. 265:13521–13527.

    Google Scholar 

  • Ramakrishnan, V., Sinicropi, D. V., Dere, R., Darbonne, W. C., Bechtol, K. B., and Baker, J. B., 1990, Interaction of wild-type and catalytically inactive mutant forms of tissue-type plasminogen activator with human umbilical vein endothelial cell monolayers, J. Biol. Chem. 265:2755–2762.

    PubMed  CAS  Google Scholar 

  • Risch, J., Werb, Z., and Fukuyama, K., 1980, Effect of plasminogen and its activities on nuclear disintegration in newborn mice skin in culture, J. Invest. Dermatol. 174:257 (Abstract).

    Google Scholar 

  • Robbins, K. C., and Summaria, L., 1970, Human plasminogen and plasmin, Methods Enzymol. 19:184–199.

    Google Scholar 

  • Roberts, A. B., Sporn, M. B., Assoian, R. K., Smith, J. M., Roche, N. S., Wakefield, L. M., Heine, U. I., Liotta, L. A., Falanga, V., Kehrl, J. H., and Fauci, A. S., 1986, Transforming growth factor type β: Rapid induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation in vitro, Proc. Natl. Acad. Sci. USA 83:4167–4171.

    PubMed  CAS  Google Scholar 

  • Rodgers, W. H., Osteen, K. G., Matrisian, L. M., Navre, M., Giudice, L. C., and Gorstein, F., 1993, Expression and localization of matrilysin, a matrix metalloproteinase, in human endometrium during the reproductive cycle, Am. J. Obstet. Gynecol. 168:253–260.

    PubMed  CAS  Google Scholar 

  • Rogelj, S., Klagsbrun, M., Atzmon, R., Kurokawa, M., Haimovitz, A., Fuks, Z., and Vlodavski, I., 1989, Basic fibroblast growth factor is an extracellular matrix component required for supporting the proliferation of vascular endothelial cells and the differentiation of PC12 cells, J. Cell Biol. 109:823–831.

    PubMed  CAS  Google Scholar 

  • Rogister, B., Delree, P., Leprince, P., Martin, D., Sadzot, C., and Malgrange, B., 1993, Transforming growth factor beta as a neuronoglial signal during peripheral nervous system response to injury, J. Neurosci. Res. 34:32–43.

    PubMed  CAS  Google Scholar 

  • Roldan, A. L., Cubellis, M. V., Masucci, M. T., Behrendt, N., Lund, L. R., Danø, K., Appella, E., and Blasi, F., 1990, Cloning and expression of the receptor for human urokinase plasminogen activator, a central molecule in cell surface, plasmin dependent proteolysis, EMBO J. 9:467–474.

    PubMed  CAS  Google Scholar 

  • Ronne, E., Behrendt, N., Ellis, V., Ploug, M., Dano, K., and Hoyer-Hansen, G., 1991, Cell-induced potentiation of the plasminogen activation system is abolished by a monoclonal antibody that recognizes the NH2-terminal domain of the urokinase receptor, FEBS Lett. 288:233–236.

    PubMed  CAS  Google Scholar 

  • Russell, M. E., Quertermous, T., Declerck, P. J., Collen, D., Haber, E., and Homcy, C. J., 1990, Binding of tissue-type plasminogen activator with human endothelial cell monolayers. Characterization of the high affinity interaction with plasminogen activator inhibitor-1, J. Biol. Chem. 265:2569–2575.

    PubMed  CAS  Google Scholar 

  • Saarialho-Kere, U. K., Chang, E. S., Welgus, H. G., and Parks, W. C., 1992, Distinct localization of collagenase and TIMP expression in wound healing associated with ulcerative pyogenic granuloma, J. Clin. Invest. 90:1952–1957.

    PubMed  CAS  Google Scholar 

  • Saarialho-Kere, U. K., Chang, E. S., Welgus, H. G., and Parks, W. C., 1993a, Expression of interstitial collagenase, 92 kDa gelatinase, and TIMP-1 in granuloma annulare and necrobiosis lipoidica diabet-icorum, J. Invest. Dermatol. 100:335–342.

    PubMed  CAS  Google Scholar 

  • Saarialho-Kere, U. K., Kovacs, S. O., Pentland, A. P., Olerud, J., Welgus, H. G., and Parks, W C., 1993b, Cell-matrix interactions influence interstitial collagenase expression by human keratinocytes actively involved in wound healing, J. Clin. Invest. 92:2858–2866.

    PubMed  CAS  Google Scholar 

  • Saarialho-Kere, U. K., Welgus, H. G., and Parks, W. C., 1993c, Distinct mechanisms regulate interstitial collagenase and 92 kDa gelatinase expression in human monocytic-like cells exposed to bacterial endotoxin, J. Biol. Chem. 268:17354–17361.

    PubMed  CAS  Google Scholar 

  • Saarialho-Kere, U. K., Crouch, E. C., and Parks, W. C., 1995, The matrix metalloproteinase matrilysin is constitutively expressed in human exocrine epithelium, J. Invest. Dermatol. 105:190–196.

    PubMed  CAS  Google Scholar 

  • Saarialho-Kere, U. K., Kovacs, S. O., Pentland, A. P., Parks, W. C., and Welgus, H. G., 1994, Distinct populations of keratinocytes express stromelysin-1 and-2 in chronic wounds, J. Clin. Invest. 94:79–88.

    PubMed  CAS  Google Scholar 

  • Saarinen, J., Kalkkinen, N., Welgus, H. G., and Kovanen, P. T., 1994, Direct activation of human interstitial procollagenase (MMP-1) by human mast cell chymase in the presence of heparin, J. Biol. Chem. 269:18134–18140.

    PubMed  CAS  Google Scholar 

  • Saksela, O., and Rifkin, D. B., 1988, Cell-associated plasminogen activation: Regulation and physiological functions, Ann. Rev. Cell Biol. 4:93–126.

    PubMed  CAS  Google Scholar 

  • Saksela, O., and Rifkin, D. B., 1990, Release of basic fibroblast growth factor-heparan sulfate complexes from endothelial cells by plasminogen activator-mediated proteolytic activity, J. Cell Biol. 110:767–775.

    PubMed  CAS  Google Scholar 

  • Saksela, O., Moscatelli, D., and Rifkin, D. B., 1987, The opposing effects of basic fibroblast growth factor and transforming growth factor beta on the regulation of plasminogen activator activity in capillary endothelial cells, J. Cell Biol. 105:957–963.

    PubMed  CAS  Google Scholar 

  • Saksela, O., Moscatelli, D., Sommer, A., and Rifkin, D. B., 1988, Endothelial cell-derived heparan sulfate binds basic fibroblast growth factor and protects it from proteolytic degradation, J. Cell Biol. 107:743–751.

    PubMed  CAS  Google Scholar 

  • Salo, T., Lyons, J. G., Rahemtulla, F., Birkedal-Hansen, H., and Larjava, H., 1991, Transforming growth factor-β1 up-regulates type IV collagenase expression in cultured human keratinocytes, J. Biol. Chem. 266:11436–11441.

    PubMed  CAS  Google Scholar 

  • Salo, T., Mäkela, M., Kylmäniemi, M., Autio-Harmainen, H., and Larjava, H., 1994, Expression of matrix metalloproteinase-2 and-9 during early human wound healing, Lab. Invest. 70:176–182.

    PubMed  CAS  Google Scholar 

  • Sato, H., Takino, T., Okada, Y., Cao, J., Shinagawa, A., Yamamoto, E., and Seiki, M., 1994, A matrix metalloproteinase expressed on the surface of invasive tumor cells, Nature 370:61–65.

    PubMed  CAS  Google Scholar 

  • Sato, Y., and Rifkin, D. B., 1989, Inhibition of endothelial cell movement by pericytes and smooth muscle cells: Activation of a latent transforming growth factor β-1-like molecule by plasmin, J. Cell Biol. 109:309–315.

    PubMed  CAS  Google Scholar 

  • Sato, Y., Tsuboi, R., Lyons, R. M., Moses, H. L., and Rifkin, D. B., 1990, Characterization of the activation of latent TGF-β by co-cultures of endothelial cells and pericytes or smooth muscle cells: A self-regulating system, J. Cell Biol. 111:757–763.

    PubMed  CAS  Google Scholar 

  • Schneiderman, J., Sawdey, M., Craig, H., Thinnes, T., Bordin, G., and Loskutoff, D. J., 1993, Type 1 plasminogen activator inhibitor gene expression following partial hepatectomy, Am. J. Pathol. 143:753–762.

    PubMed  CAS  Google Scholar 

  • Senior, R. M., Griffin, G. L., and Mecham, R. P., 1980, Chemotactic activity of elastin-derived peptides, J. Clin. Invest. 66:859–862.

    PubMed  CAS  Google Scholar 

  • Shapiro, S., Doyle, G. A. D., Parks, W. C., Ley, T. J., and Welgus, H. G., 1993, Divergent mechanisms regulating the production of collagenase and TIMP in U937 cells: Evidence for involvement of delayed transcriptional activation and enhanced mRNA stability, Biochemistry 32:4286–4292.

    PubMed  CAS  Google Scholar 

  • Shapiro, S. D., Campbell, E. J., Kobayashi, D. K., and Welgus, H. G., 1990, Immune modulation of metalloproteinase production in human macrophages. Selective pretranslational suppression of interstitial collagenase and stromelysin biosynthesis by interferon-7, J. Clin. Invest. 86:1204–1210.

    PubMed  CAS  Google Scholar 

  • Shapiro, S. D., Campbell, E. J., Kobayashi, D. K., and Welgus, H. G., 1991, Dexamethasone selectively modulates basal and lipopolysaccharide-induced metalloproteinase and tissue inhibitor of metalloproteinase production by human alveolar macrophages, J. Immunol. 146:2724–2729.

    PubMed  CAS  Google Scholar 

  • Shapiro, S. D., Griffin, G. L., Gilber, D. J., Jenkins, N. A., Copeland, N. G., Welgus, H. G., Senior, R. M., and Ley, T. J., 1992, Molecular cloning, chromosomal localization and bacterial expression of a novel murine macrophage metalloelastase, J. Biol. Chem. 267:4664–4671.

    PubMed  CAS  Google Scholar 

  • Shapiro, S.D., Kobayashi, D., Pentland, A. P., and Welgus, H. G., 1993a, Induction of macrophage metal-loproteinases by extracellular matrix substrates: Evidence for enzyme-and substrate-specific responses involving prostaglandin-dependent mechanisms, J. Biol. Chem. 268:8170–8175.

    PubMed  CAS  Google Scholar 

  • Shapiro, S. D., Kobayashi, D. K., and Ley, T. J., 1993b, Cloning and characterization of a unique elastolytic metalloproteinase produced by human alveolar macrophages, J. Biol. Chem. 268:23824–23829.

    PubMed  CAS  Google Scholar 

  • Shattil, S. J., and Brugge, J. S., 1991, Protein tyrosine phosphorylation and the adhesive functions of platelets, Curr. Opin. Cell Biol. 3:869–879.

    PubMed  CAS  Google Scholar 

  • Simon, D. I., Ezratty, A. M., Francis, S. A., Rennke, H., and Loscalzo, J., 1993, Fibrin(ogen) is internalized and degraded by activated human monocytoid cells via Mac-1 (CD11b/CD18): A nonplasmin fibrinoly-tic pathway, Blood 82:2414–2422.

    PubMed  CAS  Google Scholar 

  • Sires, U. I., Griffin, G. L., Broekelmann, T. J., Mecham, R. P., Murphy, G., Chung, A. E., Welgus, H. G., and Senior, R. M., 1993, Degradation of entactin by matrix metalloproteinases. Susceptibility to matrilysin and identification of cleavage sites, J. Biol. Chem. 268:2069–2074.

    PubMed  CAS  Google Scholar 

  • Sirum, K. L., and Brinckerhoff, C. E., 1989, Cloning of the genes for human stromelysin and stromelysin 2: Differential expression in rheumatoid synovial fibroblasts, Biochemistry 28:8691–8698.

    PubMed  CAS  Google Scholar 

  • Skriver, L., Nielsen, L. S., Stephens, R., and Dano, K., 1982, Plasminogen activator released as inactive proenzyme from murine cells transformed by sarcoma virus, Eur. J. Biochem. 124:409–414.

    PubMed  CAS  Google Scholar 

  • Staatz, W. D., Rajpara, S. M., Wayner, E. A., Carter, W. G., and Santoro, S. A., 1989, The membrane glycoprotein Ia-IIa (VLA-2) complex mediates the Mg+2-dependent adhesion of platelets to collagen, J. Cell Biol. 108:1917–1924.

    PubMed  CAS  Google Scholar 

  • Stack, M. S., and Pizzo, S. V., 1993, Modulation of tissue plasminogen activator-catalyzed plasminogen activation by synthetic peptides derived from the amino-terminal heparin binding domain of fibronectin, J. Biol. Chem. 268:18924–18928.

    PubMed  CAS  Google Scholar 

  • StÃ¥hle-Bäckdahl, M., and Parks, W. C., 1993, 92 kDa gelatinase is actively expressed by eosinophils and secreted by neutrophils in invasive squamous cell carcinoma, Am. J. Pathol. 142:995–1000.

    PubMed  Google Scholar 

  • StÃ¥hle-Bäckdahl, M., Inoue, M., Giudice, G. J., and Parks, W. C., 1994, 92 kDa gelatinase is produced by eosinophils at the site of blister formation in bullous pemphigoid and cleaves the extracellular domain of the 180 kDa bullous pemphigoid autoantigen (type XVII collagen), J. Clin. Invest. 93:2202–2230.

    Google Scholar 

  • Stecher, V. J., and Sorchin, E., 1972, The chemotactic activity of fibrin lysis products, Int. Arch. Allergy Appl. Immunol. 43:879–886.

    PubMed  CAS  Google Scholar 

  • Stenn, K. S., and Malhotra, R., 1992, Epithelialization, in: Wound Healing: Biochemical and Clinical Aspects (I. K. Cohen, R. F. Diegelmann, and W. J. Linblad, eds.), pp. 115–127, Saunders, Philadelphia.

    Google Scholar 

  • Stoppelli, M. P., Corti, A., Soffientini, A., Cassani, G., Blasi, F., and Assoian, R. K., 1985, Differentiation-enhanced binding of the amino-terminal fragment of human plasminogen activator to a specific receptor on U937 monocytes, Proc. Natl. Acad. Sci. USA 82:4939–4943.

    PubMed  CAS  Google Scholar 

  • Stoppelli, M. P., Tacchetti, C., Cubellis, M. V., Corti, A., Hearing, V. J., Cassani, G., Appella, E., and Blasi, F., 1986, Autocrine saturation of pro-urokinase receptors on human A431 cells, Cell 45:675–684.

    PubMed  CAS  Google Scholar 

  • Stricklin, G. P., Bauer, E. A., Jeffrey, J. J., and Eisen, A. Z., 1977, Human skin collagenase: Isolation of precursor and active forms from both fibroblast and organ cultures, Biochemistry 16:1607–1615.

    PubMed  CAS  Google Scholar 

  • Stricklin, G. P., Li, L., Jancic, V., Wenczak, B. A., and Nanney, L. B., 1993, Localization of mRNAs representing collagenase and TIMP in sections of healing human burn wounds, Am. J. Pathol. 143:1657–1666.

    PubMed  CAS  Google Scholar 

  • Sudbeck, B. D., Welgus, H. G., Parks, W. C., and Pentland, A. P., 1994, Collagen-mediated induction of collagenase by basal keratinocytes involves distinct intracellular pathways, J. Biol. Chem. 269:30022–30029.

    PubMed  CAS  Google Scholar 

  • Summaria, L., Wohl, R. C., Boreisha, I. G., and Robbins, K. C., 1982, A virgin enzyme derived from human plasminogen. Specific cleavage of the arginyl-560-valyl peptide bond in the diisopropoxyphosphinyl virgin enzyme by plasminogen activators, Biochemistry 21:2056–2059.

    PubMed  CAS  Google Scholar 

  • Symington, B. E., Takada, Y., and Carter, W. G., 1993, Interaction of integrins a3bl and a2bl: Potential role in keratinocyte intercellular adhesion, J. Cell Biol. 120:523–535.

    PubMed  CAS  Google Scholar 

  • Tashiro, K., Hagiya, M., Nishizawa, T., Seki, T., Shimonishi, M., Shimizu, S., and Nakamura, T., 1990, Deduced primary structure of rat hepatocyte growth factor and expression of the mRNA in rat tissues, Proc. Natl. Acad. Sci. USA 87:3200–3204.

    PubMed  CAS  Google Scholar 

  • Tremble, P., Chiquet-Ehrismann, R., and Werb, Z., 1994, The extracellular matrix ligands fibronectin and tenascin collaborate in regulating collagenase gene expression in fibroblasts, Mol. Biol. Cell 5:439–453.

    PubMed  CAS  Google Scholar 

  • Tsuboi, R., and Rifkin, D. B., 1990, Recombinant basic fibroblast growth factor stimulates wound healing in healing-impaired db/db mice, J. Exp. Med. 172:245–251.

    PubMed  CAS  Google Scholar 

  • Tsuboi, R., Sato, Y., and Rifkin, D. B., 1990, Correlation of cell migration, cell invasion, receptor number, proteinase production, and basic fibroblast growth factor levels in endothelial cells, J. Cell Biol. 110:511–517.

    PubMed  CAS  Google Scholar 

  • Tsuboi, R., Sato, C., Kurita, Y., Ron, D., Rubin, J. S., and Ogawa, H., 1993, Keratinocyte growth factor (FGF-7) stimulates migration and plasminogen activator activity of normal human keratinocytes, J. Invest. Dermatol. 101:49–53.

    PubMed  CAS  Google Scholar 

  • Turksen, K., Choi, Y., and Fuchs, E., 1991, Transforming growth factor alpha induces collagen degradation and cell migration in differentiating human epidermal raft cultures, Cell Regul. 2:613–625.

    PubMed  CAS  Google Scholar 

  • Unemori, E. N., Bair, M. J., Bauer, E. A., and Amento, E. P., 1991a, Stromelysin expression regulates collagenase activation in human fibroblasts, J. Biol. Chem. 266:23477–23482.

    PubMed  CAS  Google Scholar 

  • Unemori, E. N., Hibbs, M. S., and Amento, E. P., 1991b, Constitutive expression of 92-kDa gelatinase (type IV collagenase) by rheumatoid synovial fibroblasts and its induction in normal human fibroblasts by inflammatory cytokines, J. Clin. Invest. 88:1656–1662.

    PubMed  CAS  Google Scholar 

  • Unkeless, J. C., Gordon, S., and Reich, E., 1974, Secretion of plasminogen activator by stimulated macrophages, J. Exp. Med. 139:834–850.

    PubMed  CAS  Google Scholar 

  • Van Wart, H. E., and Birkedal-Hansen, H., 1990, The cysteine switch: A principle of regulation of metal-loproteinase activity with potential applicability to the entire matrix metalloproteinase gene family, Proc, Natl. Acad. Sci. USA 87:5578–5582.

    Google Scholar 

  • Vassalli, J. D., Dayer, J. M., Wohlwend, A., and Belin, D., 1984, Concomitant secretion of prourokinase and of plasminogen activator-specific inhibitor by cultured human monocytes-macrophages, J. Exp. Med. 159:1653–1668.

    PubMed  CAS  Google Scholar 

  • Verde, P., Stoppelli, M. P., Galeffi, P., Di Nocera, P., and Blasi, F., 1984, Identification and primary sequence of an unspliced human urokinase poly (A) + RNA, Proc. Natl. Acad. Sci. USA 81:4727–4731.

    PubMed  CAS  Google Scholar 

  • Vincenti, M. P., Coon, C. I., and Brinckerhoff, C. E., 1994, Regulation of collagenase gene expression by IL-lbeta requires transcriptional and post-transcriptional mechanisms, Nucleic Acid Res. 22:4818–4827.

    PubMed  CAS  Google Scholar 

  • Vine, N., and Powell, J. T., 1991, Metalloproteinases in degenerative aotic disease, Clin. Sci. 81:233–239.

    PubMed  CAS  Google Scholar 

  • Vlodavsky, I., Fuks, Z., Bar-Ner, M., Ariav, Y., and Schirrmacher, V., 1983, Lymphoma cell-mediated degradation of sulfated proteoglycans in the subendothelial extracellular matrix: Relationship to tumor cell metastasis, Cancer Res. 43:2704–2711.

    PubMed  CAS  Google Scholar 

  • Welgus, H. G., Jeffrey, J. J., and Eisen, A. Z., 1981, The collagen substrate specificity of human skin fibroblast collagenase, J. Biol. Chem. 256:9511–9515.

    PubMed  CAS  Google Scholar 

  • Welgus, H. G., Campbell, E. J., Cury, J. D., Eisen, A. Z., Senior, R. M., Wilhelm, S. M., and Goldberg, G. I., 1990, Neutral metalloproteinases produced by human mononuclear phagocytes. Enzyme profile, regulation, and expression during cellular development, J. Clin. Invest. 86:1496–1502.

    PubMed  CAS  Google Scholar 

  • Welgus, H. G., and Stricklin, G. P., 1983, Human skin fibroblast collagenase inhibitor: Comparative studies in human connective tissues, serum and amniotic fluid, J. Biol. Chem. 258:12259–12264.

    PubMed  CAS  Google Scholar 

  • Werb, Z., Mainardi, C., Vater, C. A., and Harris, E. D., 1977, Endogenous activation of latent collagenase by rheumatoid synovial cells. Evidence for a role of plasminogen activator, N. Engl. J. Med. 296:1017–1023.

    PubMed  CAS  Google Scholar 

  • Werb, Z., Banda, M. J., and Jones, P. A., 1980, Degradation of connective tissue matrices by macrophages. I. Proteolysis of elastin, glycoproteins and collagen by proteinases isolated from macrophages, J. Exp. Med. 152:1340–1357.

    PubMed  CAS  Google Scholar 

  • Werb, Z., Tremble, P. M., Behrendtsen, O., Crowley, E., and Damsky, C. H., 1989, Signal transduction through the fibronectin receptor induces collagenase and stromelysin gene expression, J. Cell. Biol. 109:877–889.

    PubMed  CAS  Google Scholar 

  • Windsor, L. J., Grenett, H., Birkedal-Hansen, B., Bodden, M. K., Engler, J. A., and Birkedal-Hansen, H., 1993, Cell type-specific regulation of SL-1 and SL-2 genes. Induction of the SL-2 gene but not the SL-1 gene by human keratinocytes in response to cytokines and phorbol esters, J. Biol. Chem. 268:17341–17347.

    PubMed  CAS  Google Scholar 

  • Wittwer, A. J., and Sanzo, M. A., 1990, Effect of peptides on the inactivation of tissue plasminogen activator by plasminogen activator inhibitor-1 and on the binding of tissue plasminogen activator to endothelial cells, Thromb. Haemost. 64:270–275.

    PubMed  CAS  Google Scholar 

  • Woessner, J. F., 1991, Matrix metalloproteinases and their inhibitors in connective tissue remodeling, FASEB J. 5:2145–2154.

    PubMed  CAS  Google Scholar 

  • Woodley, D. T., Kalebec, T., Baines, A. J., Link, W., Prunieras, M., and Liotta, L., 1986, Adult human keratinocytes migrating over nonviable dermal collagen produce collagenolytic enzymes that degrade type I and type IV collagen, J. Invest. Dermatol. 4:418–423.

    Google Scholar 

  • Woodley, D. T., Bachmann, P. M., and O’Keefe, E. J., 1988, Laminin inhibits human keratinocyte migration, J. Cell. Physiol. 136:140–146.

    PubMed  CAS  Google Scholar 

  • Yang, E. Y., and Moses, H. L., 1990, Transforming growth factor β1-induced changes in cell migration, proliferation, and angiogenesis in the chick chorioallantoic membrane, J. Cell Biol. 111:731–741.

    PubMed  CAS  Google Scholar 

  • Zachary, I., and Rozengurt, E., 1992, Focal adhesion kinase (p 125 FAC): A point of convergence in the action of neuropeptides, integrins, and oncogenes, Cell 71:891–894.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mignatti, P., Rifkin, D.B., Welgus, H.G., Parks, W.C. (1988). Proteinases and Tissue Remodeling. In: Clark, R.A.F. (eds) The Molecular and Cellular Biology of Wound Repair. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0185-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0185-9_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0187-3

  • Online ISBN: 978-1-4899-0185-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics