Skip to main content

Exosomes-Based Gene Therapy for MicroRNA Delivery

  • Protocol
  • First Online:
Cardiac Gene Therapy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1521))

Abstract

Despite recent advances in scientific knowledge and clinical practice, cardiovascular disease management and treatment remain a major burden. While several treatment strategies using drugs and surgeries are being developed for cardiovascular manifestations, gene-based therapies hold significant promise. Recent findings from our laboratory unveiled a novel mechanism that exosomes, secreted nanovesicles from stem cells, mediate cardiac repair via transferring their unique repertoire of microRNAs (miRNA) to recipient cells in the heart. Exosomes, unlike other vectors for gene delivery, present unique advantages such that exosomes are a cell-free natural system for ferrying RNA between cells, robust exosomal membrane can protect the RNA/gene of interest from digestion, and exosomes are rapidly taken up by target cells making them a more efficient vehicle for gene delivery. Here, we describe a stepwise protocol developed in our laboratory for generating exosomes from human CD34+ stem cells that carry exogenously applied Cy3 dye-labeled pre-miR miRNA precursors. We demonstrate that human CD34+ stem cell exosomes can rigorously enter into recipient cells and deliver Cy3 dye-labeled pre-miR miRNA precursors to regulate gene expression. Identification of key molecular targets to treat disease conditions is the foremost critical step and the novel approach presented here to generate exosomes carrying exogenous genetic information offers a valuable clinical tool for more effective treatment strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Pan BT, Johnstone RM (1983) Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: selective externalization of the receptor. Cell 33(3):967–978

    Article  CAS  PubMed  Google Scholar 

  2. Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9(6):654–659. doi:10.1038/ncb1596

    Article  CAS  PubMed  Google Scholar 

  3. Sahoo S, Losordo DW (2014) Exosomes and cardiac repair after myocardial infarction. Circ Res 114(2):333–344. doi:10.1161/CIRCRESAHA.114.300639

    Article  CAS  PubMed  Google Scholar 

  4. Thery C, Ostrowski M, Segura E (2009) Membrane vesicles as conveyors of immune responses. Nat Rev Immunol 9(8):581–593. doi:10.1038/nri2567

    Article  CAS  PubMed  Google Scholar 

  5. Parolini I, Federici C, Raggi C, Lugini L, Palleschi S, De Milito A, Coscia C, Iessi E, Logozzi M, Molinari A, Colone M, Tatti M, Sargiacomo M, Fais S (2009) Microenvironmental pH is a key factor for exosome traffic in tumor cells. J Biol Chem 284(49):34211–34222. doi:10.1074/jbc.M109.041152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297

    Article  CAS  PubMed  Google Scholar 

  7. Ambros V (2004) The functions of animal microRNAs. Nature 431(7006):350–355. doi:10.1038/nature02871

    Article  CAS  PubMed  Google Scholar 

  8. Liu N, Olson EN (2010) MicroRNA regulatory networks in cardiovascular development. Dev Cell 18(4):510–525. doi:10.1016/j.devcel.2010.03.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Soifer HS, Rossi JJ, Saetrom P (2007) MicroRNAs in disease and potential therapeutic applications. Mol Ther 15(12):2070–2079. doi:10.1038/sj.mt.6300311

    Article  CAS  PubMed  Google Scholar 

  10. Olson EN (2014) MicroRNAs as therapeutic targets and biomarkers of cardiovascular disease. Sci Transl Med 6(239):239ps233. doi:10.1126/scitranslmed.3009008

    Article  Google Scholar 

  11. van Rooij E, Purcell AL, Levin AA (2012) Developing microRNA therapeutics. Circ Res 110(3):496–507. doi:10.1161/CIRCRESAHA.111.247916

    Article  PubMed  Google Scholar 

  12. Mathiyalagan P, Okabe J, Chang L, Su Y, Du XJ, El-Osta A (2014) The primary microRNA-208b interacts with Polycomb-group protein, Ezh2, to regulate gene expression in the heart. Nucleic Acids Res 42(2):790–803. doi:10.1093/nar/gkt896

    Article  CAS  PubMed  Google Scholar 

  13. Hammoudi N, Ishikawa K, Hajjar RJ (2015) Adeno-associated virus-mediated gene therapy in cardiovascular disease. Curr Opin Cardiol 30(3):228–234. doi:10.1097/HCO.0000000000000159

    Article  PubMed  PubMed Central  Google Scholar 

  14. Mittelbrunn M, Gutierrez-Vazquez C, Villarroya-Beltri C, Gonzalez S, Sanchez-CaboF, Gonzalez MA, Bernad A, Sanchez-Madrid F(2011) Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells. Nat Commun 2:282. doi:10.1038/ncomms1285

  15. Sahoo S, Klychko E, Thorne T, Misener S, Schultz KM, Millay M, Ito A, Liu T, Kamide C, Agrawal H, Perlman H, Qin G, Kishore R, Losordo DW (2011) Exosomes from human CD34(+) stem cells mediate their proangiogenic paracrine activity. Circ Res 109(7):724–728. doi:10.1161/CIRCRESAHA.111.253286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zomer A, Maynard C, Verweij FJ, Kamermans A, Schafer R, Beerling E, Schiffelers RM, de Wit E, Berenguer J, Ellenbroek SI, Wurdinger T, Pegtel DM, van Rheenen J (2015) In Vivo imaging reveals extracellular vesicle-mediated phenocopying of metastatic behavior. Cell 161(5):1046–1057. doi:10.1016/j.cell.2015.04.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Thery C, Amigorena S, Raposo G, Clayton A (2006) Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol, Juan S Bonifacino, et al. (Eds.) Chapter 3:Unit 3 22. doi:10.1002/0471143030.cb0322s30

Download references

Acknowledgments

This work is supported by National Institute of Health R01- R01HL124187 (to SS) and American Heart Association-The Davee Foundation 12SDG12160052 (to SS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susmita Sahoo Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Mathiyalagan, P., Sahoo, S. (2017). Exosomes-Based Gene Therapy for MicroRNA Delivery. In: Ishikawa, K. (eds) Cardiac Gene Therapy. Methods in Molecular Biology, vol 1521. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6588-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6588-5_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6586-1

  • Online ISBN: 978-1-4939-6588-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics