Skip to main content

ErbB Receptors and Cancer

  • Protocol
  • First Online:
ErbB Receptor Signaling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1652))

Abstract

The ErbB receptor family, also known as the EGF receptor family or type I receptor family, includes the epidermal growth factor (EGF) receptor (EGFR) or ErbB1/Her1, ErbB2/Her2, ErbB3/Her3, and ErbB4/Her4. Among all RTKs, EGFR was the first RTK identified and the first one linked to cancer. Thus, EGFR has also been the most intensively studied among all RTKs. ErbB receptors are activated after homodimerization or heterodimerization. The ErbB family is unique among the various groups of receptor tyrosine kinases (RTKs) in that ErbB3 has impaired kinase activity, while ErbB2 does not have a direct ligand. Therefore, heterodimerization is an important mechanism that allows the activation of all ErbB receptors in response to ligand stimulation. The activated ErbB receptors bind to many signaling proteins and stimulate the activation of many signaling pathways. The specificity and potency of intracellular signaling pathways are determined by positive and negative regulators, the specific composition of activating ligand(s), receptor dimer components, and the diverse range of proteins that associate with the tyrosine phosphorylated C-terminal domain of the ErbB receptors. ErbB receptors are overexpressed or mutated in many cancers, especially in breast cancer, ovarian cancer, and non-small cell lung cancer. The overexpression and overactivation of ErbB receptors are correlated with poor prognosis, drug resistance, cancer metastasis, and lower survival rate. ErbB receptors, especially EGFR and ErbB2 have been the primary choices as targets for developing cancer therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Yarden Y, Sliwkowski MX (2001) Untangling the ErbB signalling network. Nat Rev Mol Cell Biol 2(2):127–137

    Article  CAS  PubMed  Google Scholar 

  2. Citri A, Yarden Y (2006) EGF-ERBB signalling: towards the systems level. Nat Rev MolCell Biol 7(7):505–516

    Article  CAS  Google Scholar 

  3. Heldin CH (1995) Dimerization of cell surface receptors in signal transduction. Cell 80(2):213–223

    Article  CAS  PubMed  Google Scholar 

  4. Marmor MD, Skaria KB, Yarden Y (2004) Signal transduction and oncogenesis by ErbB/HER receptors. Int J Radiat Oncol Biol Phys 58(3):903–913

    Article  CAS  PubMed  Google Scholar 

  5. Carraway KL III, Cantley LC (1994) A neu acquaintance for erbB3 and erbB4: a role for receptor heterodimerization in growth signaling. Cell 78(1):5–8

    Article  CAS  PubMed  Google Scholar 

  6. Pinkas-Kramarski R, Soussan L, Waterman H, Levkowitz G, Alroy I, Klapper L, Lavi S, Seger R, Ratzkin BJ, Sela M et al (1996) Diversification of Neu differentiation factor and epidermal growth factor signaling by combinatorial receptor interactions. EMBO J 15(10):2452–2467

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Hynes NE, Lane HA (2005) ERBB receptors and cancer: the complexity of targeted inhibitors. Nat Rev Cancer 5(5):341–354

    Article  CAS  PubMed  Google Scholar 

  8. Yarden Y, Pines G (2012) The ERBB network: at last, cancer therapy meets systems biology. Nat Rev Cancer 12(8):553–563

    Article  CAS  PubMed  Google Scholar 

  9. Avraham R, Yarden Y (2011) Feedback regulation of EGFR signalling: decision making by early and delayed loops. Nat Rev Mol Cell Biol 12(2):104–117

    Article  CAS  PubMed  Google Scholar 

  10. Arteaga CL, Engelman JA (2014) ERBB receptors: from oncogene discovery to basic science to mechanism-based cancer therapeutics. Cancer Cell 25(3):282–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lemmon MA, Schlessinger J (2010) Cell signaling by receptor tyrosine kinases. Cell 141(7):1117–1134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kovacs E, Zorn JA, Huang Y, Barros T, Kuriyan J (2015) A structural perspective on the regulation of the epidermal growth factor receptor. Annu Rev Biochem 84:739–764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ward CW, Hoyne PA, Flegg RH (1995) Insulin and epidermal growth factor receptors contain the cysteine repeat motif found in the tumor necrosis factor receptor. Proteins 22(2):141–153

    Article  CAS  PubMed  Google Scholar 

  14. Carpenter G, Lembach KJ, Morrison MM, Cohen S (1975) Characterization of the binding of 125-I-labeled epidermal growth factor to human fibroblasts. J Biol Chem 250(11):4297–4304

    CAS  PubMed  Google Scholar 

  15. Ullrich A, Coussens L, Hayflick JS, Dull TJ, Gray A, Tam AW, Lee J, Yarden Y, Libermann TA, Schlessinger J (1984) Human epidermal growth factor receptor cDNA sequence and aberrant expression of the amplified gene in A431 epidermoid carcinoma cells. Nature 309(5967):418–425

    Article  CAS  Google Scholar 

  16. Velu TJ, Beguinot L, Vass WC, Willingham MC, Merlino GT, Pastan I, Lowy DR (1987) Epidermal-growth-factor-dependent transformation by a human EGF receptor proto-oncogene. Science (New York, NY) 238(4832):1408–1410

    Article  CAS  Google Scholar 

  17. Kim YT, Park SW, Kim JW (2002) Correlation between expression of EGFR and the prognosis of patients with cervical carcinoma. Gynecol Oncol 87(1):84–89

    Article  CAS  PubMed  Google Scholar 

  18. Kopp R, Rothbauer E, Ruge M, Arnholdt H, Spranger J, Muders M, Pfeiffer DG, Schildberg FW, Pfeiffer A (2003) Clinical implications of the EGF receptor/ligand system for tumor progression and survival in gastrointestinal carcinomas: evidence for new therapeutic options. Recent Results Cancer Res 162:115–132

    Article  CAS  PubMed  Google Scholar 

  19. Nicholson RI, Gee JM, Harper ME (2001) EGFR and cancer prognosis. Eur J Cancer (Oxford 1990) 37(Suppl 4):S9–15

    Article  CAS  Google Scholar 

  20. Coussens L, Yang-Feng TL, Liao YC, Chen E, Gray A, McGrath J, Seeburg PH, Libermann TA, Schlessinger J, Francke U (1985) Tyrosine kinase receptor with extensive homology to EGF receptor shares chromosomal location with neu oncogene. Science (New York, NY) 230(4730):1132–1139

    Article  CAS  Google Scholar 

  21. Schlessinger J, Ullrich A (1992) Growth factor signaling by receptor tyrosine kinases. Neuron 9(3):383–391

    Article  CAS  PubMed  Google Scholar 

  22. Pawson T (1995) Protein modules and signalling networks. Nature 373(6515):573–580

    Article  CAS  PubMed  Google Scholar 

  23. Shih C, Padhy LC, Murray M, Weinberg RA (1981) Transforming genes of carcinomas and neuroblastomas introduced into mouse fibroblasts. Nature 290(5803):261–264

    Article  CAS  PubMed  Google Scholar 

  24. Bargmann CI, Hung MC, Weinberg RA (1986) Multiple independent activations of the neu oncogene by a point mutation altering the transmembrane domain of p185. Cell 45(5):649–657

    Article  CAS  PubMed  Google Scholar 

  25. Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL (1987) Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science (New York, NY) 235(4785):177–182

    Article  CAS  Google Scholar 

  26. Slamon DJ, Godolphin W, Jones LA, Holt JA, Wong SG, Keith DE, Levin WJ, Stuart SG, Udove J, Ullrich A (1989) Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science (New York, NY) 244(4905):707–712

    Article  CAS  Google Scholar 

  27. Natali PG, Nicotra MR, Bigotti A, Venturo I, Slamon DJ, Fendly BM, Ullrich A (1990) Expression of the p185 encoded by HER2 oncogene in normal and transformed human tissues. Int J Cancer 45(3):457–461

    Article  CAS  PubMed  Google Scholar 

  28. Reese DM, Slamon DJ (1997) HER-2/neu signal transduction in human breast and ovarian cancer. Stem Cells 15(1):1–8

    Article  CAS  PubMed  Google Scholar 

  29. Yonemura Y, Ninomiya I, Ohoyama S, Kimura H, Yamaguchi A, Fushida S, Kosaka T, Miwa K, Miyazaki I, Endou Y et al (1991) Expression of c-erbB-2 oncoprotein in gastric carcinoma. Immunoreactivity for c-erbB-2 protein is an independent indicator of poor short-term prognosis in patients with gastric carcinoma. Cancer 67(11):2914–2918

    Article  CAS  PubMed  Google Scholar 

  30. Press MF, Pike MC, Hung G, Zhou JY, Ma Y, George J, Dietz-Band J, James W, Slamon DJ, Batsakis JG et al (1994) Amplification and overexpression of HER-2/neu in carcinomas of the salivary gland: correlation with poor prognosis. Cancer Res 54(21):5675–5682

    CAS  PubMed  Google Scholar 

  31. Hudziak RM, Schlessinger J, Ullrich A (1987) Increased expression of the putative growth factor receptor p185HER2 causes transformation and tumorigenesis of NIH 3T3 cells. Proc Natl Acad Sci U S A 84(20):7159–7163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Di Fiore PP, Pierce JH, Fleming TP, Hazan R, Ullrich A, King CR, Schlessinger J, Aaronson SA (1987) Overexpression of the human EGF receptor confers an EGF-dependent transformed phenotype to NIH 3T3 cells. Cell 51(6):1063–1070

    Article  PubMed  Google Scholar 

  33. Pietras RJ, Arboleda J, Reese DM, Wongvipat N, Pegram MD, Ramos L, Gorman CM, Parker MG, Sliwkowski MX, Slamon DJ (1995) HER-2 tyrosine kinase pathway targets estrogen receptor and promotes hormone-independent growth in human breast cancer cells. Oncogene 10(12):2435–2446

    CAS  PubMed  Google Scholar 

  34. Kraus MH, Issing W, Miki T, Popescu NC, Aaronson SA (1989) Isolation and characterization of ERBB3, a third member of the ERBB/epidermal growth factor receptor family: evidence for overexpression in a subset of human mammary tumors. Proc Natl Acad Sci U S A 86(23):9193–9197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Plowman GD, Whitney GS, Neubauer MG, Green JM, McDonald VL, Todaro GJ, Shoyab M (1990) Molecular cloning and expression of an additional epidermal growth factor receptor-related gene. Proc Natl Acad Sci U S A 87(13):4905–4909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cacace AM, Guadagno SN, Krauss RS, Fabbro D, Weinstein IB (1993) The epsilon isoform of protein kinase C is an oncogene when overexpressed in rat fibroblasts. Oncogene 8(8):2095–2104

    CAS  PubMed  Google Scholar 

  37. Rajkumar T, Majhi U, Malligarjuna V, Gullick W (1995) Prevalence of C-erbb3 expression in squamous-cell carcinomas of the cervix as determined by the monoclonal-antibody rtj2. Int J Oncol 6(1):105–109

    CAS  PubMed  Google Scholar 

  38. Rajkumar T, Gullick WJ (1994) The type I growth factor receptors in human breast cancer. Breast Cancer Res Treat 29(1):3–9

    Article  CAS  PubMed  Google Scholar 

  39. Gullick WJ (1996) The c-erbB3/HER3 receptor in human cancer. Cancer Surv 27:339–349

    CAS  PubMed  Google Scholar 

  40. Prigent SA, Gullick WJ (1994) Identification of c-erbB-3 binding sites for phophatidylinositol 3′-kinase and SHC using an EGF receptor/c-erbB-3 chimera. EMBO J 13:2831–2841

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Shi F, Telesco SE, Liu Y, Radhakrishnan R, Lemmon MA (2010) ErbB3/HER3 intracellular domain is competent to bind ATP and catalyze autophosphorylation. Proc Natl Acad Sci U S A 107(17):7692–7697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jaiswal BS, Kljavin NM, Stawiski EW, Chan E, Parikh C, Durinck S, Chaudhuri S, Pujara K, Guillory J, Edgar KA et al (2013) Oncogenic ERBB3 mutations in human cancers. Cancer Cell 23(5):603–617

    Article  CAS  PubMed  Google Scholar 

  43. Veikkolainen V, Vaparanta K, Halkilahti K, Iljin K, Sundvall M, Elenius K (2011) Function of ERBB4 is determined by alternative splicing. Cell Cycle (Georgetown TX) 10(16):2647–2657

    Article  CAS  Google Scholar 

  44. Kinugasa Y, Ishiguro H, Tokita Y, Oohira A, Ohmoto H, Higashiyama S (2004) Neuroglycan C, a novel member of the neuregulin family. Biochem Biophys Res Commun 321(4):1045–1049

    Article  CAS  PubMed  Google Scholar 

  45. Kochupurakkal BS, Harari D, Di-Segni A, Maik-Rachline G, Lyass L, Gur G, Kerber G, Citri A, Lavi S, Eilam R et al (2005) Epigen, the last ligand of ErbB receptors, reveals intricate relationships between affinity and mitogenicity. J Biol Chem 280(9):8503–8512

    Article  CAS  PubMed  Google Scholar 

  46. Normanno N, Bianco C, Strizzi L, Mancino M, Maiello MR, De Luca A, Caponigro F, Salomon DS (2005) The ErbB receptors and their ligands in cancer: an overview. Curr Drug Targets 6(3):243–257

    Article  CAS  PubMed  Google Scholar 

  47. Hynes NE, MacDonald G (2009) ErbB receptors and signaling pathways in cancer. Curr Opin Cell Biol 21(2):177–184

    Article  CAS  PubMed  Google Scholar 

  48. Roskoski R Jr (2014) The ErbB/HER family of protein-tyrosine kinases and cancer. Pharmacol Res 79:34–74

    Article  CAS  PubMed  Google Scholar 

  49. Gullick WJ (2001) The type 1 growth factor receptors and their ligands considered as a complex system. Endocr Relat Cancer 8(2):75–82

    Article  CAS  PubMed  Google Scholar 

  50. Blobel CP (2005) ADAMs: key components in EGFR signalling and development. Nat Rev Mol Cell Biol 6(1):32–43

    Article  CAS  PubMed  Google Scholar 

  51. Rocks N, Paulissen G, El Hour M, Quesada F, Crahay C, Gueders M, Foidart JM, Noel A, Cataldo D (2008) Emerging roles of ADAM and ADAMTS metalloproteinases in cancer. Biochimie 90(2):369–379

    Article  CAS  PubMed  Google Scholar 

  52. Wilson KJ, Gilmore JL, Foley J, Lemmon MA, Riese DJ II (2009) Functional selectivity of EGF family peptide growth factors: implications for cancer. Pharmacol Ther 122(1):1–8

    Article  CAS  PubMed  Google Scholar 

  53. Celikel C, Eren F, Gulluoglu B, Bekiroglu N, Turhal S (2007) Relation of neuroendocrine cells to transforming growth factor-alpha and epidermal growth factor receptor expression in gastric adenocarcinomas: prognostic implications. Pathol Oncol Res 13(3):215–226

    Article  PubMed  Google Scholar 

  54. Eckstein N, Servan K, Girard L, Cai D, von Jonquieres G, Jaehde U, Kassack MU, Gazdar AF, Minna JD, Royer HD (2008) Epidermal growth factor receptor pathway analysis identifies amphiregulin as a key factor for cisplatin resistance of human breast cancer cells. J Biol Chem 283(2):739–750

    Article  CAS  PubMed  Google Scholar 

  55. Ishikawa N, Daigo Y, Takano A, Taniwaki M, Kato T, Hayama S, Murakami H, Takeshima Y, Inai K, Nishimura H et al (2005) Increases of amphiregulin and transforming growth factor-alpha in serum as predictors of poor response to gefitinib among patients with advanced non-small cell lung cancers. Cancer Res 65(20):9176–9184

    Article  CAS  PubMed  Google Scholar 

  56. Ritter CA, Perez-Torres M, Rinehart C, Guix M, Dugger T, Engelman JA, Arteaga CL (2007) Human breast cancer cells selected for resistance to trastuzumab in vivo overexpress epidermal growth factor receptor and ErbB ligands and remain dependent on the ErbB receptor network. Clin Cancer Res 13(16):4909–4919

    Article  CAS  PubMed  Google Scholar 

  57. Wang H, Grzywacz B, Sukovich D, McCullar V, Cao Q, Lee AB, Blazar BR, Cornfield DN, Miller JS, Verneris MR (2007) The unexpected effect of cyclosporin A on CD56+CD16- and CD56+CD16+ natural killer cell subpopulations. Blood 110(5):1530–1539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Franklin MC, Carey KD, Vajdos FF, Leahy DJ, de Vos AM, Sliwkowski MX (2004) Insights into ErbB signaling from the structure of the ErbB2-pertuzumab complex. Cancer Cell 5(4):317–328

    Article  CAS  PubMed  Google Scholar 

  59. Lemmon MA (2009) Ligand-induced ErbB receptor dimerization. Exp Cell Res 315(4):638–648

    Article  CAS  PubMed  Google Scholar 

  60. Ferguson KM (2008) Structure-based view of epidermal growth factor receptor regulation. Annu Rev Biophys 37:353–373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Sato K (2013) Cellular functions regulated by phosphorylation of EGFR on Tyr845. Int J Mol Sci 14(6):10761–10790

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Rotin D, Honegger AM, Margolis BL, Ullrich A, Schlessinger J (1992) Presence of SH2 domains of phospholipase C gamma 1 enhances substrate phosphorylation by increasing the affinity toward the epidermal growth factor receptor. J Biol Chem 267(14):9678–9683

    CAS  PubMed  Google Scholar 

  63. Cohen BD, Kiener PA, Green JM, Foy L, Fell HP, Zhang K (1996) The relationship between human epidermal growth-like factor receptor expression and cellular transformation in NIH3T3 cells. J Biol Chem 271(48):30897–30903

    Article  CAS  PubMed  Google Scholar 

  64. Zrihan-Licht S, Deng B, Yarden Y, McShan G, Keydar I, Avraham H (1998) Csk homologous kinase, a novel signaling molecule, directly associates with the activated ErbB-2 receptor in breast cancer cells and inhibits their proliferation. J Biol Chem 273(7):4065–4072

    Article  CAS  PubMed  Google Scholar 

  65. Keilhack H, Tenev T, Nyakatura E, Godovac-Zimmermann J, Nielsen L, Seedorf K, Bohmer FD (1998) Phosphotyrosine 1173 mediates binding of the protein-tyrosine phosphatase SHP-1 to the epidermal growth factor receptor and attenuation of receptor signaling. J Biol Chem 273(38):24839–24846

    Article  CAS  PubMed  Google Scholar 

  66. Hellyer NJ, Kim MS, Koland JG (2001) Heregulin-dependent activation of phosphoinositide 3-kinase and Akt via the ErbB2/ErbB3 co-receptor. J Biol Chem 276(45):42153–42161

    Article  CAS  PubMed  Google Scholar 

  67. Schulze WX, Deng L, Mann M (2005) Phosphotyrosine interactome of the ErbB-receptor kinase family. Mol Syst Biol 1:2005.0008

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Kaushansky A, Gordus A, Budnik BA, Lane WS, Rush J, MacBeath G (2008) System-wide investigation of ErbB4 reveals 19 sites of Tyr phosphorylation that are unusually selective in their recruitment properties. Chem Biol 15(8):808–817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Mitsudomi T, Yatabe Y (2010) Epidermal growth factor receptor in relation to tumor development: EGFR gene and cancer. FEBS J 277(2):301–308

    Article  CAS  PubMed  Google Scholar 

  70. Pawson T (1997) New impressions of Src and Hck [news; comment]. Nature 385(6617):582–583. 585

    Article  CAS  PubMed  Google Scholar 

  71. Pearson G, Robinson F, Gibson TB, BE X, Karandikar M, Berman K, Cobb MH (2001) Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev 22(2):153–183

    CAS  PubMed  Google Scholar 

  72. Avruch J (2007) MAP kinase pathways: the first twenty years. BBA-Mol Cell Res 1773(8):1150–1160

    CAS  Google Scholar 

  73. Marshall CJ (1994) MAP kinase kinase kinase, MAP kinase kinase and MAP kinase. Curr Opin Genet Dev 4(1):82–89

    Article  CAS  PubMed  Google Scholar 

  74. Marshall CJ (1996) Cell signalling. Raf gets it together. Nature 383(6596):127–128

    Article  CAS  PubMed  Google Scholar 

  75. Wu P, Wee P, Jiang J, Chen X, Wang Z (2012) Differential regulation of transcription factors by location-specific EGF receptor signaling via a spatio-temporal interplay of ERK activation. PLoS One 7(9):e41354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Wahl M, Carpenter G (1991) Selective phospholipase C activation. BioEssays 13(3):107–113

    Article  CAS  PubMed  Google Scholar 

  77. Kamat A, Carpenter G (1997) Phospholipase C-gamma1: regulation of enzyme function and role in growth factor-dependent signal transduction. Cytokine Growth Factor Rev 8(2):109–117

    Article  CAS  PubMed  Google Scholar 

  78. Wells A, Gupta K, Chang P, Swindle S, Glading A, Shiraha H (1998) Epidermal growth factor receptor-mediated motility in fibroblasts. Microsc Res Tech 43(5):395–411

    Article  CAS  PubMed  Google Scholar 

  79. Gual P, Giordano S, Williams TA, Rocchi S, Van Obberghen E, Comoglio PM (2000) Sustained recruitment of phospholipase C-gamma to Gab1 is required for HGF-induced branching tubulogenesis. Oncogene 19(12):1509–1518

    Article  CAS  PubMed  Google Scholar 

  80. Meyer RD, Latz C, Rahimi N (2003) Recruitment and activation of phospholipase Cgamma1 by vascular endothelial growth factor receptor-2 are required for tubulogenesis and differentiation of endothelial cells. J Biol Chem 278(18):16347–16355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Bivona TG, Perez DCI, Ahearn IM, Grana TM, Chiu VK, Lockyer PJ, Cullen PJ, Pellicer A, Cox AD, Philips MR (2003) Phospholipase Cgamma activates Ras on the Golgi apparatus by means of RasGRP1. Nature 424(6949):694–698

    Article  CAS  PubMed  Google Scholar 

  82. Chou J, Burke NA, Iwabu A, Watkins SC, Wells A (2003) Directional motility induced by epidermal growth factor requires Cdc42. Exp Cell Res 287(1):47–56

    Article  CAS  PubMed  Google Scholar 

  83. Choi JH, Park JB, Bae SS, Yun S, Kim HS, Hong WP, Kim IS, Kim JH, Han MY, Ryu SH et al (2004) Phospholipase C-gamma1 is a guanine nucleotide exchange factor for dynamin-1 and enhances dynamin-1-dependent epidermal growth factor receptor endocytosis. J Cell Sci 117(Pt 17):3785–3795

    Article  CAS  PubMed  Google Scholar 

  84. Thomas SM, Coppelli FM, Wells A, Gooding WE, Song J, Kassis J, Drenning SD, Grandis JR (2003) Epidermal growth factor receptor-stimulated activation of phospholipase Cgamma-1 promotes invasion of head and neck squamous cell carcinoma. Cancer Res 63(17):5629–5635

    CAS  PubMed  Google Scholar 

  85. Wells A, Grandis JR (2003) Phospholipase C-gamma1 in tumor progression. Clin Exp Metastasis 20(4):285–290

    Article  CAS  PubMed  Google Scholar 

  86. Wahl MI, Daniel TO, Carpenter G (1988) Antiphosphotyrosine recovery of phospholipase C activity after EGF treatment of A-431 cells. Science (New York, NY) 241(4868):968–970

    Article  CAS  Google Scholar 

  87. Margolis B, Rhee SG, Felder S, Mervic M, Lyall R, Levitzki A, Ullrich A, Zilberstein A, Schlessinger J (1989) EGF induces tyrosine phosphorylation of phospholipase C-II: a potential mechanism for EGF receptor signaling. Cell 57(7):1101–1107

    Article  CAS  PubMed  Google Scholar 

  88. Meisenhelder J, Suh PG, Rhee SG, Hunter T (1989) Phospholipase C-gamma is a substrate for the PDGF and EGF receptor protein-tyrosine kinases in vivo and in vitro. Cell 57(7):1109–1122

    Article  CAS  PubMed  Google Scholar 

  89. Anderson D, Koch CA, Grey L, Ellis C, Moran MF, Pawson T (1990) Binding of SH2 domains of phospholipase C gamma 1, GAP, and Src to activated growth factor receptors. Science (New York, NY) 250(4983):979–982

    Article  CAS  Google Scholar 

  90. Margolis B, Zilberstein A, Franks C, Felder S, Kremer S, Ullrich A, Rhee SG, Skorecki K, Schlessinger J (1990) Effect of phospholipase C-gamma overexpression on PDGF-induced second messengers and mitogenesis. Science (New York, NY) 248(4955):607–610

    Article  CAS  Google Scholar 

  91. Kim HK, Kim JW, Zilberstein A, Margolis B, Kim JG, Schlessinger J, Rhee SG (1991) PDGF stimulation of inositol phospholipid hydrolysis requires PLC-gamma 1 phosphorylation on tyrosine residues 783 and 1254. Cell 65(3):435–441

    Article  CAS  PubMed  Google Scholar 

  92. Ronnstrand L, Mori S, Arridsson AK, Eriksson A, Wernstedt C, Hellman U, Claesson-Welsh L, Heldin CH (1992) Identification of two C-terminal autophosphorylation sites in the PDGF beta-receptor: involvement in the interaction with phospholipase C-gamma. EMBO J 11(11):3911–3919

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Jang IH, Lee S, Park JB, Kim JH, Lee CS, Hur EM, Kim IS, Kim KT, Yagisawa H, Suh PG et al (2003) The direct interaction of phospholipase C-gamma 1 with phospholipase D2 is important for epidermal growth factor signaling. J Biol Chem 278(20):18184–18190

    Article  CAS  PubMed  Google Scholar 

  94. Wang Y, Wu J, Wang Z (2006) Akt Binds to and Phosphorylates Phospholipase C-{gamma}1 in Response to Epidermal Growth Factor. Mol Biol Cell 17(5):2267–2277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Ye K, Aghdasi B, Luo HR, Moriarity JL, FY W, Hong JJ, Hurt KJ, Bae SS, Suh PG, Snyder SH (2002) Phospholipase C gamma 1 is a physiological guanine nucleotide exchange factor for the nuclear GTPase PIKE. Nature 415(6871):541–544

    Article  CAS  PubMed  Google Scholar 

  96. Li S, Wang Q, Wang Y, Chen X, Wang Z (2009) PLC-gamma1 and Rac1 coregulate EGF-induced cytoskeleton remodeling and cell migration. Mol Endocrinol 23(6):901–913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Wang Z, Gluck S, Zhang L, Moran MF (1998) Requirement for phospholipase C-gamma1 enzymatic activity in growth factor-induced mitogenesis. Mol Cell Biol 18(1):590–597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Wells A, Kassis J, Solava J, Turner T, Lauffenburger DA (2002) Growth factor-induced cell motility in tumor invasion. Acta Oncol 41(2):124–130

    Article  CAS  PubMed  Google Scholar 

  99. Downward J (1998) Mechanisms and consequences of activation of protein kinase B/Akt. Curr Opin Cell Biol 10(2):262–267

    Article  CAS  PubMed  Google Scholar 

  100. Castellano E, Downward J (2011) RAS interaction with PI3K: more than just another effector pathway. Genes Cancer 2(3):261–274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Burgering BM, Coffer PJ (1995) Protein kinase B (c-Akt) in phosphatidylinositol-3-OH kinase signal transduction [see comments]. Nature 376(6541):599–602

    Article  CAS  PubMed  Google Scholar 

  102. Okano J, Gaslightwala I, Birnbaum MJ, Rustgi AK, Nakagawa H (2000) Akt/protein kinase B isoforms are differentially regulated by epidermal growth factor stimulation. J Biol Chem 275(40):30934–30942

    Article  CAS  PubMed  Google Scholar 

  103. Hanada M, Feng J, Hemmings BA (2004) Structure, regulation and function of PKB/AKT--a major therapeutic target. Biochim Biophys Acta 1697(1-2):3–16

    Article  CAS  PubMed  Google Scholar 

  104. Quesnelle KM, Boehm AL, Grandis JR (2007) STAT-mediated EGFR signaling in cancer. J Cell Biochem 102(2):311–319

    Article  CAS  PubMed  Google Scholar 

  105. Yeatman TJ (2004) A renaissance for SRC. Nat Rev Cancer 4(6):470–480

    Article  CAS  PubMed  Google Scholar 

  106. Summy JM, Gallick GE (2006) Treatment for advanced tumors: SRC reclaims center stage. Clin Cancer Res 12(5):1398–1401

    Article  CAS  PubMed  Google Scholar 

  107. Amata I, Maffei M, Pons M (2014) Phosphorylation of unique domains of Src family kinases. Front Genet 5:181

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Maa MC, Leu TH, McCarley DJ, Schatzman RC, Parsons SJ (1995) Potentiation of epidermal growth factor receptor-mediated oncogenesis by c-Src: implications for the etiology of multiple human cancers. Proc Natl Acad Sci U S A 92(15):6981–6985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Tice DA, Biscardi JS, Nickles AL, Parsons SJ (1999) Mechanism of biological synergy between cellular Src and epidermal growth factor receptor. Proc Natl Acad Sci U S A 96(4):1415–1420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Egloff AM, Grandis JR (2008) Targeting epidermal growth factor receptor and SRC pathways in head and neck cancer. Semin Oncol 35(3):286–297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Scaltriti M, Baselga J (2006) The epidermal growth factor receptor pathway: a model for targeted therapy. Clin Cancer Res 12(18):5268–5272

    Article  CAS  PubMed  Google Scholar 

  112. Lurje G, Lenz HJ (2009) EGFR signaling and drug discovery. Oncology 77(6):400–410

    Article  CAS  PubMed  Google Scholar 

  113. Leu TH, Maa MC (2003) Functional implication of the interaction between EGF receptor and c-Src. Front Biosci 8:s28–s38

    Article  PubMed  Google Scholar 

  114. Cohen S, Fava RA (1985) Internalization of functional epidermal growth factor: receptor/kinase complexes in A-431 cells. JBiolChem 260(22):12351–12358

    CAS  Google Scholar 

  115. Kay DG, Lai WH, Uchihashi M, Khan MN, Posner BI, Bergeron JJ (1986) Epidermal growth factor receptor kinase translocation and activation in vivo. J Biol Chem 261(18):8473–8480

    CAS  PubMed  Google Scholar 

  116. Lai WH, Cameron PH, Doherty JJ II, Posner BI, Bergeron JJ (1989) Ligand-mediated autophosphorylation activity of the epidermal growth factor receptor during internalization. J Cell Biol 109(6 Pt 1):2751–2760

    Article  CAS  PubMed  Google Scholar 

  117. Di Guglielmo GM, Baass PC, WJ O, Posner BI, Bergeron JJ (1994) Compartmentalization of SHC, GRB2 and mSOS, and hyperphosphorylation of Raf-1 by EGF but not insulin in liver parenchyma. EMBO J 13(18):4269–4277

    PubMed  PubMed Central  Google Scholar 

  118. Wang Z, Tung PS, Moran MF (1996) Association of p120 ras GAP with endocytic components and colocalization with epidermal growth factor (EGF) receptor in response to EGF stimulation. Cell Growth Differ 7(1):123–133

    CAS  PubMed  Google Scholar 

  119. Fukazawa T, Miyake S, Band V, Band H (1996) Tyrosine phosphorylation of Cbl upon epidermal growth factor (EGF) stimulation and its association with EGF receptor and downstream signaling proteins. J Biol Chem 271(24):14554–14559

    Article  CAS  PubMed  Google Scholar 

  120. Levkowitz G, Waterman H, Zamir E, Kam Z, Oved S, Langdon WY, Beguinot L, Geiger B, Yarden Y (1998) c-Cbl/Sli-1 regulates endocytic sorting and ubiquitination of the epidermal growth factor receptor. Genes Dev 12(23):3663–3674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Clague MJ, Urbe S (2001) The interface of receptor trafficking and signalling. J Cell Sci 114(Pt 17):3075–3081

    CAS  PubMed  Google Scholar 

  122. Haugh JM, Huang AC, Wiley HS, Wells A, Lauffenburger DA (1999) Internalized epidermal growth factor receptors participate in the activation of p21(ras) in fibroblasts. J Biol Chem 274(48):34350–34360

    Article  CAS  PubMed  Google Scholar 

  123. Kuruvilla R, Ye H, Ginty DD (2000) Spatially and functionally distinct roles of the PI3-K effector pathway during NGF signaling in sympathetic neurons. Neuron 27(3):499–512

    Article  CAS  PubMed  Google Scholar 

  124. Slepnev VI, De Camilli P (2000) Accessory factors in clathrin-dependent synaptic vesicle endocytosis. Nat Rev Neurosci 1(3):161–172

    Article  CAS  PubMed  Google Scholar 

  125. Burke P, Schooler K, Wiley HS (2001) Regulation of epidermal growth factor receptor signaling by endocytosis and intracellular trafficking. Mol Biol Cell 12(6):1897–1910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Miller WE, Lefkowitz RJ (2001) Expanding roles for beta-arrestins as scaffolds and adapters in GPCR signaling and trafficking. Curr Opin Cell Biol 13(2):139–145

    Article  CAS  PubMed  Google Scholar 

  127. Vieira AV, Lamaze C, Schmid SL (1996) Control of EGF receptor signaling by clathrin-mediated endocytosis. Science (New York, NY) 274(5295):2086–2089

    Article  CAS  Google Scholar 

  128. Ahn S, Maudsley S, Luttrell LM, Lefkowitz RJ, Daaka Y (1999) Src-mediated tyrosine phosphorylation of dynamin is required for beta2-adrenergic receptor internalization and mitogen-activated protein kinase signaling. JBiolChem 274(3):1185–1188

    CAS  Google Scholar 

  129. Maudsley S, Pierce KL, Zamah AM, Miller WE, Ahn S, Daaka Y, Lefkowitz RJ, Luttrell LM (2000) The beta(2)-adrenergic receptor mediates extracellular signal-regulated kinase activation via assembly of a multi-receptor complex with the epidermal growth factor receptor. J Biol Chem 275(13):9572–9580

    Article  CAS  PubMed  Google Scholar 

  130. Shen Y, Xu L, Foster DA (2001) Role for phospholipase D in receptor-mediated endocytosis. Mol Cell Biol 21(2):595–602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Johannessen LE, Ringerike T, Molnes J, Madshus IH (2000) Epidermal growth factor receptor efficiently activates mitogen-activated protein kinase in HeLa cells and Hep2 cells conditionally defective in clathrin-dependent endocytosis. Exp Cell Res 260(1):136–145

    Article  CAS  PubMed  Google Scholar 

  132. Wong ES, Fong CW, Lim J, Yusoff P, Low BC, Langdon WY, Guy GR (2002) Sprouty2 attenuates epidermal growth factor receptor ubiquitylation and endocytosis, and consequently enhances Ras/ERK signalling. EMBO J 21(18):4796–4808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Ceresa BP, Kao AW, Santeler SR, Pessin JE (1998) Inhibition of clathrin-mediated endocytosis selectively attenuates specific insulin receptor signal transduction pathways. Mol Cell Biol 18(7):3862–3870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Di Fiore PP, De Camilli P (2001) Endocytosis and signaling. an inseparable partnership. Cell 106(1):1–4

    Article  PubMed  Google Scholar 

  135. Wiley HS, Burke PM (2001) Regulation of receptor tyrosine kinase signaling by endocytic trafficking. Traffic 2(1):12–18

    Article  CAS  PubMed  Google Scholar 

  136. Wang Y, Pennock S, Chen X, Wang Z (2002) Internalization of inactive EGF receptor into endosomes and the subsequent activation of endosome-associated EGF receptors. Epidermal growth factor. Sci STKE 2002(161):L17

    Google Scholar 

  137. Wang Y, Pennock S, Chen X, Wang Z (2002) Endosomal signaling of epidermal growth factor receptor stimulates signal transduction pathways leading to cell survival. Mol Cell Biol 22(20):7279–7290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Pennock S, Wang Z (2003) Stimulation of cell proliferation by endosomal epidermal growth factor receptor as revealed through two distinct phases of signaling. Mol Cell Biol 23(16):5803–5815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Di Guglielmo GM, Le RC, Goodfellow AF, Wrana JL (2003) Distinct endocytic pathways regulate TGF-beta receptor signalling and turnover. Nat Cell Biol 5(5):410–421

    Article  PubMed  CAS  Google Scholar 

  140. Dobrowolski R, De Robertis EM (2012) Endocytic control of growth factor signalling: multivesicular bodies as signalling organelles. Nat Rev Mol Cell Biol 13(1):53–60

    CAS  Google Scholar 

  141. Sorkin A, Waters CM (1993) Endocytosis of growth factor receptors. BioEssays 15(6):375–382

    Article  CAS  PubMed  Google Scholar 

  142. Lee FS, Rajagopal R, Chao MV (2002) Distinctive features of Trk neurotrophin receptor transactivation by G protein-coupled receptors. Cytokine Growth Factor Rev 13(1):11–17

    Article  CAS  PubMed  Google Scholar 

  143. Ni CY, Murphy MP, Golde TE, Carpenter G (2001) gamma -Secretase cleavage and nuclear localization of ErbB-4 receptor tyrosine kinase. Science (New York, NY) 294(5549):2179–2181

    Article  CAS  Google Scholar 

  144. Medina M, Dotti CG (2003) RIPped out by presenilin-dependent gamma-secretase. Cell Signal 15(9):829–841

    Article  CAS  PubMed  Google Scholar 

  145. Rio C, Buxbaum JD, Peschon JJ, Corfas G (2000) Tumor necrosis factor-alpha-converting enzyme is required for cleavage of erbB4/HER4. J Biol Chem 275(14):10379–10387

    Article  CAS  PubMed  Google Scholar 

  146. Omerovic J, Santangelo L, Puggioni EM, Marrocco J, Dall'Armi C, Palumbo C, Belleudi F, Di Marcotullio L, Frati L, Torrisi MR et al (2007) The E3 ligase Aip4/Itch ubiquitinates and targets ErbB-4 for degradation. FASEB J 21(11):2849–2862

    Article  CAS  PubMed  Google Scholar 

  147. Omerovic J, Puggioni EM, Napoletano S, Visco V, Fraioli R, Frati L, Gulino A, Alimandi M (2004) Ligand-regulated association of ErbB-4 to the transcriptional co-activator YAP65 controls transcription at the nuclear level. Exp Cell Res 294(2):469–479

    Article  CAS  PubMed  Google Scholar 

  148. Lanning CC, Daddona JL, Ruiz-Velasco R, Shafer SH, Williams CL (2004) The Rac1 C-terminal polybasic region regulates the nuclear localization and protein degradation of Rac1. J Biol Chem 279(42):44197–44210

    Article  CAS  PubMed  Google Scholar 

  149. Linggi B, Carpenter G (2006) ErbB-4 s80 intracellular domain abrogates ETO2-dependent transcriptional repression. J Biol Chem 281(35):25373–25380

    Article  CAS  PubMed  Google Scholar 

  150. Zhu Y, Sullivan LL, Nair SS, Williams CC, Pandey AK, Marrero L, Vadlamudi RK, Jones FE (2006) Coregulation of estrogen receptor by ERBB4/HER4 establishes a growth-promoting autocrine signal in breast tumor cells. Cancer Res 66(16):7991–7998

    Article  CAS  PubMed  Google Scholar 

  151. Sardi SP, Murtie J, Koirala S, Patten BA, Corfas G (2006) Presenilin-dependent ErbB4 nuclear signaling regulates the timing of astrogenesis in the developing brain. Cell 127(1):185–197

    Article  CAS  PubMed  Google Scholar 

  152. Gilmore-Hebert M, Ramabhadran R, Stern DF (2010) Interactions of ErbB4 and Kap1 connect the growth factor and DNA damage response pathways. Mol Cancer Res 8(10):1388–1398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Sundvall M, Veikkolainen V, Kurppa K, Salah Z, Tvorogov D, van Zoelen EJ, Aqeilan R, Elenius K (2010) Cell death or survival promoted by alternative isoforms of ErbB4. Mol Biol Cell 21(23):4275–4286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Lopez-Bigas N, Audit B, Ouzounis C, Parra G, Guigo R (2005) Are splicing mutations the most frequent cause of hereditary disease? FEBS Lett 579(9):1900–1903

    Article  CAS  PubMed  Google Scholar 

  155. Cai Z, Zhang H, Liu J, Berezov A, Murali R, Wang Q, Greene MI (2010) Targeting erbB receptors. Semin Cell Dev Biol 21(9):961–966

    Article  CAS  PubMed  Google Scholar 

  156. Riese DJ II, Stern DF (1998) Specificity within the EGF family/ErbB receptor family signaling network. BioEssays 20(1):41–48

    Article  PubMed  Google Scholar 

  157. Gusterson B, Cowley G, McIlhinney J, Ozanne B, Fisher C, Reeves B (1985) Evidence for increased epidermal growth factor receptors in human sarcomas. Int J Cancer 36(6):689–693

    Article  CAS  PubMed  Google Scholar 

  158. Kamio T, Shigematsu K, Sou H, Kawai K, Tsuchiyama H (1990) Immunohistochemical expression of epidermal growth factor receptors in human adrenocortical carcinoma. Hum Pathol 21(3):277–282

    Article  CAS  PubMed  Google Scholar 

  159. Marti U, Burwen SJ, Wells A, Barker ME, Huling S, Feren AM, Jones AL (1991) Localization of epidermal growth factor receptor in hepatocyte nuclei. Hepatology (Baltimore, MD) 13(1):15–20

    Article  CAS  Google Scholar 

  160. Tervahauta A, Syrjanen S, Syrjanen K (1994) Epidermal growth factor receptor, c-erbB-2 proto-oncogene and estrogen receptor expression in human papillomavirus lesions of the uterine cervix. Int J Gynecol Pathol 13(3):234–240

    Article  CAS  PubMed  Google Scholar 

  161. Lin SY, Makino K, Xia W, Matin A, Wen Y, Kwong KY, Bourguignon L, Hung MC (2001) Nuclear localization of EGF receptor and its potential new role as a transcription factor. Nat Cell Biol 3(9):802–808

    Article  CAS  PubMed  Google Scholar 

  162. Carpenter G, Liao HJ (2009) Trafficking of receptor tyrosine kinases to the nucleus. Exp Cell Res 315(9):1556–1566

    Article  CAS  PubMed  Google Scholar 

  163. Wang YN, Yamaguchi H, Hsu JM, Hung MC (2010) Nuclear trafficking of the epidermal growth factor receptor family membrane proteins. Oncogene 29(28):3997–4006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Jones SM, Kazlauskas A (2001) Growth factor-dependent signaling and cell cycle progression. FEBS Lett 490(3):110–116

    Article  CAS  PubMed  Google Scholar 

  165. Massague J (2004) G1 cell-cycle control and cancer. Nature 432(7015):298–306

    Article  CAS  PubMed  Google Scholar 

  166. Jones SM, Kazlauskas A (2001) Growth-factor-dependent mitogenesis requires two distinct phases of signalling. Nat Cell Biol 3(2):165–172

    Article  CAS  PubMed  Google Scholar 

  167. Mardin BR, Isokane M, Cosenza MR, Kramer A, Ellenberg J, Fry AM, Schiebel E (2013) EGF-induced centrosome separation promotes mitotic progression and cell survival. Dev Cell 25(3):229–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Astuti P, Pike T, Widberg C, Payne E, Harding A, Hancock J, Gabrielli B (2009) MAPK pathway activation delays G2/M progression by destabilizing Cdc25B. J Biol Chem 284(49):33781–33788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Nam HJ, Kim S, Lee MW, Lee BS, Hara T, Saya H, Cho H, Lee JH (2008) The ERK-RSK1 activation by growth factors at G2 phase delays cell cycle progression and reduces mitotic aberrations. Cell Signal 20(7):1349–1358

    Article  CAS  PubMed  Google Scholar 

  170. Park YY, Nam HJ, Lee JH (2007) Hepatocyte growth factor at S phase induces G2 delay through sustained ERK activation. Biochem Biophys Res Commun 356(1):300–305

    Article  CAS  PubMed  Google Scholar 

  171. Dangi S, Chen FM, Shapiro P (2006) Activation of extracellular signal-regulated kinase (ERK) in G(2) phase delays mitotic entry through p21(CIP1). Cell Prolif 39(4):261–279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Liu X, Yan S, Zhou T, Terada Y, Erikson RL (2004) The MAP kinase pathway is required for entry into mitosis and cell survival. Oncogene 23(3):763–776

    Article  CAS  PubMed  Google Scholar 

  173. Roberts EC, Shapiro PS, Nahreini TS, Pages G, Pouyssegur J, Ahn NG (2002) Distinct cell cycle timing requirements for extracellular signal-regulated kinase and phosphoinositide 3-kinase signaling pathways in somatic cell mitosis. Mol Cell Biol 22(20):7226–7241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    Article  CAS  PubMed  Google Scholar 

  175. Marzo I, Naval J (2013) Antimitotic drugs in cancer chemotherapy: promises and pitfalls. Biochem Pharmacol 86(6):703–710

    Article  CAS  PubMed  Google Scholar 

  176. Kiyokawa N, Lee EK, Karunagaran D, Lin SY, Hung MC (1997) Mitosis-specific negative regulation of epidermal growth factor receptor, triggered by a decrease in ligand binding and dimerization, can be overcome by overexpression of receptor. J Biol Chem 272(30):18656–18665

    Article  CAS  PubMed  Google Scholar 

  177. Gomez-Cambronero J (1999) p42-MAP kinase is activated in EGF-stimulated interphase but not in metaphase-arrested HeLa cells. FEBS Lett 443(2):126–130

    Article  CAS  PubMed  Google Scholar 

  178. Dangi S, Shapiro P (2005) Cdc2-mediated inhibition of epidermal growth factor activation of the extracellular signal-regulated kinase pathway during mitosis. J Biol Chem 280(26):24524–24531

    Article  CAS  PubMed  Google Scholar 

  179. Liu L, Shi H, Chen X, Wang Z (2011) Regulation of EGF-stimulated EGF receptor endocytosis during M phase. Traffic (Copenhagen) 12(2):201–217

    Article  CAS  Google Scholar 

  180. Wee P, Shi H, Jiang J, Wang Y, Wang Z (2015) EGF stimulates the activation of EGF receptors and the selective activation of major signaling pathways during mitosis. Cell Signal 27(3):638–651

    Article  CAS  PubMed  Google Scholar 

  181. Daub H, Weiss FU, Wallasch C, Ullrich A (1996) Role of transactivation of the EGF receptor in signalling by G-protein-coupled receptors. Nature 379(6565):557–560

    Article  CAS  PubMed  Google Scholar 

  182. Daub H, Wallasch C, Lankenau A, Herrlich A, Ullrich A (1997) Signal characteristics of G protein-transactivated EGF receptor. EMBO J 16(23):7032–7044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Reichardt HM, Kaestner KH, Tuckermann J, Kretz O, Wessely O, Bock R, Gass P, Schmid W, Herrlich P, Angel P et al (1998) DNA binding of the glucocorticoid receptor is not essential for survival. Cell 93(4):531–541

    Article  CAS  PubMed  Google Scholar 

  184. Heeneman S, Haendeler J, Saito Y, Ishida M, Berk BC (2000) Angiotensin II induces transactivation of two different populations of the platelet-derived growth factor beta receptor. Key role for the p66 adaptor protein Shc. J Biol Chem 275(21):15926–15932

    Article  CAS  PubMed  Google Scholar 

  185. Lee FS, Chao MV (2001) Activation of Trk neurotrophin receptors in the absence of neurotrophins. Proc Natl Acad Sci U S A 98(6):3555–3560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Tu H, Xu C, Zhang W, Liu Q, Rondard P, Pin JP, Liu J (2010) GABAB receptor activation protects neurons from apoptosis via IGF-1 receptor transactivation. J Neurosci 30(2):749–759

    Article  CAS  PubMed  Google Scholar 

  187. Oligny-Longpre G, Corbani M, Zhou J, Hogue M, Guillon G, Bouvier M (2012) Engagement of beta-arrestin by transactivated insulin-like growth factor receptor is needed for V2 vasopressin receptor-stimulated ERK1/2 activation. Proc Natl Acad Sci U S A 109(17):E1028–E1037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Tanimoto T, Jin ZG, Berk BC (2002) Transactivation of vascular endothelial growth factor (VEGF) receptor Flk-1/KDR is involved in sphingosine 1-phosphate-stimulated phosphorylation of Akt and endothelial nitric-oxide synthase (eNOS). J Biol Chem 277(45):42997–43001

    Article  CAS  PubMed  Google Scholar 

  189. Seye CI, Yu N, Gonzalez FA, Erb L, Weisman GA (2004) The P2Y2 nucleotide receptor mediates vascular cell adhesion molecule-1 expression through interaction with VEGF receptor-2 (KDR/Flk-1). J Biol Chem 279(34):35679–35686

    Article  CAS  PubMed  Google Scholar 

  190. Rauch BH, Millette E, Kenagy RD, Daum G, Clowes AW (2004) Thrombin- and factor Xa-induced DNA synthesis is mediated by transactivation of fibroblast growth factor receptor-1 in human vascular smooth muscle cells. Circ Res 94(3):340–345

    Article  CAS  PubMed  Google Scholar 

  191. Liebmann C (2011) EGF receptor activation by GPCRs: an universal pathway reveals different versions. Mol Cell Endocrinol 331(2):222–231

    Article  CAS  PubMed  Google Scholar 

  192. George AJ, Hannan RD, Thomas WG (2013) Unravelling the molecular complexity of GPCR-mediated EGFR transactivation using functional genomics approaches. FEBS J 280(21):5258–5268

    Article  CAS  PubMed  Google Scholar 

  193. Cattaneo F, Guerra G, Parisi M, De Marinis M, Tafuri D, Cinelli M, Ammendola R (2014) Cell-surface receptors transactivation mediated by g protein-coupled receptors. Int J Mol Sci 15(11):19700–19728

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  194. Wang Z (2016) Transactivation of epidermal growth factor receptor by G protein-coupled receptors: recent progress, challenges and future research. Int J Mol Sci 17(1):pii: E95

    Article  CAS  Google Scholar 

  195. Prenzel N, Fischer OM, Streit S, Hart S, Ullrich A (2001) The epidermal growth factor receptor family as a central element for cellular signal transduction and diversification. Endocr Relat Cancer 8(1):11–31

    Article  CAS  PubMed  Google Scholar 

  196. Ohtsu H, Dempsey PJ, Eguchi S (2006) ADAMs as mediators of EGF receptor transactivation by G protein-coupled receptors. Am J Physiol Cell Physiol 291(1):C1–10

    Article  CAS  PubMed  Google Scholar 

  197. Etkovitz N, Tirosh Y, Chazan R, Jaldety Y, Daniel L, Rubinstein S, Breitbart H (2009) Bovine sperm acrosome reaction induced by G-protein-coupled receptor agonists is mediated by epidermal growth factor receptor transactivation. Dev Biol 334(2):447–457

    Article  CAS  PubMed  Google Scholar 

  198. Herbst RS, Sandler A (2008) Bevacizumab and erlotinib: a promising new approach to the treatment of advanced NSCLC. Oncologist 13(11):1166–1176

    Article  CAS  PubMed  Google Scholar 

  199. Cataldo VD, Gibbons DL, Perez-Soler R, Quintas-Cardama A (2011) Treatment of non-small-cell lung cancer with erlotinib or gefitinib. N Engl J Med 364(10):947–955

    Article  CAS  PubMed  Google Scholar 

  200. Bhargava R, Gerald WL, Li AR, Pan Q, Lal P, Ladanyi M, Chen B (2005) EGFR gene amplification in breast cancer: correlation with epidermal growth factor receptor mRNA and protein expression and HER-2 status and absence of EGFR-activating mutations. Mod Pathol 18(8):1027–1033

    Article  CAS  PubMed  Google Scholar 

  201. Hsu JL, Hung MC (2016) The role of HER2, EGFR, and other receptor tyrosine kinases in breast cancer. Cancer Metastasis Rev 35(4):575–588

    Article  CAS  PubMed  Google Scholar 

  202. Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y, Pietenpol JA (2011) Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest 121(7):2750–2767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Masuda H, Zhang D, Bartholomeusz C, Doihara H, Hortobagyi GN, Ueno NT (2012) Role of epidermal growth factor receptor in breast cancer. Breast Cancer Res Treat 136(2):331–345

    Article  CAS  PubMed  Google Scholar 

  204. Rimawi MF, Schiff R, Osborne CK (2015) Targeting HER2 for the treatment of breast cancer. Annu Rev Med 66:111–128

    Article  CAS  PubMed  Google Scholar 

  205. Ross JS, Slodkowska EA, Symmans WF, Pusztai L, Ravdin PM, Hortobagyi GN (2009) The HER-2 receptor and breast cancer: ten years of targeted anti-HER-2 therapy and personalized medicine. Oncologist 14(4):320–368

    Article  CAS  PubMed  Google Scholar 

  206. De Mattos-Arruda L, Cortes J (2013) Use of pertuzumab for the treatment of HER2-positive metastatic breast cancer. Adv Ther 30(7):645–658

    Article  PubMed  CAS  Google Scholar 

  207. Dawood S, Broglio K, Buzdar AU, Hortobagyi GN, Giordano SH (2010) Prognosis of women with metastatic breast cancer by HER2 status and trastuzumab treatment: an institutional-based review. J Clin Oncol 28(1):92–98

    Article  CAS  PubMed  Google Scholar 

  208. Nahta R, Yu D, Hung MC, Hortobagyi GN, Esteva FJ (2006) Mechanisms of disease: understanding resistance to HER2-targeted therapy in human breast cancer. Nat Clin Pract Oncol 3(5):269–280

    Article  CAS  PubMed  Google Scholar 

  209. Arteaga CL, Sliwkowski MX, Osborne CK, Perez EA, Puglisi F, Gianni L (2012) Treatment of HER2-positive breast cancer: current status and future perspectives. Nat Rev Clin Oncol 9(1):16–32

    Article  CAS  Google Scholar 

  210. Baselga J, Cortes J, Kim SB, Im SA, Hegg R, Im YH, Roman L, Pedrini JL, Pienkowski T, Knott A et al (2012) Pertuzumab plus trastuzumab plus docetaxel for metastatic breast cancer. N Engl J Med 366(2):109–119

    Article  CAS  PubMed  Google Scholar 

  211. Bose R, Kavuri SM, Searleman AC, Shen W, Shen D, Koboldt DC, Monsey J, Goel N, Aronson AB, Li S et al (2013) Activating HER2 mutations in HER2 gene amplification negative breast cancer. Cancer Discov 3(2):224–237

    Article  CAS  PubMed  Google Scholar 

  212. Arcila ME, Chaft JE, Nafa K, Roy-Chowdhuri S, Lau C, Zaidinski M, Paik PK, Zakowski MF, Kris MG, Ladanyi M (2012) Prevalence, clinicopathologic associations, and molecular spectrum of ERBB2 (HER2) tyrosine kinase mutations in lung adenocarcinomas. Clin Cancer Res 18(18):4910–4918

    Article  CAS  PubMed  Google Scholar 

  213. Bang YJ, Van Cutsem E, Feyereislova A, Chung HC, Shen L, Sawaki A, Lordick F, Ohtsu A, Omuro Y, Satoh T et al (2010) Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet (London) 376(9742):687–697

    Article  CAS  Google Scholar 

  214. Skinner A, Hurst HC (1993) Transcriptional regulation of the c-erbB-3 gene in human breast carcinoma cell lines. Oncogene 8(12):3393–3401

    CAS  PubMed  Google Scholar 

  215. Carpenter G (2003) ErbB-4: mechanism of action and biology. Exp Cell Res 284(1):66–77

    Article  CAS  PubMed  Google Scholar 

  216. Jones FE (2008) HER4 intracellular domain (4ICD) activity in the developing mammary gland and breast cancer. J Mammary Gland Biol Neoplasia 13(2):247–258

    Article  PubMed  PubMed Central  Google Scholar 

  217. Hollmen M, Elenius K (2010) Potential of ErbB4 antibodies for cancer therapy. Fut Oncol (London) 6(1):37–53

    Article  CAS  Google Scholar 

  218. Junttila TT, Sundvall M, Lundin M, Lundin J, Tanner M, Harkonen P, Joensuu H, Isola J, Elenius K (2005) Cleavable ErbB4 isoform in estrogen receptor-regulated growth of breast cancer cells. Cancer Res 65(4):1384–1393

    Article  CAS  PubMed  Google Scholar 

  219. Steffensen KD, Waldstrom M, Andersen RF, Olsen DA, Jeppesen U, Knudsen HJ, Brandslund I, Jakobsen A (2008) Protein levels and gene expressions of the epidermal growth factor receptors, HER1, HER2, HER3 and HER4 in benign and malignant ovarian tumors. Int J Oncol 33(1):195–204

    CAS  PubMed  Google Scholar 

  220. Prickett TD, Agrawal NS, Wei X, Yates KE, Lin JC, Wunderlich JR, Cronin JC, Cruz P, Rosenberg SA, Samuels Y (2009) Analysis of the tyrosine kinome in melanoma reveals recurrent mutations in ERBB4. Nat Genet 41(10):1127–1132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Ding L, Getz G, Wheeler DA, Mardis ER, McLellan MD, Cibulskis K, Sougnez C, Greulich H, Muzny DM, Morgan MB et al (2008) Somatic mutations affect key pathways in lung adenocarcinoma. Nature 455(7216):1069–1075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Kurppa KJ, Denessiouk K, Johnson MS, Elenius K (2016) Activating ERBB4 mutations in non-small cell lung cancer. Oncogene 35(10):1283–1291

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by grants from the Canadian Institutes of Health Research (CIHR) and the Canadian Breast Cancer Foundation (CBCF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhixiang Wang Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Wang, Z. (2017). ErbB Receptors and Cancer. In: Wang, Z. (eds) ErbB Receptor Signaling. Methods in Molecular Biology, vol 1652. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7219-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7219-7_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7218-0

  • Online ISBN: 978-1-4939-7219-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics