Skip to main content

Guidelines to Compose an Ideal Bacteriophage Cocktail

  • Protocol
  • First Online:
Bacteriophage Therapy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1693))

Abstract

Correctly designed bacteriophage therapeutics are the cornerstone for a successful outcome of bacteriophage therapy. Here we overview strategies on how to choose bacteriophages and their bacterial hosts at different steps of a bacteriophage cocktail development in order to comply with all quality and safety requirements based on the already existing essentially empirical experience in bacteriophage therapy and current accomplishments in modern biomedical sciences. A modification of the classic Appelmans’ method (1922) to assess stability of bacteriophage activity in liquid media is presented in order to improve the overall performance of therapeutic bacteriophages individually and collectively in the cocktail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Verbeken G, Pirnay JP, Lavigne R et al (2014) Call for a dedicated European legal framework for bacteriophage therapy. Arch Immunol Ther Exp 62:117–129. https://doi.org/10.1007/s00005-014-0269-y

    Article  Google Scholar 

  2. Verbeken G, Pirnay JP, Lavigne R et al (2016) Viruses that can cure, when antibiotics fail…. J Microb Biochem Technol 8(1):021–024

    Google Scholar 

  3. Pelfrene E, Willebrand E, Cavaleiro Sanches A et al (2016) Bacteriophage therapy: a regulatory perspective. J Antimicrob Chemother 71:2071–2074. https://doi.org/10.1093/jac/dkw083

    Article  PubMed  Google Scholar 

  4. European Medicines Agency (2015) Workshop on the therapeutic use of bacteriophages, summary.http://wwwemaeuropaeu/docs/en_GB/document_library/Other/2015/07/WC500189409pdf. Accessed 23 Nov 2016

    Google Scholar 

  5. Debarbieux L, Pirnay JP, Verbeken G et al (2016) A bacteriophage journey at the European Medicines Agency. FEMS Microbiol Lett. https://doi.org/10.1093/femsle/fnv225

  6. Servick K (2016) Beleaguered phage therapy trial presses on drug development. Science 352(6293):1506. https://doi.org/10.1126/science.352.6293.1506

    Article  CAS  PubMed  Google Scholar 

  7. Kuhl S, Mazure H (2011) d’Hérelle. Preparation of therapeutic bacteriophages, appendix 1 from: Le Phénomène de la Guérison dans les maladies infectieuses: Masson et Cie, 1938, Paris—OCLC 5784382. Bacteriophage 1(2):55–65. https://doi.org/10.4161/bact.1.2.15680

    Article  Google Scholar 

  8. Gill JJ, Hyman P (2010) Phage choice, isolation, and preparation for phage therapy. Curr Pharm Biotechnol 11(1):2–14

    Article  CAS  PubMed  Google Scholar 

  9. Appelmans R (1921) Le dosage du bacteriophage. Compt Rend Soc Biol 85:1098

    Google Scholar 

  10. Buckling A, Brockhurst M (2012) Bacteria-virus coevolution. Adv Exp Med Biol 751:347–370. https://doi.org/10.1007/978-1-4614-3567-9_16

    Article  CAS  PubMed  Google Scholar 

  11. Ministry of Health of the USSR (1982) Guidelines for production of combined liquid pyobacteriophage preparation 242–82 (in Russian)

    Google Scholar 

  12. Ministry of Health of the USSR (1986) Guidelines for production of liquid staphylococcal phage preparation for injections 29–86 (in Russian)

    Google Scholar 

  13. Ministry of Health of the USSR (1987) Guidelines for production of typhoidal phage tablets with acid resistant covering 88 (in Russian)

    Google Scholar 

  14. Ministry of Health of the USSR (1980) Guidelines for production of liquid streptococcal phage preparation 167–80 (in Russian)

    Google Scholar 

  15. Merabishvili M, De Vos D, Verbeken G et al (2012) Selection and characterization of a candidate therapeutic bacteriophage that lyses the Escherichia coli O104:H4 strain from the 2011 outbreak in Germany. PLoS One. https://doi.org/10.1371/journal.pone.0052709

  16. Adams MH (1959) Bacteriophages. Interscience Publishers, New York, NY

    Google Scholar 

  17. Galán JC, Tato M, Baquero MR et al (2004) Fosfomycin and rifampin disk diffusion tests for detection of Escherichia coli mutator strains. J Clin Microbiol 42:4310–4312

    Article  PubMed  PubMed Central  Google Scholar 

  18. Oliveira H, Sillankorva S, Merabishvili M et al (2015) Unexploited opportunities for phage therapy. Front Pharmacol. https://doi.org/10.3389/fphar.2015.00180

  19. Lobocka M, Hejnowicz M, Gagala U et al (2014) The first step to bacteriophage therapy: how to choose the correct phage. In: Borysowski J, Międzybrodzki R, Górski A (eds) Phage therapy. Current research and applications, 1st edn. Caister Academic Press, Norfolk

    Google Scholar 

  20. Carlson K (2005) Appendix: working with bacteriophages: common techniques and methodological approaches. In: Kutter E, Sulakvelidze A (eds) Bacteriophages. Biology and applications. CRC Press, Boca Raton, FL

    Google Scholar 

  21. Twest R, Kropinski A (2009) Bacteriophage enrichment from water and soil. Methods Mol Biol 501:15–21. https://doi.org/10.1007/978-1-60327-164-6_2

    Article  PubMed  Google Scholar 

  22. Weber-Dabrowska B, Jonczyk-Matysiak E, Zaczek M et al (2016) Bacteriophage procurement for therapeutic purposes. Front Microbiol 7:1813. https://doi.org/10.3389/fmicb.2016.01813

    PubMed  PubMed Central  Google Scholar 

  23. Pirnay JP, Blasdel BG, Bretaudeau L et al (2015) Quality and safety requirements for sustainable phage therapy products. Pharm Res 32:2173–2179. https://doi.org/10.1007/s11095-014-1617-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Alavidze Z, Aminov R, Betts A et al (2016) Silk route to the acceptance and re-implementation of bacteriophage therapy. Biotechnol J 11(5):595–600. https://doi.org/10.1002/biot.201600023

    Article  Google Scholar 

  25. Abedon S (2011) Lysis from without. Bacteriophage 1(1):46–49. https://doi.org/10.4161/bact.1.1.13980

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kutter E (2009) Phage host range and efficiency of plating. Methods Mol Biol 501:141–149. https://doi.org/10.1007/978-1-60327-164-6_14

    Article  CAS  PubMed  Google Scholar 

  27. D’Herelle F (1922) The bacteriophage: its role in immunity. Authorized translation by Smith G. Williams & Wilkins Company, Baltimore, MD

    Google Scholar 

  28. Friman VP, Soanes-Brown D, Sierocinski P et al (2015) Pre-adapting parasitic phages to a pathogen leads to increased pathogen clearance and lowered resistance evolution with Pseudomonas aeruginosa cystic fibrosis bacterial isolates. J Evol Biol 29:188–198. https://doi.org/10.1111/jeb.12774

    Article  PubMed  Google Scholar 

  29. Sander M, Schmeiger H (2001) Method for host-idependent detection of generalized transducing bacteriophages in natural habitats. Appl Environ Microbiol 67:1490–1493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Waddell TE, Franklin K, Mazzocco A et al (2009) Methods Mol Biol 501:293–303. https://doi.org/10.1007/978-1-60327-164-6_25

    Article  CAS  PubMed  Google Scholar 

  31. Górski A, Międzybrodzki R, Borysowski J et al (2012) Phage as a modulator of immune responses: practical implications for phage therapy. Adv Virus Res 83:41–71. https://doi.org/10.1016/B978-0-12-394438-2.00002-5

    Article  PubMed  Google Scholar 

  32. De Paepe M, Leclerc M, Tinsley CR et al (2014) Bacteriophages: an underestimated role in human and animal health? Front Cell Infect Microbiol 4:39. https://doi.org/10.3389/fcimb.2014.00039

    Article  PubMed  PubMed Central  Google Scholar 

  33. Brockhurst MA, Buckling A, Rainey PB (2005) The effect of a bacteriophage on diversification of the opportunistic bacterial pathogen Pseudomonas aeruginosa. Proc R Soc Lond B 272:1385–1391

    Article  Google Scholar 

  34. LeĂłn M, BastĂ­as R (2015) Virulence reduction in bacteriophage resistant bacteria. Front Microbiol 6:343. https://doi.org/10.3389/fmicb.2015.00343

    PubMed  PubMed Central  Google Scholar 

  35. Santander J, Robeson J (2007) Phage-resistance of Salmonella enteric serovar Enteritidis and pathogenesis in Caenorhabditis elegans is mediated by the lipopolysaccharide. Electron J Biotechnol 10:627–632. https://doi.org/10.2225/vol10-issue4-fulltext-14

    Article  Google Scholar 

  36. Capparelli R, Nocerino N, Lanzetta R et al (2010) Bacteriophage-resistant Staphylococcus aureus mutant confers broad immunity against staphylococcal infection in mice. PLoS One 5:e11720. https://doi.org/10.1371/journal.pone.0011720

    Article  PubMed  PubMed Central  Google Scholar 

  37. Fish R, Kutter E, Wheat G et al (2016) Bacteriophage treatment of intransigent diabetic toe ulcers: a case series. J Wound Care 7:S27–S33. 10.12968/jowc.2016.25.7.S27

    Article  Google Scholar 

  38. Vandersteegen K, Mattheus W, Ceyssens PJ et al (2011) Microbiological and molecular assessment of bacteriophage ISP for the control of Staphylococcus aureus. PLoS One 6(9):e24418. https://doi.org/10.1371/journal.pone.0024418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kvachadze L, Balarjishvili N, Meskhi T et al (2011) Evaluation of lytic activity of staphylococcal bacteriophage Sb-1 against freshly isolated clinical pathogens. Microb Biotechnol 4(5):643–650. https://doi.org/10.1111/j.1751-7915.2011.00259.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kaźmierczak Z, Górski A, Dąbrowska K (2014) Facing antibiotic resistance: Staphylococcus aureus phages as a medical tool. Virus 6(7):2551–2570. https://doi.org/10.3390/v6072551

    Article  Google Scholar 

  41. Chanishvili N (2016) Bacteriophages as therapeutic and prophylactic means: summary of the Soviet and Post Soviet experiences. Curr Drug Deliv 13:309–323. https://doi.org/10.2174/156720181303160520193946

    Article  CAS  PubMed  Google Scholar 

  42. Abedon ST, Thomas-Abedon C (2010) Phage therapy pharmacology. Curr Pharm Biotechnol 11(1):28–47

    Article  CAS  PubMed  Google Scholar 

  43. Tanji Y, Shimada T, Yoichi M et al (2004) Toward rational control of Escherichia coli O157:H7 by a phage cocktail. Appl Microbiol Biotechnol 64:270–274

    Article  CAS  PubMed  Google Scholar 

  44. Schmerer M, Molineux IJ, Bull JJ (2014) Synergy as a rationale for phage therapy using phage cocktails. Peer J 2:e590. https://doi.org/10.7717/peerj.590

    Article  PubMed  PubMed Central  Google Scholar 

  45. Goodridge LD (2010) Designing phage therapeutics. Curr Pharm Biotechnol 11:15–27

    Article  CAS  PubMed  Google Scholar 

  46. Hall AR, De Vos D, Friman VP et al (2012) Effects of sequential and simultaneous applications of bacteriophages on populations of Pseudomonas aeruginosa in vitro and in wax moth larvae. Appl Environ Microbiol 78:5646–5652. https://doi.org/10.1128/AEM.00757-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Goodridge LD, Gallaccio A, Griffiths MW (2003) Morphological, host range, and genetic characterization of two coliphages. Appl Environ Microbiol 69:5364–5371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Scholl D, Rogers S, Adhya S et al (2001) Bacteriophage K1-5 encodes two different tail fiber proteins, allowing it to infect and replicate on both K1 and K5 strains of Escherichia coli. J Virol 75(6):2509–2515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sulakvelidze A, Kutter E (2005) Bacteriophage therapy in humans. In: Kutter E, Sulakvelidze A (eds) Bacteriophages. Biology and applications. Boca Raton, FL, CRC Press

    Google Scholar 

  50. Zschach H, Joensen KG, Lindhard B et al (2015) What can we learn from a metagenomic analysis of a Georgian bacteriophage cocktail? Virus 7(12):6570–6589. https://doi.org/10.3390/v7122958

    Article  CAS  Google Scholar 

  51. Chanishvili N (2012) A literature review of the practical application of bacteriophage research. Nova Science Publishers, Hauppauge, NY

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maia Merabishvili .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Merabishvili, M., Pirnay, JP., De Vos, D. (2018). Guidelines to Compose an Ideal Bacteriophage Cocktail. In: Azeredo, J., Sillankorva, S. (eds) Bacteriophage Therapy. Methods in Molecular Biology, vol 1693. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7395-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7395-8_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7394-1

  • Online ISBN: 978-1-4939-7395-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics