Skip to main content

RNA-Seq and Expression Arrays: Selection Guidelines for Genome-Wide Expression Profiling

  • Protocol
  • First Online:
Gene Expression Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1783))

Abstract

The development of genome-wide gene expression profiling technologies over the past two decades has produced great opportunity for researchers to explore the transcriptome and to better understand biological systems and their perturbation. In this chapter we provide an overview of microarray and massively parallel sequencing technologies and their application to gene expression analysis. We discuss factors that impact expression data generation and analysis that which should be considered in the application of these technology platforms. We further present the results of a simple illustration study to highlight performance similarities and differences in expression profiling of protein-coding mRNAs with each platform. Based on technical and analytical differences between the two platforms, reports in the literature comparing arrays and RNA-Seq for gene expression, and our own example study and experience, we provide recommendations for platform selection for gene expression studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schena M, Shalon D, Davis RW, Brown PO (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270(5235):467–470

    Article  CAS  PubMed  Google Scholar 

  2. Lockhart DJ, Dong H, Byrne MC, Follettie MT, Gallo MV, Chee MS, Mittmann M, Wang C, Kobayashi M, Horton H, Brown EL (1996) Expression monitoring by hybridization to high-density oligonucleotide arrays. Nat Biotechnol 14(13):1675–1680. https://doi.org/10.1038/nbt1296-1675

    Article  PubMed  CAS  Google Scholar 

  3. Bentley DR, Balasubramanian S, Swerdlow HP, Smith GP, Milton J, Brown CG, Hall KP, Evers DJ, Barnes CL, Bignell HR, Boutell JM, Bryant J, Carter RJ, Keira Cheetham R, Cox AJ, Ellis DJ, Flatbush MR, Gormley NA, Humphray SJ, Irving LJ, Karbelashvili MS, Kirk SM, Li H, Liu X, Maisinger KS, Murray LJ, Obradovic B, Ost T, Parkinson ML, Pratt MR, Rasolonjatovo IM, Reed MT, Rigatti R, Rodighiero C, Ross MT, Sabot A, Sankar SV, Scally A, Schroth GP, Smith ME, Smith VP, Spiridou A, Torrance PE, Tzonev SS, Vermaas EH, Walter K, Wu X, Zhang L, Alam MD, Anastasi C, Aniebo IC, Bailey DM, Bancarz IR, Banerjee S, Barbour SG, Baybayan PA, Benoit VA, Benson KF, Bevis C, Black PJ, Boodhun A, Brennan JS, Bridgham JA, Brown RC, Brown AA, Buermann DH, Bundu AA, Burrows JC, Carter NP, Castillo N, Chiara ECM, Chang S, Neil Cooley R, Crake NR, Dada OO, Diakoumakos KD, Dominguez-Fernandez B, Earnshaw DJ, Egbujor UC, Elmore DW, Etchin SS, Ewan MR, Fedurco M, Fraser LJ, Fuentes Fajardo KV, Scott Furey W, George D, Gietzen KJ, Goddard CP, Golda GS, Granieri PA, Green DE, Gustafson DL, Hansen NF, Harnish K, Haudenschild CD, Heyer NI, Hims MM, Ho JT, Horgan AM, Hoschler K, Hurwitz S, Ivanov DV, Johnson MQ, James T, Huw Jones TA, Kang GD, Kerelska TH, Kersey AD, Khrebtukova I, Kindwall AP, Kingsbury Z, Kokko-Gonzales PI, Kumar A, Laurent MA, Lawley CT, Lee SE, Lee X, Liao AK, Loch JA, Lok M, Luo S, Mammen RM, Martin JW, McCauley PG, McNitt P, Mehta P, Moon KW, Mullens JW, Newington T, Ning Z, Ling Ng B, Novo SM, O'Neill MJ, Osborne MA, Osnowski A, Ostadan O, Paraschos LL, Pickering L, Pike AC, Pike AC, Chris Pinkard D, Pliskin DP, Podhasky J, Quijano VJ, Raczy C, Rae VH, Rawlings SR, Chiva Rodriguez A, Roe PM, Rogers J, Rogert Bacigalupo MC, Romanov N, Romieu A, Roth RK, Rourke NJ, Ruediger ST, Rusman E, Sanches-Kuiper RM, Schenker MR, Seoane JM, Shaw RJ, Shiver MK, Short SW, Sizto NL, Sluis JP, Smith MA, Ernest Sohna Sohna J, Spence EJ, Stevens K, Sutton N, Szajkowski L, Tregidgo CL, Turcatti G, Vandevondele S, Verhovsky Y, Virk SM, Wakelin S, Walcott GC, Wang J, Worsley GJ, Yan J, Yau L, Zuerlein M, Rogers J, Mullikin JC, Hurles ME, McCooke NJ, West JS, Oaks FL, Lundberg PL, Klenerman D, Durbin R, Smith AJ (2008) Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456(7218):53–59. https://doi.org/10.1038/nature07517

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Bentley DR (2006) Whole-genome re-sequencing. Curr Opin Genet Dev 16(6):545–552. https://doi.org/10.1016/j.gde.2006.10.009

    Article  PubMed  CAS  Google Scholar 

  5. Wheeler DA, Srinivasan M, Egholm M, Shen Y, Chen L, McGuire A, He W, Chen YJ, Makhijani V, Roth GT, Gomes X, Tartaro K, Niazi F, Turcotte CL, Irzyk GP, Lupski JR, Chinault C, Song XZ, Liu Y, Yuan Y, Nazareth L, Qin X, Muzny DM, Margulies M, Weinstock GM, Gibbs RA, Rothberg JM (2008) The complete genome of an individual by massively parallel DNA sequencing. Nature 452(7189):872–876. https://doi.org/10.1038/nature06884

    Article  PubMed  CAS  Google Scholar 

  6. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5(7):621–628. https://doi.org/10.1038/nmeth.1226

    Article  CAS  PubMed  Google Scholar 

  7. Nagalakshmi U, Wang Z, Waern K, Shou C, Raha D, Gerstein M, Snyder M (2008) The transcriptional landscape of the yeast genome defined by RNA sequencing. Science 320(5881):1344–1349. https://doi.org/10.1126/science.1158441

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Wilhelm BT, Marguerat S, Watt S, Schubert F, Wood V, Goodhead I, Penkett CJ, Rogers J, Bahler J (2008) Dynamic repertoire of a eukaryotic transcriptome surveyed at single-nucleotide resolution. Nature 453(7199):1239–1243. https://doi.org/10.1038/nature07002

    Article  PubMed  CAS  Google Scholar 

  9. Lockhart DJ, Winzeler EA (2000) Genomics, gene expression and DNA arrays. Nature 405(6788):827–836. https://doi.org/10.1038/35015701

    Article  PubMed  CAS  Google Scholar 

  10. Bumgarner R (2013) Overview of DNA microarrays: types, applications, and their future. Curr Protoc Mol Biol. Chapter 22:Unit 22.21. https://doi.org/10.1002/0471142727.mb2201s101

  11. Wheelan SJ, Martinez Murillo F, Boeke JD (2008) The incredible shrinking world of DNA microarrays. Mol Biosyst 4(7):726–732. https://doi.org/10.1039/b706237k

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Schulze A, Downward J (2001) Navigating gene expression using microarrays—a technology review. Nat Cell Biol 3(8):E190–E195. https://doi.org/10.1038/35087138

    Article  PubMed  CAS  Google Scholar 

  13. Goodwin S, McPherson JD, McCombie WR (2016) Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet 17(6):333–351. https://doi.org/10.1038/nrg.2016.49

    Article  CAS  PubMed  Google Scholar 

  14. Moorthie S, Mattocks CJ, Wright CF (2011) Review of massively parallel DNA sequencing technologies. HUGO J 5(1–4):1–12. https://doi.org/10.1007/s11568-011-9156-3

    Article  PubMed  PubMed Central  Google Scholar 

  15. Hrdlickova R, Toloue M, Tian B (2017) RNA-Seq methods for transcriptome analysis. Wiley Interdiscip Rev RNA 8(1). https://doi.org/10.1002/wrna.1364

    Article  CAS  Google Scholar 

  16. Chu Y, Corey DR (2012) RNA sequencing: platform selection, experimental design, and data interpretation. Nucleic Acids Ther 22(4):271–274. https://doi.org/10.1089/nat.2012.0367

    Article  CAS  Google Scholar 

  17. Oshlack A, Robinson MD, Young MD (2010) From RNA-seq reads to differential expression results. Genome Biol 11(12):220. https://doi.org/10.1186/gb-2010-11-12-220

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Fasold M, Binder H (2014) Variation of RNA quality and quantity are major sources of batch effects in microarray expression data. Microarrays (Basel) 3(4):322–339. https://doi.org/10.3390/microarrays3040322

    Article  CAS  Google Scholar 

  19. Schuierer S, Carbone W, Knehr J, Petitjean V, Fernandez A, Sultan M, Roma G (2017) A comprehensive assessment of RNA-seq protocols for degraded and low-quantity samples. BMC Genomics 18(1):442. https://doi.org/10.1186/s12864-017-3827-y

    Article  PubMed  PubMed Central  Google Scholar 

  20. Schroeder A, Mueller O, Stocker S, Salowsky R, Leiber M, Gassmann M, Lightfoot S, Menzel W, Granzow M, Ragg T (2006) The RIN: an RNA integrity number for assigning integrity values to RNA measurements. BMC Mol Biol 7:3. https://doi.org/10.1186/1471-2199-7-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Shanker S, Paulson A, Edenberg HJ, Peak A, Perera A, Alekseyev YO, Beckloff N, Bivens NJ, Donnelly R, Gillaspy AF, Grove D, Gu W, Jafari N, Kerley-Hamilton JS, Lyons RH, Tepper C, Nicolet CM (2015) Evaluation of commercially available RNA amplification kits for RNA sequencing using very low input amounts of total RNA. J Biomol Tech 26(1):4–18. https://doi.org/10.7171/jbt.15-2601-001

    Article  PubMed  PubMed Central  Google Scholar 

  22. Leek JT, Scharpf RB, Bravo HC, Simcha D, Langmead B, Johnson WE, Geman D, Baggerly K, Irizarry RA (2010) Tackling the widespread and critical impact of batch effects in high-throughput data. Nat Rev Genet 11(10):733–739. https://doi.org/10.1038/nrg2825

    Article  PubMed  CAS  Google Scholar 

  23. van Dijk EL, Jaszczyszyn Y, Thermes C (2014) Library preparation methods for next-generation sequencing: tone down the bias. Exp Cell Res 322(1):12–20. https://doi.org/10.1016/j.yexcr.2014.01.008

    Article  PubMed  CAS  Google Scholar 

  24. Auer PL, Doerge RW (2010) Statistical design and analysis of RNA sequencing data. Genetics 185(2):405–416. https://doi.org/10.1534/genetics.110.114983

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Yang H, Harrington CA, Vartanian K, Coldren CD, Hall R, Churchill GA (2008) Randomization in laboratory procedure is key to obtaining reproducible microarray results. PLoS One 3(11):e3724. https://doi.org/10.1371/journal.pone.0003724

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Zhao S, Fung-Leung WP, Bittner A, Ngo K, Liu X (2014) Comparison of RNA-Seq and microarray in transcriptome profiling of activated T cells. PLoS One 9(1):e78644. https://doi.org/10.1371/journal.pone.0078644

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Yu J, Cliften PF, Juehne TI, Sinnwell TM, Sawyer CS, Sharma M, Lutz A, Tycksen E, Johnson MR, Minton MR, Klotz ET, Schriefer AE, Yang W, Heinz ME, Crosby SD, Head RD (2015) Multi-platform assessment of transcriptional profiling technologies utilizing a precise probe mapping methodology. BMC Genomics 16:710. https://doi.org/10.1186/s12864-015-1913-6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Sims D, Sudbery I, Ilott NE, Heger A, Ponting CP (2014) Sequencing depth and coverage: key considerations in genomic analyses. Nat Rev Genet 15(2):121–132. https://doi.org/10.1038/nrg3642

    Article  PubMed  CAS  Google Scholar 

  29. Tarazona S, Garcia-Alcalde F, Dopazo J, Ferrer A, Conesa A (2011) Differential expression in RNA-seq: a matter of depth. Genome Res 21(12):2213–2223. https://doi.org/10.1101/gr.124321.111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Park T, Yi SG, Kang SH, Lee S, Lee YS, Simon R (2003) Evaluation of normalization methods for microarray data. BMC Bioinformatics 4:33. https://doi.org/10.1186/1471-2105-4-33

    Article  PubMed  PubMed Central  Google Scholar 

  31. Bolstad BM, Irizarry RA, Astrand M, Speed TP (2003) A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19(2):185–193

    Article  CAS  PubMed  Google Scholar 

  32. Engstrom PG, Steijger T, Sipos B, Grant GR, Kahles A, Ratsch G, Goldman N, Hubbard TJ, Harrow J, Guigo R, Bertone P, Consortium R (2013) Systematic evaluation of spliced alignment programs for RNA-seq data. Nat Methods 10(12):1185–1191. https://doi.org/10.1038/nmeth.2722

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Zhao S, Zhang B (2015) A comprehensive evaluation of ensembl, RefSeq, and UCSC annotations in the context of RNA-seq read mapping and gene quantification. BMC Genomics 16:97. https://doi.org/10.1186/s12864-015-1308-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Dillies MA, Rau A, Aubert J, Hennequet-Antier C, Jeanmougin M, Servant N, Keime C, Marot G, Castel D, Estelle J, Guernec G, Jagla B, Jouneau L, Laloe D, Le Gall C, Schaeffer B, Le Crom S, Guedj M, Jaffrezic F, French StatOmique C (2013) A comprehensive evaluation of normalization methods for Illumina high-throughput RNA sequencing data analysis. Brief Bioinform 14(6):671–683. https://doi.org/10.1093/bib/bbs046

    Article  PubMed  CAS  Google Scholar 

  35. Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11(10):R106. https://doi.org/10.1186/gb-2010-11-10-r106

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Law CW, Chen Y, Shi W, Smyth GK (2014) voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol 15(2):R29. https://doi.org/10.1186/gb-2014-15-2-r29

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Storey JD (2002) A direct approach to false discovery rates. J R Stat Soc Series B Stat Methodol 64(3):479–498

    Article  Google Scholar 

  38. Dudoit S, Gentleman RC, Quackenbush J (2003) Open source software for the analysis of microarray data. Biotechniques Suppl:45–51

    Google Scholar 

  39. C onesa A, Madrigal P, Tarazona S, Gomez-Cabrero D, Cervera A, McPherson A, Szczesniak MW, Gaffney DJ, Elo LL, Zhang X, Mortazavi A (2016) A survey of best practices for RNA-seq data analysis. Genome Biol 17:13. https://doi.org/10.1186/s13059-016-0881-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Auer PL, Srivastava S, Doerge RW (2012) Differential expression—the next generation and beyond. Brief Funct Genomics 11(1):57–62. https://doi.org/10.1093/bfgp/elr041

    Article  PubMed  CAS  Google Scholar 

  41. Marioni JC, Mason CE, Mane SM, Stephens M, Gilad Y (2008) RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res 18(9):1509–1517. https://doi.org/10.1101/gr.079558.108

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Raghavachari N, Barb J, Yang Y, Liu P, Woodhouse K, Levy D, O'Donnell CJ, Munson PJ, Kato GJ (2012) A systematic comparison and evaluation of high density exon arrays and RNA-seq technology used to unravel the peripheral blood transcriptome of sickle cell disease. BMC Med Genet 5:28. https://doi.org/10.1186/1755-8794-5-28

    Article  CAS  Google Scholar 

  43. Bottomly D, Walter NA, Hunter JE, Darakjian P, Kawane S, Buck KJ, Searles RP, Mooney M, McWeeney SK, Hitzemann R (2011) Evaluating gene expression in C57BL/6J and DBA/2J mouse striatum using RNA-Seq and microarrays. PLoS One 6(3):e17820. https://doi.org/10.1371/journal.pone.0017820

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Zwemer LM, Hui L, Wick HC, Bianchi DW (2014) RNA-Seq and expression microarray highlight different aspects of the fetal amniotic fluid transcriptome. Prenat Diagn 34(10):1006–1014. https://doi.org/10.1002/pd.4417

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Consortium SM-I (2014) A comprehensive assessment of RNA-seq accuracy, reproducibility and information content by the Sequencing Quality Control Consortium. Nat Biotechnol 32(9):903–914. https://doi.org/10.1038/nbt.2957

    Article  CAS  Google Scholar 

  46. Nazarov PV, Muller A, Kaoma T, Nicot N, Maximo C, Birembaut P, Tran NL, Dittmar G, Vallar L (2017) RNA sequencing and transcriptome arrays analyses show opposing results for alternative splicing in patient derived samples. BMC Genomics 18(1):443. https://doi.org/10.1186/s12864-017-3819-y

    Article  PubMed  PubMed Central  Google Scholar 

  47. Su Z, Fang H, Hong H, Shi L, Zhang W, Zhang W, Zhang Y, Dong Z, Lancashire LJ, Bessarabova M, Yang X, Ning B, Gong B, Meehan J, Xu J, Ge W, Perkins R, Fischer M, Tong W (2014) An investigation of biomarkers derived from legacy microarray data for their utility in the RNA-seq era. Genome Biol 15(12):523. https://doi.org/10.1186/s13059-014-0523-y

    Article  PubMed  CAS  Google Scholar 

  48. Mooney M, McWeeney S (2014) Data integration and reproducibility for high-throughput transcriptomics. Int Rev Neurobiol 116:55–71. https://doi.org/10.1016/B978-0-12-801105-8.00003-5

    Article  PubMed  Google Scholar 

  49. Guo Q, Minnier J, Burchard J, Chiotti K, Spellman P, Schedin P (2017) Physiologically activated mammary fibroblasts promote postpartum mammary cancer. JCI Insight 2(6):e89206. https://doi.org/10.1172/jci.insight.89206

    Article  PubMed  PubMed Central  Google Scholar 

  50. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29(1):15–21. https://doi.org/10.1093/bioinformatics/bts635

    Article  PubMed  CAS  Google Scholar 

  51. McCarthy DJ, Chen Y, Smyth GK (2012) Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Res 40(10):4288–4297. https://doi.org/10.1093/nar/gks042

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK (2015) Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43(7):e47. https://doi.org/10.1093/nar/gkv007

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Young MD, Wakefield MJ, Smyth GK, Oshlack A (2010) Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol 11(2):R14. https://doi.org/10.1186/gb-2010-11-2-r14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Carvalho BS, Irizarry RA (2010) A framework for oligonucleotide microarray preprocessing. Bioinformatics 26(19):2363–2367. https://doi.org/10.1093/bioinformatics/btq431

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Chavan SS, Bauer MA, Peterson EA, Heuck CJ, Johann DJ Jr (2013) Towards the integration, annotation and association of historical microarray experiments with RNA-seq. BMC Bioinformatics 14(Suppl 14):S4. https://doi.org/10.1186/1471-2105-14-S14-S4

    Article  PubMed  PubMed Central  Google Scholar 

  56. Mehta JP, Rani S (2011) Software and tools for microarray data analysis. Methods Mol Biol 784:41–53. https://doi.org/10.1007/978-1-61779-289-2_4

    Article  PubMed  CAS  Google Scholar 

  57. Miller JA, Menon V, Goldy J, Kaykas A, Lee CK, Smith KA, Shen EH, Phillips JW, Lein ES, Hawrylycz MJ (2014) Improving reliability and absolute quantification of human brain microarray data by filtering and scaling probes using RNA-Seq. BMC Genomics 15:154. https://doi.org/10.1186/1471-2164-15-154

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Julja Burchard for enthusiastic and thoughtful discussions on the design and content of the chapter. We thank Dr. Robert Searles for manuscript review and expert advice on RNA-Seq methods. We thank Caitlin Harrington-Smith for creative assistance with figures and Amy Carlos and Kristina Vartanian for excellent technical assistance. This work was supported in part by the OHSU Knight Cancer Institute (NIH NCI Cancer Center Support Grant P30 CA069533-17) and NIH/NCIR01CA169175 (to P. Schedin).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christina A. Harrington .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Minnier, J., Pennock, N.D., Guo, Q., Schedin, P., Harrington, C.A. (2018). RNA-Seq and Expression Arrays: Selection Guidelines for Genome-Wide Expression Profiling. In: Raghavachari, N., Garcia-Reyero, N. (eds) Gene Expression Analysis. Methods in Molecular Biology, vol 1783. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7834-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7834-2_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7833-5

  • Online ISBN: 978-1-4939-7834-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics