Skip to main content

Management of Growth Plate Injuries

  • Chapter
  • First Online:
Children's Orthopaedics and Fractures

Abstract

Treatment of acute growth plate injuries is determined by a prognostic evaluation of the radiographs. The Salter and Harris classification [1] is the most widely used and has been modified by Ogden [2] and more recently by Peterson [3]. The present Ogden classification includes nine major types with subclassifications. For practical purposes the intra-articular fracture line and the degree of initial chondroepiphyseal displacement determine management, as originally proposed by Poland in 1898 [4].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Cloth bound cover Book
USD 169.99
Price excludes VAT (USA)
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Salter RB, Harris WR. Injuries involving the epiphyseal plate. J Bone Joint Surg [Am] 1963; 45-A: 587–622

    Google Scholar 

  2. Ogden JA. Skeletal growth mechanism injury patterns. J Pediatr Orthop.1982; 2:371–377.

    Article  PubMed  CAS  Google Scholar 

  3. Peterson H. Physeal injuries and growth arrest. In: Beaty JH, Kasser JR, eds. Rockwood and Wilkins’ Fractures in Children. Philadelphia: Lippincott Williams & Wilkins; 2001:91–138.

    Google Scholar 

  4. Poland J. Separation of the epiphysis. London: Smith Elder; 1898.

    Google Scholar 

  5. Langenskiöld A. An operation for partial closure of an epiphysial plate in children, and its experimental basis. J Bone Joint Surg [Br] 1975; 57-B: 325–330.

    Google Scholar 

  6. Klassen RA, Peterson HA. Excision of physeal bars: The Mayo Clinic experience 1968–1978. Orthop Trans 1982; 6:65–75.

    Google Scholar 

  7. Bright RW. Operative correction of partial epiphyseal plate closure by osseous-bridge resection and silicone-rubber implant. An experimental study in dogs. J Bone Joint Surg [Am] 1974; 56-A: 655–664.

    Google Scholar 

  8. Monticelli G, Spinelli R. Distraction epiphysiolysis as a method of limb lengthening. III. Clinical applications. Clin Orthop Rel Res1981; 154:274–285.

    Google Scholar 

  9. De Bastiani G, Aldegheri R, Renzi Brivio L, et al. Chondrodiatasis-controlled symmetrical distraction of the epiphyseal plate. Limb lengthening in children. J Bone Joint Surg [Br] 1986; 68-B: 550–556.

    Google Scholar 

  10. Ilizarov GA, Soybelman LM. Some clinical and experimental data concerning bloodless lengthening of the lower extremities. Eksperimental’naya Khirurgiya i Anesteziologiya1969; 14:27–32.

    CAS  Google Scholar 

  11. Brighton CT. Longitudinal bone growth: the growth plate and its dysfunctions. Instruct Course Lect 1987; 36:3–25.

    CAS  Google Scholar 

  12. Kaufmann H. Appearance of secondary ossification centers. In: Lentner C, ed. Geigy Scientific Tables, Physical Chemistry, Composition of Blood, Hematology, Somatometric Data. Basle: Ciba-Geigy; 1984:316–318.

    Google Scholar 

  13. Johnstone EW, Leane PB, Kolesik P, et al. Spatial arrangement of physeal cartilage chondrocytes and the structure of the primary. J Ortho Sci 2000; 5:302–306.

    Article  Google Scholar 

  14. Vortkamp A, Lee K, Lanske, B et al. Regulation of rate of cartilage differentiation by Indian hedgehog and PTH-related protein [see comments]. Science 1996; 273:613–622.

    Article  PubMed  CAS  Google Scholar 

  15. Kronenberg HM, Lanske B, Kovacs CS, et al. Functional analysis of the PTH/PTHrP network of ligands and receptors. Recent Prog Horm Res 1998; 53:283–301; discussion 301–303.

    PubMed  CAS  Google Scholar 

  16. Harris W. Epiphysial injuries. AAOS Instruct Course Lect1958; 32B: 5.

    Google Scholar 

  17. Trueta J, Morgan JD. The vascular contribution to osteogenesis. I. Studies by the injection method. J Bone Joint Surg [Br] 1960; 42:97–109.

    Google Scholar 

  18. Trueta O, Amato VP. The vascular contribution to osteogenesis. III. Changes in the growth cartilage caused by experimentally induced ischaemia. J Bone Joint Surg [Br] 1960; 42:571–87.

    Google Scholar 

  19. Bright RW, Burstein AH, Elmore SM. Epiphyseal-plate cartilage. A biomechanical and histological analysis of failure modes. J Bone Joint Surg [Am] 1974; 56-A: 688–703.

    Google Scholar 

  20. Chung SM. The arterial supply of the developing proximal end of the human femur. J Bone Joint Surg [Am] 1976; 58-A: 961–970.

    Google Scholar 

  21. Rang M. The growth plate and its disorders. Edinburgh: Churchill Livingstone; 1969.

    Google Scholar 

  22. Salter RB. Textbook of Disorders and Injuries of the Musculoskeletal System. Baltimore: Williams and Wilkins; 1970.

    Google Scholar 

  23. Dale GG, Harris WR. Prognosis of epiphyseal separation. An experimental study. J Bone and Joint Surg [Br] 1958; 40:116–122.

    Google Scholar 

  24. Mizuta T, Benson W, Foster B, et al. Statistical analysis of the incidence of physeal injuries. J Pediatr Orthop 1987; 7:518–523.

    Article  PubMed  CAS  Google Scholar 

  25. Bowen JR, Schreiber FC, Foster BK, et al. Premature femoral neck physeal closure in Perthes’ disease. Clin Orthop Rel Res1982; 171:24–29.

    Google Scholar 

  26. Macnicol MF, Anagnostopoulos J. Arrest of the growth plate after arterial cannulation in infancy [Br] 2000; 82-B: 172–175.

    Google Scholar 

  27. Johnson JTH, Southwick WO. Growth following transepiphyseal bone grafts. An experimental study to explain continued growth following certain fusion operations. J Bone Joint Surg [Am] 1960; 42-A: 1381–1395.

    Google Scholar 

  28. Phemister DB. Operative arrestment of longitudinal growth of bones in the treatment of deformities. J Bone Joint Surg [Am] 1933; 15:1–15.

    Google Scholar 

  29. Rubin P. Dynamic classification of bone dysplasias. Chicago: Year Book Medical Publishers; 1964.

    Google Scholar 

  30. Peterson HA. Partial growth plate arrest and its treatment. J Pediatr Orthop1984; 4:246–258.

    Article  PubMed  CAS  Google Scholar 

  31. Rohmiller MT, Gaynor TP, Pawelek J, et al. Salter-Harris I and II fractures of the distal tibia: does mechanism of injury relate to premature physeal closure? J Pediatr Orthop 2006; 26:322–328.

    Article  PubMed  Google Scholar 

  32. Smith BG, Rand F, Jaramillo D, et al. Early MR imaging of lower-extremity physeal fracture-separations: a preliminary report. J Pediatr Orthop 1994; 14:526–533.

    Article  PubMed  CAS  Google Scholar 

  33. White PG, Mah JY, Friedman L. Magnetic resonance imaging in acute physeal injuries. Skeletal Radio1994; 23:627–631.

    Article  CAS  Google Scholar 

  34. Carey J, Spence L, Blickman H, et al. MRI of pediatric growth plate injury: correlation with plain film radiographs and clinical outcome. Skeletal Radiol 1998; 27:250–255.

    Article  PubMed  CAS  Google Scholar 

  35. Kamegaya M, Shinohara Y, Kurokawa M, et al. Assessment of stability in children’s minimally displaced lateral humeral condyle fracture by magnetic resonance imaging. J Pediatr Orthop 1999; 19:570–572.

    PubMed  CAS  Google Scholar 

  36. Howman Giles R, Trochei M, Yeates K, et al. Partial growth plate closure: apex view on bone scan. J Pediatr Orthop 1985; 5:109–111.

    Article  PubMed  CAS  Google Scholar 

  37. Laffosse JM, Cariven P, Accadbled F, et al. Osteosynthesis of a triplane fracture under arthroscopic control in a bilateral case. Foot Ankle Surg 2007; 13:83–90.

    Article  Google Scholar 

  38. Foster BK, John B, Hasler C. Free fat interpositional graft in acute physeal injuries. The anticipatory Langenskiöld procedure. J Pediat Orthop 2000; 20:282–285.

    CAS  Google Scholar 

  39. Bostman O, Vainionpaa S, Hirvensalo E, et al. Biodegradable internal fixation for malleolar fractures. A prospective randomised trial. J Bone Joint Surg Br 1987; 69:615–619.

    PubMed  CAS  Google Scholar 

  40. Bostman O, Makela EA, Tormala P, et al. Transphyseal fracture fixation using biodegradable pins. J Bone Joint Surg Br 1989; 71:706–707.

    PubMed  CAS  Google Scholar 

  41. Bostman O, Hirvensalo E, Partio E, et al. [Resorbable rods and screws of polyglycolide in stabilizing malleolar fractures. A clinical study of 600 patients]. Unfallchirurg 1992; 95:109–112.

    PubMed  CAS  Google Scholar 

  42. Bostman O, Paivarinta U, Partio E, et al. Degradation and tissue replacement of an absorbable polyglycolide screw in the fixation of rabbit femoral osteotomies. J Bone Joint Surg Am 1992; 74:1021–1031.

    PubMed  CAS  Google Scholar 

  43. Makela EA, Bostman O, Kekomaki M, et al. Biodegradable fixation of distal humeral physeal fractures. Clin Orthop Relat Res 1992; 283:237–243.

    PubMed  Google Scholar 

  44. Partio EK, Hirvensalo E, Bostman O, et al. [Absorbable rods and screws: a new method of fixation for fractures of the olecranon]. Int Orthop 1992; 16:250–254.

    Article  PubMed  CAS  Google Scholar 

  45. Partio EK, Hirvensalo E, Partio E, et al. Talocrural arthrodesis with absorbable screws, 12 cases followed for 1 year. Acta Orthop Scand 1992; 63:170–172.

    Article  PubMed  CAS  Google Scholar 

  46. Hara Y, Tagawa M, Ejima H, et al. Application of oriented poly-L-lactide screws for experimental Salter-Harris type 4 fracture in distal femoral condyle of the dog. J Vet Med Sci 1994; 56:817–822.

    Article  PubMed  CAS  Google Scholar 

  47. Peterson H. Treatment of physeal bony bridges by means of bridge resection and interposition of cranioplasty. In: Pablos J, ed. Surgery of the Growth Plate. Madrid: S.A Ediciones Ergon; 1998:299–307.

    Google Scholar 

  48. Zuege RC, Kempken TG, Blount WP. Epiphyseal stapling for angular deformity at the knee. J Bone Joint Surg Am 1979; 61:320–329.

    PubMed  CAS  Google Scholar 

  49. Langenskiöld A. Surgical treatment of partial closure of the growth plate. J Pediatr Orthop 1981; 1:3–11.

    Article  PubMed  Google Scholar 

  50. Foster B. Epiphyseal plate repair using fat interposition to reverse physeal deformity. An Experimental study. MD, Paediatrics. Adelaide: The University of Adelaide; 1989.

    Google Scholar 

  51. Borsa JJ, Peterson HA, Ehman RL. MR imaging of physeal bars. Radiology 1996; 199:683–687.

    PubMed  CAS  Google Scholar 

  52. Ecklund K, Jaramillo D. Patterns of premature physeal arrest: MR imaging of 111 children. AJR Am J Roentgenol 2002; 178:967–972.

    PubMed  Google Scholar 

  53. Sailhan F, Chotel F, Guibal AL, et al. Three-dimensional MR imaging in the assessment of physeal growth arrest. Eur Radiol 2004; 14:1600–1608.

    Article  PubMed  Google Scholar 

  54. Hasler CC, Foster BK. Secondary tethers after physeal bar resection: a common source of failure? Clin Orthop Relat Res 2002; 405:242–249.

    Article  PubMed  Google Scholar 

  55. Jouve JL, Guillaume JM, Frayssinet P, et al. Growth plate behavior after desepiphysiodesis: experimental study in rabbits. J Pediatr Orthop 2003; 23:774–779.

    Article  PubMed  Google Scholar 

  56. Marsh JS, Polzhofer GK. Arthroscopically assisted central physeal bar resection. J Pediatr Orthop 2006; 26:255–259.

    Article  PubMed  Google Scholar 

  57. Foster BK, Hansen AL, Gibson GJ, et al. Reimplantation of growth plate chondrocytes into growth plate defects in sheep. J Orthop Res 1990; 8:555–564.

    Article  PubMed  CAS  Google Scholar 

  58. Hansen AL, Foster BK, Gibson GJ, et al. Growth-plate chondrocyte cultures for reimplantation into growth-plate defects in sheep. Characterization of cultures. Clin Orthop Relat Res 1990; 256:286–298.

    PubMed  Google Scholar 

  59. Boyer MI, Danska JS, Nolan L, et al. Microvascular transplantation of physeal allografts. J Bone Joint Surg Br 1995; 77:806–814.

    PubMed  CAS  Google Scholar 

  60. Lee EH, Chen F, Chan J, et al. Treatment of growth arrest by transfer of cultured chondrocytes into physeal defects. J Pediatr Orthop 1998; 18:155–160.

    PubMed  CAS  Google Scholar 

  61. Sims CD, Butler PE, Casanova R, et al. Injectable cartilage using polyethylene oxide polymer substrates. Plast Reconstr Surg 1996; 98:843–850.

    Article  PubMed  CAS  Google Scholar 

  62. Abad V, Uyeda JA, Temple HT, et al. Determinants of spatial polarity in the growth plate. Endocrinology 1999; 140:958–962.

    Article  PubMed  CAS  Google Scholar 

  63. Lee CW, Martinek V, Usas A, et al. Muscle-based gene therapy and tissue engineering for treatment of growth plate injuries. J Pediatr Orthop 2002; 22:565–572.

    PubMed  Google Scholar 

  64. Mc Carthy R. Stem cell repair of physeal cartilage. PhD Thesis. Adelaide: The University of Adelaide; 2007.

    Google Scholar 

  65. Xian CJ, Foster BK. Repair of injured articular and growth plate cartilage using mesenchymal stem cells and chondrogenic gene therapy. Curr Stem Cell Res Ther 2006; 1:213–229.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag London Limited

About this chapter

Cite this chapter

Accadbled, F., Foster, B.K. (2010). Management of Growth Plate Injuries. In: Benson, M., Fixsen, J., Macnicol, M., Parsch, K. (eds) Children's Orthopaedics and Fractures. Springer, London. https://doi.org/10.1007/978-1-84882-611-3_41

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-611-3_41

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-610-6

  • Online ISBN: 978-1-84882-611-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics