Skip to main content

Epithelial-Mesenchymal Plasticity in Circulating Tumor Cells, the Precursors of Metastasis

  • Chapter
  • First Online:
Circulating Tumor Cells in Breast Cancer Metastatic Disease

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1220))

Abstract

Circulating tumor cells offer an unprecedented window into the metastatic cascade, and to some extent can be considered as intermediates in the process of metastasis. They exhibit dynamic oscillations in epithelial to mesenchymal plasticity and provide important opportunities for prognosis, therapy response monitoring, and targeting of metastatic disease. In this manuscript, we review the involvement of epithelial-mesenchymal plasticity in the early steps of metastasis and what we have learned about its contribution to genomic instability and genetic diversity, tumor progression and therapeutic responses using cell culture, mouse models and circulating tumor cells enriched from patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Savagner P. Epithelial-mesenchymal transitions: from cell plasticity to concept elasticity. Curr Top Dev Biol. 2015;112:273–300. https://doi.org/10.1016/bs.ctdb.2014.11.021.

    Article  CAS  PubMed  Google Scholar 

  2. Lim J, Thiery JP. Epithelial-mesenchymal transitions: insights from development. Development. 2012;139(19):3471–86. https://doi.org/10.1242/dev.071209.

    Article  CAS  PubMed  Google Scholar 

  3. Nakaya Y, Sheng G. Epithelial to mesenchymal transition during gastrulation: an embryological view. Develop Growth Differ. 2008;50(9):755–66. https://doi.org/10.1111/j.1440-169X.2008.01070.x.

    Article  CAS  Google Scholar 

  4. Solnica-Krezel L, Sepich DS. Gastrulation: making and shaping germ layers. Annu Rev Cell Dev Biol. 2012;28:687–717. https://doi.org/10.1146/annurev-cellbio-092910-154043.

    Article  CAS  PubMed  Google Scholar 

  5. Yu M, Smolen GA, Zhang J, Wittner B, Schott BJ, Brachtel E, et al. A developmentally regulated inducer of EMT, LBX1, contributes to breast cancer progression. Genes Dev. 2009;23(15):1737–42. https://doi.org/10.1101/gad.1809309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Shaw TJ, Martin P. Wound repair: a showcase for cell plasticity and migration. Curr Opin Cell Biol. 2016;42:29–37. https://doi.org/10.1016/j.ceb.2016.04.001.

    Article  CAS  PubMed  Google Scholar 

  7. Nieto MA, Huang RY, Jackson RA, Thiery JP. Emt: 2016. Cell. 2016;166(1):21–45. https://doi.org/10.1016/j.cell.2016.06.028.

    Article  CAS  PubMed  Google Scholar 

  8. Aiello NM, Maddipati R, Norgard RJ, Balli D, Li J, Yuan S, et al. EMT subtype influences epithelial plasticity and mode of cell migration. Dev Cell. 2018;45:681-95.e4. https://doi.org/10.1016/j.devcel.2018.05.027.

    Article  CAS  Google Scholar 

  9. Bedi U, Mishra VK, Wasilewski D, Scheel C, Johnsen SA. Epigenetic plasticity: a central regulator of epithelial-to-mesenchymal transition in cancer. Oncotarget. 2014;5(8):2016–29. https://doi.org/10.18632/oncotarget.1875.

    Article  PubMed  PubMed Central  Google Scholar 

  10. McDonald OG, Wu H, Timp W, Doi A, Feinberg AP. Genome-scale epigenetic reprogramming during epithelial-to-mesenchymal transition. Nat Struct Mol Biol. 2011;18(8):867–74. https://doi.org/10.1038/nsmb.2084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Micalizzi DS, Maheswaran S, Haber DA. A conduit to metastasis: circulating tumor cell biology. Genes Dev. 2017;31(18):1827–40. https://doi.org/10.1101/gad.305805.117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fischer KR, Durrans A, Lee S, Sheng J, Li F, Wong ST, et al. Epithelial-to-mesenchymal transition is not required for lung metastasis but contributes to chemoresistance. Nature. 2015;527(7579):472–6. https://doi.org/10.1038/nature15748.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zheng X, Carstens JL, Kim J, Scheible M, Kaye J, Sugimoto H, et al. Epithelial-to-mesenchymal transition is dispensable for metastasis but induces chemoresistance in pancreatic cancer. Nature. 2015;527:525–30. https://doi.org/10.1038/nature16064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ye X, Brabletz T, Kang Y, Longmore GD, Nieto MA, Stanger BZ, et al. Upholding a role for EMT in breast cancer metastasis. Nature. 2017;547:E1–6. https://doi.org/10.1038/nature22816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Aiello NM, Brabletz T, Kang Y, Nieto MA, Weinberg RA, Stanger BZ. Upholding a role for EMT in pancreatic cancer metastasis. Nature. 2017;547(7661):E7–8. https://doi.org/10.1038/nature22963.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Boyer B, Tucker GC, Valles AM, Franke WW, Thiery JP. Rearrangements of desmosomal and cytoskeletal proteins during the transition from epithelial to fibroblastoid organization in cultured rat bladder carcinoma cells. J Cell Biol. 1989;109(4 Pt 1):1495–509.

    Article  CAS  PubMed  Google Scholar 

  17. Weidner KM, Behrens J, Vandekerckhove J, Birchmeier W. Scatter factor: molecular characteristics and effect on the invasiveness of epithelial cells. J Cell Biol. 1990;111(5 Pt 1):2097–108.

    Article  CAS  PubMed  Google Scholar 

  18. Jolly MK, Ward C, Eapen MS, Myers S, Hallgren O, Levine H, et al. Epithelial–mesenchymal transition, a spectrum of states: role in lung development, homeostasis, and disease. Dev Dyn. 2018;247:346–58. https://doi.org/10.1002/dvdy.24541.

    Article  PubMed  Google Scholar 

  19. Yu M, Bardia A, Wittner BS, Stott SL, Smas ME, Ting DT, et al. Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition. Science. 2013;339:580–4. https://doi.org/10.1126/science.1228522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ye X, Tam WL, Shibue T, Kaygusuz Y, Reinhardt F, Ng Eaton E, et al. Distinct EMT programs control normal mammary stem cells and tumour-initiating cells. Nature. 2015;525:256–60. https://doi.org/10.1038/nature14897.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hay ED. The mesenchymal cell, its role in the embryo, and the remarkable signaling mechanisms that create it. Dev Dyn. 2005;233(3):706–20. https://doi.org/10.1002/dvdy.20345.

    Article  CAS  PubMed  Google Scholar 

  22. Sherwood DR. Cell invasion through basement mem- branes : an anchor of understanding. Trends Cell Biol. 2006;16:250–6. https://doi.org/10.1016/j.tcb.2006.03.004.

    Article  CAS  PubMed  Google Scholar 

  23. De Wever O, Mareel M. Role of tissue stroma in cancer cell invasion. J Pathol. 2003;200:429–47. https://doi.org/10.1002/path.1398.

    Article  CAS  PubMed  Google Scholar 

  24. Wyckoff J, Wang W, Lin EY, Wang Y, Pixley F, Stanley ER, et al. A paracrine loop between tumor cells and macrophages is required for tumor cell migration in mammary tumors. Cancer Res. 2004;64(19):7022–9. https://doi.org/10.1158/0008-5472.CAN-04-1449.

    Article  CAS  PubMed  Google Scholar 

  25. De Craene B, Berx G. Regulatory networks defining EMT during cancer initiation and progression. Nat Rev Cancer. 2013;13(2):97–110. https://doi.org/10.1038/nrc3447.

    Article  CAS  PubMed  Google Scholar 

  26. Nieto MA, Cano A. The epithelial-mesenchymal transition under control: global programs to regulate epithelial plasticity. Semin Cancer Biol. 2012;22(5-6):361–8. https://doi.org/10.1016/j.semcancer.2012.05.003.

    Article  CAS  PubMed  Google Scholar 

  27. Zheng H, Kang Y. Multilayer control of the EMT master regulators. Oncogene. 2014;33(14):1755–63. https://doi.org/10.1038/onc.2013.128.

    Article  CAS  PubMed  Google Scholar 

  28. Dong L, Ge XY, Wang YX, Yang LQ, Li SL, Yu GY, et al. Transforming growth factor-beta and epithelial-mesenchymal transition are associated with pulmonary metastasis in adenoid cystic carcinoma. Oral Oncol. 2013;49(11):1051–8. https://doi.org/10.1016/j.oraloncology.2013.07.012.

    Article  CAS  PubMed  Google Scholar 

  29. Giannoni E, Parri M, Chiarugi P. EMT and oxidative stress: a bidirectional interplay affecting tumor malignancy. Antioxid Redox Signal. 2012;16(11):1248–63. https://doi.org/10.1089/ars.2011.4280.

    Article  CAS  PubMed  Google Scholar 

  30. Micalizzi DS, Haber DA, Maheswaran S. Cancer metastasis through the prism of epithelial-to-mesenchymal transition in circulating tumor cells. Mol Oncol. 2017;11(7):770–80. https://doi.org/10.1002/1878-0261.12081.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Choi HY, Yoo Y, Kim J-H, Dayem AA, Yee C, Yang G-M, et al. Hydrodynamic shear stress promotes epithelial-mesenchymal transition by downregulating ERK and GSK3β activities. Breast Cancer Res. 2019;21:1–20. https://doi.org/10.1186/s13058-018-1071-2.

    Article  CAS  Google Scholar 

  32. Aiello NM, Bajor DL, Norgard RJ, Sahmoud A, Bhagwat N, Pham MN, et al. Metastatic progression is associated with dynamic changes in the local microenvironment. Nat Commun. 2016;7:12819. https://doi.org/10.1038/ncomms12819.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jung HY, Fattet L, Yang J. Molecular pathways: linking tumor microenvironment to epithelial-mesenchymal transition in metastasis. Clin Cancer Res. 2015;21(5):962–8. https://doi.org/10.1158/1078-0432.CCR-13-3173.

    Article  CAS  PubMed  Google Scholar 

  34. Garg M. Epithelial plasticity and metastatic cascade. Expert Opin Ther Targets. 2018;22:5–7. https://doi.org/10.1080/14728222.2018.1407312.

    Article  PubMed  Google Scholar 

  35. Voutsadakis IA. The ubiquitin-proteasome system and signal transduction pathways regulating Epithelial Mesenchymal transition of cancer. J Biomed Sci. 2012;19:67. https://doi.org/10.1186/1423-0127-19-67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bracken CP, Scott HS, Goodall GJ. A network-biology perspective of microRNA function and dysfunction in cancer. Nat Rev Genet. 2016;17(12):719–32. https://doi.org/10.1038/nrg.2016.134.

    Article  CAS  PubMed  Google Scholar 

  37. Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 2014;15(3):178–96. https://doi.org/10.1038/nrm3758.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Savagner P. Leaving the neighborhood: molecular mechanisms involved during epithelial-mesenchymal transition. Bioessays. 2001;23(10):912–23. https://doi.org/10.1002/bies.1132.

    Article  CAS  PubMed  Google Scholar 

  39. Yang J, Weinberg RA. Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Dev Cell. 2008;14(6):818–29. https://doi.org/10.1016/j.devcel.2008.05.009.

    Article  CAS  PubMed  Google Scholar 

  40. Casas E, Kim J, Bendesky A, Ohno-Machado L, Wolfe CJ, Yang J. Snail2 is an essential mediator of Twist1-induced epithelial mesenchymal transition and metastasis. Cancer Res. 2011;71(1):245–54. https://doi.org/10.1158/0008-5472.CAN-10-2330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Dhasarathy A, Phadke D, Mav D, Shah RR, Wade PA. The transcription factors Snail and Slug activate the transforming growth factor-beta signaling pathway in breast cancer. PLoS One. 2011;6(10):e26514. https://doi.org/10.1371/journal.pone.0026514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yamauchi T, Fernandez JRE, Imamura CK, Yamauchi H, Jinno H, Takahashi M, et al. Dynamic changes in CD44v-positive cells after preoperative anti-HER2 therapy and its correlation with pathologic complete response in HER2-positive breast cancer. Oncotarget. 2018;9:6872–82. https://doi.org/10.18632/oncotarget.23914.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Markiewicz A, Nagel A, Szade J, Majewska H, Skokowski J, Seroczynska B, et al. Aggressive phenotype of cells disseminated via hematogenous and lymphatic route in breast cancer patients. Transl Oncol. 2018;11:722–31. https://doi.org/10.1016/j.tranon.2018.03.006.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Qi XK, Han HQ, Zhang HJ, Xu M, Li L, Chen L, et al. OVOL2 links stemness and metastasis via fine-tuning epithelial-mesenchymal transition in nasopharyngeal carcinoma. Theranostics. 2018;8:2202–16. https://doi.org/10.7150/thno.24003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mani SA, Guo W, Liao M-JJ, Eaton EN, Ayyanan A, Zhou AY, et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell. 2008;133:704–15. https://doi.org/10.1016/j.cell.2008.03.027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A. 2003;100(7):3983–8. https://doi.org/10.1073/pnas.0530291100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ocaña OH, Córcoles R, Fabra Á, Moreno-Bueno G, Acloque H, Vega S, et al. Metastatic colonization requires the repression of the epithelial-mesenchymal transition inducer Prrx1. Cancer Cell. 2012;22:709–24. https://doi.org/10.1016/j.ccr.2012.10.012.

    Article  CAS  PubMed  Google Scholar 

  48. Kroger C, Afeyan A, Mraz J, Eaton EN, Reinhardt F, Khodor YL, et al. Acquisition of a hybrid E/M state is essential for tumorigenicity of basal breast cancer cells. Proc Natl Acad Sci U S A. 2019;116(15):7353–62. https://doi.org/10.1073/pnas.1812876116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Grosse-Wilde A, D'Hérouël AF, McIntosh E, Ertaylan G, Skupin A, Kuestner RE, et al. Stemness of the hybrid epithelial/mesenchymal state in breast cancer and its association with poor survival. PLoS ONE. 2015;10:1–28. https://doi.org/10.1371/journal.pone.0126522.

    Article  CAS  Google Scholar 

  50. Shibue T, Weinberg RA. EMT, CSCs, and drug resistance: the mechanistic link and clinical implications. Nat Rev Clin Oncol. 2017;14:611–29. https://doi.org/10.1038/nrclinonc.2017.44.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Basu S, Cheriyamundath S, Ben-Ze’ev A. Cell–cell adhesion: linking Wnt/β-catenin signaling with partial EMT and stemness traits in tumorigenesis. F1000Research. 2018;7:1488. https://doi.org/10.12688/f1000research.15782.1.

    Article  Google Scholar 

  52. Redfern AD, Spalding LJ, Thompson EW. The Kraken Wakes: induced EMT as a driver of tumour aggression and poor outcome. Clin Exp Metastasis. 2018;35(4):285–308. https://doi.org/10.1007/s10585-018-9906-x.

    Article  PubMed  Google Scholar 

  53. Jolly MK, Mani SA, Levine H. Hybrid epithelial/mesenchymal phenotype(s): the ‘fittest’ for metastasis? Biochim Biophys Acta. 2018;1870:151–7. https://doi.org/10.1016/j.bbcan.2018.07.001.

    Article  CAS  Google Scholar 

  54. Markiewicz A, Zaczek AJ. The landscape of circulating tumor cell research in the context of epithelial-mesenchymal transition. Pathobiology. 2017;84:264–83. https://doi.org/10.1159/000477812.

    Article  CAS  PubMed  Google Scholar 

  55. Witta SE, Gemmill RM, Hirsch FR, Coldren CD, Hedman K, Ravdel L, et al. Restoring E-cadherin expression increases sensitivity to epidermal growth factor receptor inhibitors in lung cancer cell lines. Cancer Res. 2006;66(2):944–50. https://doi.org/10.1158/0008-5472.CAN-05-1988.

    Article  CAS  PubMed  Google Scholar 

  56. Choynzonov E, Savelieva O, Slonimskaya E, Perelmuter V, Tashireva L, Tarabanovskaya N, et al. Heterogeneity of circulating tumor cells in neoadjuvant chemotherapy of breast cancer. Molecules. 2018;23:727. https://doi.org/10.3390/molecules23040727.

    Article  CAS  PubMed Central  Google Scholar 

  57. Li H, Smolen GA, Beers LF, Xia L, Gerald W, Wang J et al. Adenosine transporter ENT4 is a direct target of EWS / WT1 translocation product and is highly expressed in desmoplastic small round cell tumor PLoS ONE. 2008;3. https://doi.org/10.1371/journal.pone.0002353.

  58. Byers DE, Alexander-Brett J, Patel AC, Agapov E, Dang-Vu G, Jin X, et al. Long-term IL-33-producing epithelial progenitor cells in chronic obstructive lung disease. J Clin Invest. 2013;123(9):3967–82. https://doi.org/10.1172/JCI65570.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bryant JL, Britson J, Balko JM, Willian M, Timmons R, Frolov A, et al. A microRNA gene expression signature predicts response to erlotinib in epithelial cancer cell lines and targets EMT. Br J Cancer. 2012;106(1):148–56. https://doi.org/10.1038/bjc.2011.465.

    Article  CAS  PubMed  Google Scholar 

  60. Marchini S, Fruscio R, Clivio L, Beltrame L, Porcu L, Nerini IF, et al. Resistance to platinum-based chemotherapy is associated with epithelial to mesenchymal transition in epithelial ovarian cancer. Eur J Cancer. 2013;49:520–30. https://doi.org/10.1016/j.ejca.2012.06.026.

    Article  CAS  PubMed  Google Scholar 

  61. Kurrey NK, Jalgaonkar SP, Joglekar AV, Ghanate AD, Chaskar PD, Doiphode RY, et al. Snail and slug mediate radioresistance and chemoresistance by antagonizing p53-mediated apoptosis and acquiring a stem-like phenotype in ovarian cancer cells. Stem Cells. 2009;27:2059–68. https://doi.org/10.1002/stem.154.

    Article  CAS  PubMed  Google Scholar 

  62. Sandberg CJ, Altschuler G, Jeong J, Stromme KK, Stangeland B, Murrell W, et al. Comparison of glioma stem cells to neural stem cells from the adult human brain identifies dysregulated Wnt- signaling and a fingerprint associated with clinical outcome. Exp Cell Res. 2013;319(14):2230–43. https://doi.org/10.1016/j.yexcr.2013.06.004.

    Article  CAS  PubMed  Google Scholar 

  63. Ortensi B, Setti M, Osti D, Pelicci G. Cancer stem cell contribution to glioblastoma invasiveness. Stem Cell Res Ther. 2013;4(1):18. https://doi.org/10.1186/scrt166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Murat A, Migliavacca E, Gorlia T, Lambiv WL, Shay T, Hamou MF, et al. Stem cell-related “self-renewal” signature and high epidermal growth factor receptor expression associated with resistance to concomitant chemoradiotherapy in glioblastoma. J Clin Oncol. 2008;26(18):3015–24. https://doi.org/10.1200/JCO.2007.15.7164.

    Article  CAS  PubMed  Google Scholar 

  65. Colman H, Zhang L, Sulman EP, McDonald JM, Shooshtari NL, Rivera A, et al. A multigene predictor of outcome in glioblastoma. Neuro-Oncology. 2010;12(1):49–57. https://doi.org/10.1093/neuonc/nop007.

    Article  CAS  PubMed  Google Scholar 

  66. Bhat KPL, Balasubramaniyan V, Vaillant B, Ezhilarasan R, Hummelink K, Hollingsworth F, et al. Mesenchymal differentiation mediated by NF-kappaB promotes radiation resistance in glioblastoma. Cancer Cell. 2013;24(3):331–46. https://doi.org/10.1016/j.ccr.2013.08.001.

    Article  CAS  PubMed  Google Scholar 

  67. Somarelli JA, Shetler S, Jolly MK, Wang X, Bartholf Dewitt S, Hish AJ, et al. Mesenchymal-epithelial transition in sarcomas is controlled by the combinatorial expression of microRNA 200s and GRHL2. Mol Cell Biol. 2016;36(19):2503–13. https://doi.org/10.1128/MCB.00373-16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Shen A, Zhang Y, Yang H, Xu R, Huang G. Overexpression of ZEB1 relates to metastasis and invasion in osteosarcoma. J Surg Oncol. 2012;105:830–4. https://doi.org/10.1002/jso.23012.

    Article  CAS  PubMed  Google Scholar 

  69. Alba-Castellón L, Batlle R, Francí C, Fernández-Aceñero MJ, Mazzolini R, Peña R, et al. Snail1 expression is required for sarcomagenesis. Neoplasia. 2014;16:413–21. https://doi.org/10.1016/j.neo.2014.05.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wang N, Qi Y, Zou H, Zhang W-J, Li F, Pang L-J, et al. Down-regulated E-cadherin expression is associated with poor five-year overall survival in bone and soft tissue sarcoma: results of a meta-analysis. PLoS One. 2015;10:e0121448. https://doi.org/10.1371/journal.pone.0121448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Grosshans J, Wieschaus E. A genetic link between morphogenesis and cell division during formation of the ventral furrow in Drosophila. Cell. 2000;101(5):523–31.

    Article  CAS  PubMed  Google Scholar 

  72. Mata J, Curado S, Ephrussi A, Rorth P. Tribbles coordinates mitosis and morphogenesis in Drosophila by regulating string/CDC25 proteolysis. Cell. 2000;101(5):511–22.

    Article  CAS  PubMed  Google Scholar 

  73. Murakami MS. Morphogenesis during Xenopus gastrulation requires Wee1-mediated inhibition of cell proliferation. Development. 2004;131:571–80. https://doi.org/10.1242/dev.00971.

    Article  CAS  PubMed  Google Scholar 

  74. Seher TC, Leptin M. Tribbles, a cell-cycle brake that coordinates proliferation and morphogenesis during Drosophila gastrulation. Curr Biol. 2000;10:623–9. https://doi.org/10.1016/S0960-9822(00)00502-9.

    Article  CAS  PubMed  Google Scholar 

  75. Comaills V, Kabeche L, Morris R, Buisson R, Yu M, Madden MW, et al. Genomic instability is induced by persistent proliferation of cells undergoing epithelial-to-mesenchymal transition. Cell Rep. 2016;17:2632–47. https://doi.org/10.1016/j.celrep.2016.11.022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Gruenbaum Y, Foisner R. Lamins: nuclear intermediate filament proteins with fundamental functions in nuclear mechanics and genome regulation. Annu Rev Biochem. 2015;84:131–64. https://doi.org/10.1146/annurev-biochem-060614-034115.

    Article  CAS  PubMed  Google Scholar 

  77. Guttinger S, Laurell E, Kutay U. Orchestrating nuclear envelope disassembly and reassembly during mitosis. Nat Rev Mol Cell Biol. 2009;10(3):178–91. https://doi.org/10.1038/nrm2641.

    Article  CAS  PubMed  Google Scholar 

  78. Gao C, Su Y, Koeman J, Haak E, Dykema K, Essenberg C, et al. Chromosome instability drives phenotypic switching to metastasis. Proc Natl Acad Sci U S A. 2016;113(51):14793–8. https://doi.org/10.1073/pnas.1618215113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Knouse KA, Lopez KE, Bachofner M, Amon A. Chromosome segregation fidelity in epithelia requires tissue architecture. Cell. 2018;175(1):200-11 e13. https://doi.org/10.1016/j.cell.2018.07.042.

    Article  CAS  Google Scholar 

  80. Diepenbruck M, Christofori G. Epithelial-mesenchymal transition (EMT) and metastasis: yes, no, maybe? Curr Opin Cell Biol. 2016;43:7–13. https://doi.org/10.1016/j.ceb.2016.06.002.

    Article  CAS  PubMed  Google Scholar 

  81. Shaul YD, Freinkman E, Comb WC, Cantor JR, Tam WL, Thiru P, et al. Dihydropyrimidine accumulation is required for the epithelial-mesenchymal transition. Cell. 2014;158:1094–109. https://doi.org/10.1016/j.cell.2014.07.032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Yang J, Mani SA, Donaher JL, Ramaswamy S, Itzykson RA, Come C, et al. Twist , a master regulator of morphogenesis , plays an essential role in tumor metastasis Ben Gurion University of the Negev. Cell. 2004;117:927–39. https://doi.org/10.1016/j.cell.2004.06.006.

    Article  CAS  PubMed  Google Scholar 

  83. Tsai JH, Donaher JL, Murphy DA, Chau S, Yang J. Spatiotemporal regulation of epithelial-mesenchymal transition is essential for squamous cell carcinoma metastasis. Cancer Cell. 2012;22(6):725–36. https://doi.org/10.1016/j.ccr.2012.09.022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Trimboli AJ, Fukino K, de Bruin A, Wei G, Shen L, Tanner SM, et al. Direct evidence for epithelial-mesenchymal transitions in breast cancer. Cancer Res. 2008;68(3):937–45. https://doi.org/10.1158/0008-5472.CAN-07-2148.

    Article  CAS  PubMed  Google Scholar 

  85. Rhim AD, Mirek ET, Aiello NM, Maitra A, Bailey JM, McAllister F, et al. EMT and dissemination precede pancreatic tumor formation. Cell. 2012;148:349–61. https://doi.org/10.1016/j.cell.2011.11.025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Sarrio D, Rodriguez-Pinilla SM, Hardisson D, Cano A, Moreno-Bueno G, Palacios J. Epithelial-mesenchymal transition in breast cancer relates to the basal-like phenotype. Cancer Res. 2008;68(4):989–97. https://doi.org/10.1158/0008-5472.CAN-07-2017.

    Article  CAS  PubMed  Google Scholar 

  87. McCart Reed AE, Kutasovic JR, Vargas AC, Jayanthan J, Al-Murrani A, Reid LE, et al. An epithelial to mesenchymal transition programme does not usually drive the phenotype of invasive lobular carcinomas. J Pathol. 2016;238:489–94. https://doi.org/10.1002/path.4668.

    Article  CAS  PubMed  Google Scholar 

  88. Alix-Panabieres C, Mader S, Pantel K. Epithelial-mesenchymal plasticity in circulating tumor cells. J Mol Med (Berl). 2017;95(2):133–42. https://doi.org/10.1007/s00109-016-1500-6.

    Article  CAS  Google Scholar 

  89. Francart ME, Lambert J, Vanwynsberghe AM, Thompson EW, Bourcy M, Polette M, et al. Epithelial-mesenchymal plasticity and circulating tumor cells: travel companions to metastases. Dev Dyn. 2018;247(3):432–50. https://doi.org/10.1002/dvdy.24506.

    Article  PubMed  Google Scholar 

  90. Zhang Z, Fan W, Deng Q, Tang S, Wang P, Xu P, et al. The prognostic and diagnostic value of circulating tumor cells in bladder cancer and upper tract urothelial carcinoma: a meta- analysis of 30 published studies. Oncotarget. 2017;8:59527–38. https://doi.org/10.18632/oncotarget.18521.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Khoo BL, Lee SC, Kumar P, Tan TZ, Warkiani ME, Ow SG, et al. Short-term expansion of breast circulating cancer cells predicts response to anti-cancer therapy. Oncotarget. 2015;6(17):15578–93. https://doi.org/10.18632/oncotarget.3903.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Thiery JP, Lim CT. Tumor dissemination: an EMT affair. Cancer Cell. 2013;23(3):272–3. https://doi.org/10.1016/j.ccr.2013.03.004.

    Article  CAS  PubMed  Google Scholar 

  93. Chen Y-Y, Ma L, Gong W-F, Zhong J-H, Han Z-G, Qi L-N, et al. Circulating tumor cells undergoing EMT provide a metric for diagnosis and prognosis of patients with hepatocellular carcinoma. Cancer Res. 2018;78:4731–44. https://doi.org/10.1158/0008-5472.can-17-2459.

    Article  CAS  PubMed  Google Scholar 

  94. Wu S, Liu S, Liu Z, Huang J, Pu X, Li J, et al. Classification of circulating tumor cells by epithelial-mesenchymal transition markers. PLoS ONE. 2015;10:1–14. https://doi.org/10.1371/journal.pone.0123976.

    Article  CAS  Google Scholar 

  95. Zhao X-H, Wang Z-R, Chen C-L, Di L, Bi Z-F, Li Z-H, et al. Molecular detection of epithelial-mesenchymal transition markers in circulating tumor cells from pancreatic cancer patients: Potential role in clinical practice. World J Gastroenterol. 2019;25:138–50. https://doi.org/10.3748/wjg.v25.i1.138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Hodara E, Morrison G, Cunha A, Zainfeld D, Xu T, Xu Y et al. Multiparametric liquid biopsy analysis in metastatic prostate cancer. JCI Insight. 2019;4(5). https://doi.org/10.1172/jci.insight.125529.

  97. Chistiakov DA, Chekhonin VP. Circulating tumor cells and their advances to promote cancer metastasis and relapse, with focus on glioblastoma multiforme. Exp Mol Pathol. 2018;105:166–74. https://doi.org/10.1016/j.yexmp.2018.07.007.

    Article  CAS  PubMed  Google Scholar 

  98. Aktas B, Tewes M, Fehm T, Hauch S, Kimmig R, Kasimir-Bauer S. Stem cell and epithelial-mesenchymal transition markers are frequently overexpressed in circulating tumor cells of metastatic breast cancer patients. Breast Cancer Res. 2009;11(4):R46.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Armstrong AJ, Marengo MS, Oltean S, Kemeny G, Bitting RL, Turnbull JD, et al. Circulating tumor cells from patients with advanced prostate and breast cancer display both epithelial and mesenchymal markers. Mol Cancer Res. 2011;9(8):997–1007. https://doi.org/10.1158/1541-7786.MCR-10-0490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Gradilone A, Raimondi C, Nicolazzo C, Petracca A, Gandini O, Vincenzi B, et al. Circulating tumor cells lacking cytokeratin in breast cancer: the importance of being mesenchymal. J Cell Mol Med. 2011;15:1066–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Kallergi G, Papadaki MA, Politaki E, Mavroudis D, Georgoulias V, Agelaki S. Epithelial to mesenchymal transition markers expressed in circulating tumour cells of early and metastatic breast cancer patients. Breast Cancer Res. 2011;13(3):R59. https://doi.org/10.1186/bcr2896.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Markou A, Strati A, Malamos N, Georgoulias V, Lianidou ES. Molecular characterization of circulating tumor cells in breast cancer by a liquid bead array hybridization assay. Clin Chem. 2011;57(3):421–30. https://doi.org/10.1373/clinchem.2010.154328.

    Article  CAS  PubMed  Google Scholar 

  103. Raimondi C, Gradilone A, Naso G, Vincenzi B, Petracca A, Nicolazzo C, et al. Epithelial-mesenchymal transition and stemness features in circulating tumor cells from breast cancer patients. Breast Cancer Res Treat. 2011;130:449–55.

    Article  CAS  PubMed  Google Scholar 

  104. Strati A, Markou A, Parisi C, Politaki E, Mavroudis D, Georgoulias V, et al. Gene expression profile of circulating tumor cells in breast cancer by RT-qPCR. BMC Cancer. 2011;11:422. https://doi.org/10.1186/1471-2407-11-422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Barriere G, Riouallon A, Renaudie J, Tartary M, Rigaud M. Mesenchymal and stemness circulating tumor cells in early breast cancer diagnosis. BMC Cancer. 2012;12:114. https://doi.org/10.1186/1471-2407-12-114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Barriere G, Riouallon A, Renaudie J, Tartary M, Rigaud M. Mesenchymal characterization: alternative to simple CTC detection in two clinical trials. Anticancer Res. 2012;32(8):3363–9.

    PubMed  Google Scholar 

  107. Giordano A, Gao H, Anfossi S, Cohen E, Mego M, Lee BN, et al. Epithelial-mesenchymal transition and stem cell markers in patients with HER2-positive metastatic breast cancer. Mol Cancer Ther. 2012;11(11):2526–34. https://doi.org/10.1158/1535-7163.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Kasimir-Bauer S, Hoffmann O, Wallwiener D, Kimmig R, Fehm T. Expression of stem cell and epithelial-mesenchymal transition markers in primary breast cancer patients with circulating tumor cells. Breast Cancer Res. 2012;14(1):R15. https://doi.org/10.1186/bcr3099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Mego M, Gao H, Lee BN, Cohen EN, Tin S, Giordano A, et al. Prognostic value of EMT-circulating tumor cells in metastatic breast cancer patients undergoing high-dose chemotherapy with autologous hematopoietic stem cell transplantation. J Cancer. 2012;3:369–80. https://doi.org/10.7150/jca.5111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Mego M, Mani SA, Lee BN, Li C, Evans KW, Cohen EN, et al. Expression of epithelial-mesenchymal transition-inducing transcription factors in primary breast cancer: the effect of neoadjuvant therapy. Int J Cancer. 2012;130(4):808–16. https://doi.org/10.1002/ijc.26037.

    Article  CAS  PubMed  Google Scholar 

  111. Baccelli I, Schneeweiss A, Riethdorf S, Stenzinger A, Schillert A, Vogel V, et al. Identification of a population of blood circulating tumor cells from breast cancer patients that initiates metastasis in a xenograft assay. Nat Biotechnol. 2013;31(6):539–44. https://doi.org/10.1038/nbt.2576.

    Article  CAS  PubMed  Google Scholar 

  112. Cierna Z, Mego M, Janega P, Karaba M, Minarik G, Benca J, et al. Matrix metalloproteinase 1 and circulating tumor cells in early breast cancer. BMC Cancer. 2014;14:472. https://doi.org/10.1186/1471-2407-14-472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Markiewicz A, Ksiazkiewicz M, Welnicka-Jaskiewicz M, Seroczynska B, Skokowski J, Szade J, et al. Mesenchymal phenotype of CTC-enriched blood fraction and lymph node metastasis formation potential. PLoS One. 2014;9(4):e93901. https://doi.org/10.1371/journal.pone.0093901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Markiewicz A, Welnicka-Jaskiewicz M, Seroczynska B, Skokowski J, Majewska H, Szade J, et al. Epithelial-mesenchymal transition markers in lymph node metastases and primary breast tumors – relation to dissemination and proliferation. Am J Transl Res. 2014;6(6):793–808.

    PubMed  PubMed Central  Google Scholar 

  115. Papadaki MA, Kallergi G, Zafeiriou Z, Manouras L, Theodoropoulos PA, Mavroudis D, et al. Co-expression of putative stemness and epithelial-to-mesenchymal transition markers on single circulating tumour cells from patients with early and metastatic breast cancer. BMC Cancer. 2014;14:651. https://doi.org/10.1186/1471-2407-14-651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Serrano MJ, Ortega FG, Alvarez-Cubero MJ, Nadal R, Sanchez-Rovira P, Salido M, et al. EMT and EGFR in CTCs cytokeratin negative non-metastatic breast cancer. Oncotarget. 2014;5(17):7486–97. https://doi.org/10.18632/oncotarget.2217.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Polioudaki H, Agelaki S, Chiotaki R, Politaki E, Mavroudis D, Matikas A, et al. Variable expression levels of keratin and vimentin reveal differential EMT status of circulating tumor cells and correlation with clinical characteristics and outcome of patients with metastatic breast cancer. BMC Cancer. 2015;15:1–10. https://doi.org/10.1186/s12885-015-1386-7.

    Article  CAS  Google Scholar 

  118. Satelli A, Brownlee Z, Mitra A, Meng QH, Li S. Circulating tumor cell enumeration with a combination of epithelial cell adhesion molecule-and cell-surface vimentin-based methods for monitoring breast cancer therapeutic response. Clin Chem. 2015;61:259–66. https://doi.org/10.1373/clinchem.2014.228122.

    Article  CAS  PubMed  Google Scholar 

  119. Ueo H, Sugimachi K, Gorges TM, Bartkowiak K, Yokobori T, Muller V, et al. Circulating tumour cell-derived plastin3 is a novel marker for predicting long-term prognosis in patients with breast cancer. Br J Cancer. 2015;112(9):1519–26. https://doi.org/10.1038/bjc.2015.132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Wang HY, Ahn S, Kim S, Park S, Jung D, Park S, et al. Detection of circulating tumor cell-specific markers in breast cancer patients using the quantitative RT-PCR assay. Int J Clin Oncol. 2015;20(5):878–90. https://doi.org/10.1007/s10147-015-0798-3.

    Article  CAS  PubMed  Google Scholar 

  121. Bourcy M, Suarez-Carmona M, Lambert J, Francart ME, Schroeder H, Delierneux C, et al. Tissue factor induced by epithelial-mesenchymal transition triggers a procoagulant state that drives metastasis of circulating tumor cells. Cancer Res. 2016;76(14):4270–82. https://doi.org/10.1158/0008-5472.can-15-2263.

    Article  CAS  PubMed  Google Scholar 

  122. Bulfoni M, Gerratana L, Del Ben F, Marzinotto S, Sorrentino M, Turetta M, et al. In patients with metastatic breast cancer the identification of circulating tumor cells in epithelial-to-mesenchymal transition is associated with a poor prognosis. Breast Cancer Res. 2016;18(1):30. https://doi.org/10.1186/s13058-016-0687-3.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Hensler M, Vancurova I, Becht E, Palata O, Strnad P, Tesarova P, et al. Gene expression profiling of circulating tumor cells and peripheral blood mononuclear cells from breast cancer patients. Oncoimmunology. 2016;5(4):e1102827. https://doi.org/10.1080/2162402x.2015.1102827.

    Article  PubMed  Google Scholar 

  124. Hyun KA, Koo GB, Han H, Sohn J, Choi W, Kim SI, et al. Epithelial-to-mesenchymal transition leads to loss of EpCAM and different physical properties in circulating tumor cells from metastatic breast cancer. Oncotarget. 2016;7(17):24677–87. https://doi.org/10.18632/oncotarget.8250.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Reijm EA, Sieuwerts AM, Smid M, Vries JB, Mostert B, Onstenk W, et al. An 8-gene mRNA expression profile in circulating tumor cells predicts response to aromatase inhibitors in metastatic breast cancer patients. BMC Cancer. 2016;16:123. https://doi.org/10.1186/s12885-016-2155-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Horimoto Y, Tokuda E, Murakami F, Uomori T, Himuro T, Nakai K, et al. Analysis of circulating tumour cell and the epithelial mesenchymal transition (EMT) status during eribulin-based treatment in 22 patients with metastatic breast cancer: a pilot study. J Transl Med. 2018;16(1):287. https://doi.org/10.1186/s12967-018-1663-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Guan X, Ma F, Li C, Wu S, Hu S, Huang J, et al. The prognostic and therapeutic implications of circulating tumor cell phenotype detection based on epithelial-mesenchymal transition markers in the first-line chemotherapy of HER2-negative metastatic breast cancer. Cancer Commun. 2019;39:1–10. https://doi.org/10.1186/s40880-018-0346-4.

    Article  Google Scholar 

  128. Markiewicz A, Topa J, Nagel A, Skokowski J, Seroczynska B, Stokowy T et al. Spectrum of epithelial-mesenchymal transition phenotypes in circulating tumour cells from early breast cancer patients. Cancer. 2019;11(1). https://doi.org/10.3390/cancers11010059.

  129. Pastushenko I, Brisebarre A, Sifrim A, Fioramonti M, Revenco T, Boumahdi S et al. Identification of the tumour transition states occurring during EMT. Nature. 2018;556. https://doi.org/10.1038/s41586-018-0040-3.

  130. Grigore AD, Jolly MK, Jia D, Farach-Carson MC, Levine H. Tumor budding: the name is EMT. Partial EMT. J Clin Med. 2016;5(5). https://doi.org/10.3390/jcm5050051.

  131. Jolly MK, Tripathi SC, Somarelli JA, Hanash SM, Levine H. Epithelial/mesenchymal plasticity: how have quantitative mathematical models helped improve our understanding? Mol Oncol. 2017;11:739–54. https://doi.org/10.1002/1878-0261.12084.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Arnoux V, Nassour M, L'Helgoualc'h A, Hipskind RA, Savagner P. Erk5 controls Slug expression and keratinocyte activation during wound healing. Mol Biol Cell. 2008;19(11):4738–49. https://doi.org/10.1091/mbc.E07-10-1078.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Blanco MJ, Barrallo-Gimeno A, Acloque H, Reyes AE, Tada M, Allende ML, et al. Snail1a and Snail1b cooperate in the anterior migration of the axial mesendoderm in the zebrafish embryo. Development. 2007;134(22):4073–81. https://doi.org/10.1242/dev.006858.

    Article  CAS  PubMed  Google Scholar 

  134. Futterman MA, Garcia AJ, Zamir EA. Evidence for partial epithelial-to-mesenchymal transition (pEMT) and recruitment of motile blastoderm edge cells during avian epiboly. Dev Dyn. 2011;240(6):1502–11. https://doi.org/10.1002/dvdy.22607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Grande MT, Sanchez-Laorden B, Lopez-Blau C, De Frutos CA, Boutet A, Arevalo M, et al. Snail1-induced partial epithelial-to-mesenchymal transition drives renal fibrosis in mice and can be targeted to reverse established disease. Nat Med. 2015;21(9):989–97. https://doi.org/10.1038/nm.3901.

    Article  CAS  PubMed  Google Scholar 

  136. Leroy P, Mostov KE. Slug is required for cell survival during partial epithelial-mesenchymal transition of HGF-induced tubulogenesis. Mol Biol Cell. 2007;18(5):1943–52. https://doi.org/10.1091/mbc.e06-09-0823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Lovisa S, LeBleu VS, Tampe B, Sugimoto H, Vadnagara K, Carstens JL, et al. Epithelial-to-mesenchymal transition induces cell cycle arrest and parenchymal damage in renal fibrosis. Nat Med. 2015;21(9):998–1009. https://doi.org/10.1038/nm.3902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. van Helvert S, Storm C, Friedl P. Mechanoreciprocity in cell migration. Nat Cell Biol. 2018;20(1):8–20. https://doi.org/10.1038/s41556-017-0012-0.

    Article  PubMed  Google Scholar 

  139. Aceto N, Bardia A, Miyamoto DT, Donaldson MC, Wittner BS, Spencer JA, et al. Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis. Cell. 2014;158:1110–22. https://doi.org/10.1016/j.cell.2014.07.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Au SH, Storey BD, Moore JC, Tang Q, Chen Y-L, Javaid S, et al. Clusters of circulating tumor cells traverse capillary-sized vessels. Proc Natl Acad Sci. 2016;113:4947–52. https://doi.org/10.1073/pnas.1524448113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Suo Y, Xie C, Zhu X, Fan Z, Yang Z, He H, et al. Proportion of circulating tumor cell clusters increases during cancer metastasis. Cytometry A. 2017;91(3):250–3. https://doi.org/10.1002/cyto.a.23037.

    Article  PubMed  Google Scholar 

  142. Murlidhar V, Reddy RM, Fouladdel S, Zhao L, Ishikawa MK, Grabauskiene S, et al. Poor prognosis indicated by venous circulating tumor cell clusters in early stage lung cancers. Cancer Res. 2017;77:5194–206. https://doi.org/10.1158/0008-5472.CAN-16-2072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Au SH, Edd J, Stoddard AE, Wong KHK, Fachin F, Maheswaran S, et al. Microfluidic isolation of circulating tumor cell clusters by size and asymmetry. Sci Rep. 2017;7:2433. https://doi.org/10.1038/s41598-017-01150-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Sarioglu AF, Aceto N, Kojic N, Donaldson MC, Zeinali M, Hamza B, et al. A microfluidic device for label-free, physical capture of circulating tumor cell clusters. Nat Methods. 2015;12:685–91. https://doi.org/10.1038/nmeth.3404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Szczerba BM, Castro-Giner F, Vetter M, Krol I, Gkountela S, Landin J, et al. Neutrophils escort circulating tumour cells to enable cell cycle progression. Nature. 2019;566(7745):553–7. https://doi.org/10.1038/s41586-019-0915-y.

    Article  CAS  PubMed  Google Scholar 

  146. Gkountela S, Castro-Giner F, Szczerba BM, Vetter M, Landin J, Scherrer R, et al. Circulating tumor cell clustering shapes DNA methylation to enable metastasis seeding. Cell. 2019;176(1–2):98-112 e14. https://doi.org/10.1016/j.cell.2018.11.046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Thiery JP, Acloque H, Huang RYJ, Nieto MA. Epithelial-mesenchymal transitions in development and disease. Cell. 2009;139:871–90. https://doi.org/10.1016/j.cell.2009.11.007.

    Article  CAS  PubMed  Google Scholar 

  148. Labelle M, Begum S, Hynes Richard O. Direct signaling between platelets and cancer cells induces an epithelial-mesenchymal-like transition and promotes metastasis. Cancer Cell. 2011;20:576–90. https://doi.org/10.1016/j.ccr.2011.09.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Cheung KJ, Ewald AJ. A collective route to metastasis: seeding by tumor cell clusters. Science (New York, NY). 2016;352:167–9. https://doi.org/10.1126/science.aaf6546.

    Article  CAS  Google Scholar 

  150. Friedl P, Gilmour D. Collective cell migration in morphogenesis, regeneration and cancer. Nat Rev Mol Cell Biol. 2009;10:445–57. https://doi.org/10.1038/nrm2720.

    Article  CAS  PubMed  Google Scholar 

  151. Cheung KJ, Padmanaban V, Silvestri V, Schipper K, Cohen JD, Fairchild AN, et al. Polyclonal breast cancer metastases arise from collective dissemination of keratin 14-expressing tumor cell clusters. Proc Natl Acad Sci U S A. 2016;113(7):E854–63. https://doi.org/10.1073/pnas.1508541113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Collisson EA, Sadanandam A, Olson P, Gibb WJ, Truitt M, Gu S, et al. Subtypes of pancreatic ductal adenocarcinoma and their differing responses to therapy. Nat Med. 2011;17(4):500–3. https://doi.org/10.1038/nm.2344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Bailey P, Chang DK, Nones K, Johns AL, Patch AM, Gingras MC, et al. Genomic analyses identify molecular subtypes of pancreatic cancer. Nature. 2016;531(7592):47–52. https://doi.org/10.1038/nature16965.

    Article  CAS  PubMed  Google Scholar 

  154. Moffitt RA, Marayati R, Flate EL, Volmar KE, Loeza SG, Hoadley KA, et al. Virtual microdissection identifies distinct tumor- and stroma-specific subtypes of pancreatic ductal adenocarcinoma. Nat Genet. 2015;47(10):1168–78. https://doi.org/10.1038/ng.3398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Mitra A, Mishra L, Li S. EMT, CTCs and CSCs in tumor relapse and drug-resistance. Oncotarget 2015;6. https://doi.org/10.18632/oncotarget.4037.

  156. Tan TZ, Miow QH, Miki Y, Noda T, Mori S, Huang RY, et al. Epithelial-mesenchymal transition spectrum quantification and its efficacy in deciphering survival and drug responses of cancer patients. EMBO Mol Med. 2014;6(10):1279–93. https://doi.org/10.15252/emmm.201404208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Tiwari N, Gheldof A, Tatari M, Christofori G. EMT as the ultimate survival mechanism of cancer cells. Semin Cancer Biol. 2012;22(3):194–207. https://doi.org/10.1016/j.semcancer.2012.02.013.

    Article  CAS  PubMed  Google Scholar 

  158. Frisch SM, Schaller M, Cieply B. Mechanisms that link the oncogenic epithelial-mesenchymal transition to suppression of anoikis. J Cell Sci. 2013;126(Pt 1):21–9. https://doi.org/10.1242/jcs.120907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Krawczyk N, Hartkopf A, Banys M, Meier-Stiegen F, Staebler A, Wallwiener M, et al. Prognostic relevance of induced and spontaneous apoptosis of disseminated tumor cells in primary breast cancer patients. BMC Cancer. 2014;14:394. https://doi.org/10.1186/1471-2407-14-394.

    Article  PubMed  PubMed Central  Google Scholar 

  160. Chebouti I, Kasimir-Bauer S, Buderath P, Wimberger P, Hauch S, Kimmig R, et al. EMT-like circulating tumor cells in ovarian cancer patients are enriched by platinum-based chemotherapy. Oncotarget. 2017;5:48820–31. https://doi.org/10.18632/oncotarget.16179.

    Article  Google Scholar 

  161. Yokobori T, Iinuma H, Shimamura T, Imoto S, Sugimachi K, Ishii H, et al. Plastin3 is a novel marker for circulating tumor cells undergoing the epithelial-mesenchymal transition and is associated with colorectal cancer prognosis. Cancer Res. 2013;73(7):2059–69. https://doi.org/10.1158/0008-5472.CAN-12-0326.

    Article  CAS  PubMed  Google Scholar 

  162. Karabacak NM, Spuhler PS, Fachin F, Lim EJ, Pai V, Ozkumur E, et al. Microfluidic, marker-free isolation of circulating tumor cells from blood samples. Nat Protoc. 2014;9(3):694–710. https://doi.org/10.1038/nprot.2014.044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Ge F, Zhang H, Wang DD, Li L, Lin PP. Enhanced detection and comprehensive in situ phenotypic characterization of circulating and disseminated heteroploid epithelial and glioma tumor cells. Oncotarget. 2015;6(29):27049–64. https://doi.org/10.18632/oncotarget.4819.

    Article  PubMed  PubMed Central  Google Scholar 

  164. Naume B, Borgen E, Tossvik S, Pavlak N, Oates D, Nesland JM. Detection of isolated tumor cells in peripheral blood and in BM: evaluation of a new enrichment method. Cytotherapy. 2004;6(3):244–52. https://doi.org/10.1080/14653240410006086.

    Article  CAS  PubMed  Google Scholar 

  165. Wang ZP, Eisenberger MA, Carducci MA, Partin AW, Scher HI, Ts'o PO. Identification and characterization of circulating prostate carcinoma cells. Cancer. 2000;88(12):2787–95.

    Article  CAS  PubMed  Google Scholar 

  166. Hosokawa M, Kenmotsu H, Koh Y, Yoshino T, Yoshikawa T, Naito T et al. Size-based isolation of circulating tumor cells in lung cancer patients using a microcavity array system. PLoS ONE. 2013;8. https://doi.org/10.1371/journal.pone.0067466.

  167. Kim T-H, Lim M, Park J, Oh JM, Kim H, Jeong H, et al. FAST: size-selective, clog-free isolation of rare cancer cells from whole blood at a liquid–liquid interface. Anal Chem. 2017;89:1155–62. https://doi.org/10.1021/acs.analchem.6b03534.

    Article  CAS  PubMed  Google Scholar 

  168. Hayashi M, Zhu P, McCarty G, Meyer CF, Pratilas CA, Levin A, et al. Size-based detection of sarcoma circulating tumor cells and cell clusters. Oncotarget. 2017;8(45):78965–77. https://doi.org/10.18632/oncotarget.20697.

    Article  PubMed  PubMed Central  Google Scholar 

  169. Rosenberg R, Gertler R, Friederichs J, Fuehrer K, Dahm M, Phelps R, et al. Comparison of two density gradient centrifugation systems for the enrichment of disseminated tumor cells in blood. Cytometry. 2002;49:150–8. https://doi.org/10.1002/cyto.10161.

    Article  CAS  PubMed  Google Scholar 

  170. Hou JM, Krebs M, Ward T, Sloane R, Priest L, Hughes A, et al. Circulating tumor cells as a window on metastasis biology in lung cancer. Am J Pathol. 2011;178(3):989–96. https://doi.org/10.1016/j.ajpath.2010.12.003.

    Article  PubMed  PubMed Central  Google Scholar 

  171. Gogoi P, Sepehri S, Zhou Y, Gorin MA, Paolillo C, Capoluongo E, et al. Development of an automated and sensitive microfluidic device for capturing and characterizing circulating tumor cells (CTCs) from clinical blood samples. PLoS One. 2016;11:e0147400. https://doi.org/10.1371/journal.pone.0147400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Kim YJ, Kang YT, Cho YH. Poly(ethylene glycol)-modified tapered-slit membrane filter for efficient release of captured viable circulating tumor cells. Anal Chem. 2016;88:7938–45. https://doi.org/10.1021/acs.analchem.5b04927.

    Article  CAS  PubMed  Google Scholar 

  173. Friedlander TW, Premasekharan G, Paris PL. Looking back, to the future of circulating tumor cells. Pharmacol Ther. 2014;142(3):271–80. https://doi.org/10.1016/j.pharmthera.2013.12.011.

    Article  CAS  PubMed  Google Scholar 

  174. Chen L, Peng M, Li N, Song Q, Yao Y, Xu B, et al. Combined use of EpCAM and FR α enables the high-efficiency capture of circulating tumor cells in non- small cell lung cancer. Sci Rep. 2018:1–10. https://doi.org/10.1038/s41598-018-19391-1.

  175. Cho EH, Wendel M, Luttgen M, Yoshioka C, Marrinucci D, Lazar D, et al. Characterization of circulating tumor cell aggregates identified in patients with epithelial tumors. Phys Biol. 2012;9(1):016001. https://doi.org/10.1088/1478-3975/9/1/016001.

    Article  PubMed  PubMed Central  Google Scholar 

  176. Marrinucci D, Bethel K, Kolatkar A, Luttgen MS, Malchiodi M, Baehring F, et al. Fluid biopsy in patients with metastatic prostate, pancreatic and breast cancers. Phys Biol. 2012;9(1):016003. https://doi.org/10.1088/1478-3975/9/1/016003.

    Article  PubMed  PubMed Central  Google Scholar 

  177. Kuhn P, Bruce RH, Ladanyi A, Lerner RA, Hsieh HB, Curry DN, et al. A rare-cell detector for cancer. Proc Natl Acad Sci. 2004;101:10501–4. https://doi.org/10.1073/pnas.0404036101.

    Article  PubMed  PubMed Central  Google Scholar 

  178. Nagrath S, Sequist LV, Maheswaran S, Bell DW, Irimia D, Ulkus L, et al. Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature. 2007;450:1235–9. https://doi.org/10.1038/nature06385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Stott SL, Lee RJ, Nagrath S, Yu M, Miyamoto DT, Ulkus L, et al. Isolation and characterization of circulating tumor cells from patients with localized and metastatic prostate. Cancer. 2010;2:25ra23.

    Google Scholar 

  180. Zhao M, Wei B, Chiu DT. Imaging multiple biomarkers in captured rare cells by sequential immunostaining and photobleaching. Methods. 2013;64(2):108–13. https://doi.org/10.1016/j.ymeth.2013.08.006.

    Article  CAS  PubMed  Google Scholar 

  181. Murlidhar V, Zeinali M, Grabauskiene S, Ghannad-Rezaie M, Wicha MS, Simeone DM, et al. A radial flow microfluidic device for ultra-high-throughput affinity-based isolation of circulating tumor cells. Small. 2014;10(23):4895–904. https://doi.org/10.1002/smll.201400719.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Magbanua MJM, Carey LA, DeLuca A, Hwang J, Scott JH, Rimawi MF, et al. Circulating tumor cell analysis in metastatic triple-negative breast cancers. Clin Cancer Res. 2015;21:1098–105. https://doi.org/10.1158/1078-0432.CCR-14-1948.

    Article  CAS  PubMed  Google Scholar 

  183. Kim MS, Sim TS, Kim YJ, Kim SS, Jeong H, Park J-M, et al. SSA-MOA: a novel CTC isolation platform using selective size amplification (SSA) and a multi-obstacle architecture (MOA) filter. Lab Chip. 2012;12:2874. https://doi.org/10.1039/c2lc40065k.

    Article  CAS  PubMed  Google Scholar 

  184. Harouaka RA, Zhou MD, Yeh YT, Khan WJ, Das A, Liu X, et al. Flexible micro spring array device for high-throughput enrichment of viable circulating tumor cells. Clin Chem. 2014;60(2):323–33. https://doi.org/10.1373/clinchem.2013.206805.

    Article  CAS  PubMed  Google Scholar 

  185. Cabel L, Proudhon C, Gortais H, Loirat D, Coussy F, Pierga JY, et al. Circulating tumor cells: clinical validity and utility. Int J Clin Oncol. 2017;22(3):421–30. https://doi.org/10.1007/s10147-017-1105-2.

    Article  PubMed  Google Scholar 

  186. Patel V, Keating MJ, Wierda WG, Gandhi V. Preclinical combination of TP-0903, an AXL inhibitor and B-PAC-1, a procaspase-activating compound with ibrutinib in chronic lymphocytic leukemia. Leuk Lymphoma. 2016;57:1494–7. https://doi.org/10.3109/10428194.2015.1102243.

    Article  PubMed  Google Scholar 

  187. Giannelli G, Villa E, Lahn M. Transforming growth factor-beta as a therapeutic target in hepatocellular carcinoma. Cancer Res. 2014;74(7):1890–4. https://doi.org/10.1158/0008-5472.CAN-14-0243.

    Article  CAS  PubMed  Google Scholar 

  188. Rodon J, Carducci M, Sepulveda-Sanchez JM, Azaro A, Calvo E, Seoane J, et al. Pharmacokinetic, pharmacodynamic and biomarker evaluation of transforming growth factor-beta receptor I kinase inhibitor, galunisertib, in phase 1 study in patients with advanced cancer. Investig New Drugs. 2015;33(2):357–70. https://doi.org/10.1007/s10637-014-0192-4.

    Article  CAS  Google Scholar 

  189. Puls LN, Eadens M, Messersmith W. Current status of SRC inhibitors in solid tumor malignancies. Oncologist. 2011;16(5):566–78. https://doi.org/10.1634/theoncologist.2010-0408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Hospital ZPPs. Aspirin on CTCs of advanced breast and colorectal cancer. 2015. https://ClinicalTrials.gov/show/NCT02602938

  191. Biotherapeutics A. Phase I dose escalation study of AB-16B5 in subjects with an advanced solid malignancy. 2015. https://ClinicalTrials.gov/show/NCT02412462

  192. Tolero Pharmaceuticals I. First-in-human study of oral TP-0903 (a Novel Inhibitor of AXL Kinase) in patients with advanced solid tumors. 2016. https://ClinicalTrials.gov/show/NCT02729298.

  193. Alderton GK. Metastasis: epithelial to mesenchymal and back again. Nat Rev Cancer. 2013;13(1):3. https://doi.org/10.1038/nrc3428.

    Article  CAS  PubMed  Google Scholar 

  194. Brabletz T. To differentiate or not – routes towards metastasis. Nat Rev Cancer. 2012;12:425–36. https://doi.org/10.1038/nrc3265.

    Article  CAS  PubMed  Google Scholar 

  195. Beerling E, Seinstra D, de Wit E, Kester L, van der Velden D, Maynard C, et al. Plasticity between epithelial and mesenchymal states unlinks EMT from metastasis-enhancing stem cell capacity. Cell Rep. 2016;14(10):2281–8. https://doi.org/10.1016/j.celrep.2016.02.034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Nieto MA. Epithelial plasticity: a common theme in embryonic and cancer cells. Science. 2013;342(6159):1234850. https://doi.org/10.1126/science.1234850.

    Article  CAS  PubMed  Google Scholar 

  197. Maheswaran S, Haber DA. Ex vivo culture of CTCs: an emerging resource to guide cancer therapy. Cancer Res. 2015;75:2411–6. https://doi.org/10.1158/0008-5472.CAN-15-0145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shyamala Maheswaran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Burr, R., Gilles, C., Thompson, E.W., Maheswaran, S. (2020). Epithelial-Mesenchymal Plasticity in Circulating Tumor Cells, the Precursors of Metastasis. In: Piñeiro, R. (eds) Circulating Tumor Cells in Breast Cancer Metastatic Disease. Advances in Experimental Medicine and Biology, vol 1220. Springer, Cham. https://doi.org/10.1007/978-3-030-35805-1_2

Download citation

Publish with us

Policies and ethics