Skip to main content

Heritable Thoracic Aortic Diseases: Syndromal and Isolated (F)TAAD

  • Chapter
  • First Online:
Clinical Cardiogenetics

Abstract

Heritable thoracic aortic disease (H-TAD) comprises a heterogeneous group of disorders with as a common denominator aortic aneurysm or dissection. Depending on the presence or absence of manifestations in other organ systems, H-TAD can be further subdivided into syndromic and nonsyndromic H-TAD. Pathogenic variants have been identified in numerous genes involved in structure and in maintenance of tissue homeostasis in the aortic wall. Identification of the underlying genetic defect is not only important for confirmation of the diagnosis but may also help in risk stratification and guidance of management—which will ultimately lead to more personalized medicine. A substantial proportion of (mainly nonsyndromic) families with H-TAD remains in whom the underlying gene defect has not been identified yet, and in these cases, clinical imaging of patients and relatives is the mainstay of follow-up.

Life expectancy in H-TAD patients is mainly determined by the risk for aortic dissection and depends at least partly on the underlying molecular diagnosis. Aneurysms and dissections in these disease entities will most commonly occur in the ascending thoracic part of the aorta, but more distal aortic locations as well as involvement of branching vessels in some cases should also be taken into account. Timely diagnosis and treatment is crucial and should be performed in a multidisciplinary setting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Loeys BL, Dietz HC, Braverman AC, Callewaert BL, De Backer J, Devereux RB, et al. The revised Ghent nosology for the Marfan syndrome. J Med Genet. 2010 Jun 30;47(7):476–85.

    CAS  PubMed  Google Scholar 

  2. Faivre L, Masurel-Paulet A, Collod-Beroud G, Callewaert BL, Child AH, Stheneur C, et al. Clinical and molecular study of 320 children with Marfan syndrome and related type I fibrillinopathies in a series of 1009 probands with pathogenic FBN1 mutations. Pediatrics. 2009 Jan;123(1):391–8. Available from: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=19117906&retmode=ref&cmd=prlinks

  3. Milewicz DM, Michael K, Fisher N, Coselli JS, Markello T, Biddinger A. Fibrillin-1 (FBN1) mutations in patients with thoracic aortic aneurysms. Circulation. 1996 Dec 1;94(11):2708–11.

    CAS  PubMed  Google Scholar 

  4. Pepin M, Schwarze U, Superti-Furga A, Byers PH. Clinical and genetic features of Ehlers-Danlos syndrome type IV, the vascular type. N Engl J Med. 2000 Mar 9;342(10):673–80.

    CAS  PubMed  Google Scholar 

  5. Campens L, Callewaert B, Muiño Mosquera L, Renard M, Symoens S, de Paepe A, et al. Gene panel sequencing in heritable thoracic aortic disorders and related entities – results of comprehensive testing in a cohort of 264 patients. Orphanet J Rare Dis. 2015;10(1):9.

    PubMed  PubMed Central  Google Scholar 

  6. Barbier M, Gross M-S, Aubart M, Hanna N, Kessler K, Guo D-C, et al. MFAP5 loss-of-function mutations underscore the involvement of matrix alteration in the pathogenesis of familial thoracic aortic aneurysms and dissections. Am J Hum Genet. 2014 Dec 4;95(6):736–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Guo DC, Regalado ES, Gong L, Duan X, Santos-Cortez RL, Arnaud P, et al. LOX mutations predispose to thoracic aortic aneurysms and dissections. Circ Res. 2016 Mar 18;118(6):928–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Loeys BL, Schwarze U, Holm T, Callewaert BL, Thomas GH, Pannu H, et al. Aneurysm syndromes caused by mutations in the TGF-beta receptor. N Engl J Med. 2006 Aug 24;355(8):788–98.

    CAS  PubMed  Google Scholar 

  9. Loeys BL, Chen J, Neptune ER, Judge DP, Podowski M, Holm T, et al. A syndrome of altered cardiovascular, craniofacial, neurocognitive and skeletal development caused by mutations in TGFBR1 or TGFBR2. Nat Genet. 2005 Jan 30;37(3):275–81.

    CAS  PubMed  Google Scholar 

  10. Stheneur C, Collod-Beroud G, Faivre L, Gouya L, Sultan G, Le Parc J-M, et al. Identification of 23 TGFBR2 and 6 TGFBR1 gene mutations and genotype-phenotype investigations in 457 patients with Marfan syndrome type I and II, Loeys-Dietz syndrome and related disorders. Hum Mutat. 2008 Nov;29(11):E284–95.

    PubMed  Google Scholar 

  11. Singh KK, Rommel K, Mishra A, Karck M, Haverich A, Schmidtke J, et al. TGFBR1 and TGFBR2 mutations in patients with features of Marfan syndrome and Loeys-Dietz syndrome. Hum Mutat. 2006 Aug;27(8):770–7.

    CAS  PubMed  Google Scholar 

  12. Mizuguchi T, Collod-Beroud G, Akiyama T, Abifadel M, Harada N, Morisaki T, et al. Heterozygous TGFBR2 mutations in Marfan syndrome. Nat Genet. 2004 Aug 4;36(8):855–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Disabella E, Grasso M, Marziliano N, Ansaldi S, Lucchelli C, Porcu E, et al. Two novel and one known mutation of the TGFBR2 gene in Marfan syndrome not associated with FBN1 gene defects. Eur J Hum Genet. 2006 Jan;14(1):34–8.

    CAS  PubMed  Google Scholar 

  14. Attias D, Stheneur C, Roy C, Collod-Beroud G, Detaint D, Faivre L, et al. Comparison of clinical presentations and outcomes between patients with TGFBR2 and FBN1 mutations in Marfan syndrome and related disorders. Circulation. 2009 Dec 22;120(25):2541–9.

    CAS  PubMed  Google Scholar 

  15. Pannu H. Mutations in transforming growth factor- receptor type II cause familial thoracic aortic aneurysms and dissections. Circulation. 2005 Jul 18;112(4):513–20.

    CAS  PubMed  Google Scholar 

  16. Micha D, Guo DC, Hilhorst-Hofstee Y, van Kooten F, Atmaja D, Overwater E, et al. SMAD2 mutations are associated with arterial aneurysms and dissections. Hum Mutat. 2015 Dec;36(12):1145–9.

    CAS  PubMed  Google Scholar 

  17. MacCarrick G, Black JH, Bowdin S, El-Hamamsy I, Frischmeyer-Guerrerio PA, Guerrerio AL, et al. Loeys-Dietz syndrome: a primer for diagnosis and management. Genet Med. 2014;27:576–87.

    Google Scholar 

  18. van der Linde D, van de Laar IMBH, Bertoli-Avella AM, Oldenburg RA, Bekkers JA, Mattace-Raso FUS, et al. Aggressive cardiovascular phenotype of aneurysms-osteoarthritis syndrome caused by pathogenic SMAD3 variants. J Am Coll Cardiol. 2012 Jul 31;60(5):397–403. Available from: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=22633655&retmode=ref&cmd=prlinks

  19. van de Laar IMBH, Oldenburg RA, Pals G, Roos-Hesselink JW, de Graaf BM, Verhagen JMA, et al. Mutations in SMAD3 cause a syndromic form of aortic aneurysms and dissections with early-onset osteoarthritis. Nat Genet. 2011 Feb 1;43(2):121–6.

    PubMed  Google Scholar 

  20. Regalado ES, Guo D-C, Villamizar C, Avidan N, Gilchrist D, McGillivray B, et al. Exome sequencing identifies SMAD3 mutations as a cause of familial thoracic aortic aneurysm and dissection with intracranial and other arterial aneurysms. Circ Res. 2011 Sep 2;109(6):680–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang Y, Huang HY, Bian GL, Yu YS, Ye WX, Hua F, et al. A functional variant of SMAD4 enhances thoracic aortic aneurysm and dissection risk through promoting smooth muscle cell apoptosis and proteoglycan degradation. EBioMedicine. 2017 Jul;21:197–205.

    PubMed  PubMed Central  Google Scholar 

  22. Lindsay ME, Schepers D, Bolar NA, Doyle JJ, Gallo E, Fert-Bober J, et al. Loss-of-function mutations in TGFB2 cause a syndromic presentation of thoracic aortic aneurysm. Nat Genet. 2012 Jul;8:1–7. https://doi.org/10.1038/ng.2349.

    Article  CAS  Google Scholar 

  23. Guo D-C, Hanna N, Regalado ES, Detaint D, Gong L, Varret M, et al. TGFB2 mutations cause familial thoracic aortic aneurysms and dissections associated with mild systemic features of Marfan syndrome. Nat Genet. 2012;8:1–8.

    Google Scholar 

  24. Renard M, Callewaert B, Malfait F, Campens L, Sharif S, Del Campo M, et al. Thoracic aortic-aneurysm and dissection in association with significant mitral valve disease caused by mutations in TGFB2. Int J Cardiol. 2012 Oct 22;165(3):584–7. Available from: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=23102774&retmode=ref&cmd=prlinks

  25. Rienhoff HY, Yeo C-Y, Morissette R, Khrebtukova I, Melnick J, Luo S, et al. A mutation in TGFB3 associated with a syndrome of low muscle mass, growth retardation, distal arthrogryposis and clinical features overlapping with marfan and loeys-dietz syndrome. Am J Med Genet A. 2013 Jul;3:2040–6.

    Google Scholar 

  26. Morisaki H, Akiko Y, Itaru Y, Razia S, Tatsuya O, Hiroshu T. Pathogenic mutations found in 3 Japanese families with MFS/LDS-like disorder. Paris.

    Google Scholar 

  27. Matyas G, Naef P, Oexle K. De novo TGFB3 mutation in a patient with overgrowth and Loeys-Dietz Syndrome features. Paris.

    Google Scholar 

  28. Milewicz DM, Ostergaard JR, Ala-Kokko LM, Khan N, Grange DK, Mendoza-Londono R, et al. De novo ACTA2 mutation causes a novel syndrome of multisystemic smooth muscle dysfunction. Am J Med Genet A. 2010 Oct;152A(10):2437–43.

    PubMed  PubMed Central  Google Scholar 

  29. Munot P, Saunders DE, Milewicz DM, Regalado ES, Ostergaard JR, Braun KP, et al. A novel distinctive cerebrovascular phenotype is associated with heterozygous Arg179 ACTA2 mutations. Brain. 2012 Aug;135(Pt 8):2506–14.

    PubMed  PubMed Central  Google Scholar 

  30. Meuwissen MEC, Lequin MH, Bindels-de Heus K, Bruggenwirth HT, Knapen MFCM, Dalinghaus M, et al. ACTA2 mutation with childhood cardiovascular, autonomic and brain anomalies and severe outcome. Am J Med Genet A. 2013 Jun;161A(6):1376–80.

    PubMed  Google Scholar 

  31. Guo D-C, Pannu H, Tran-Fadulu V, Papke CL, Yu RK, Avidan N, et al. Mutations in smooth muscle α-actin (ACTA2) lead to thoracic aortic aneurysms and dissections. Nat Genet. 2007 Nov 11;39(12):1488–93.

    CAS  PubMed  Google Scholar 

  32. Renard M, Callewaert B, Baetens M, Campens L, Macdermot K, Fryns J-P, et al. Novel MYH11 and ACTA2 mutations reveal a role for enhanced TGFbeta signaling in FTAAD. Int J Cardiol. 2011 Sep 19;165(2):314–21. Available from: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=21937134&retmode=ref&cmd=prlinks

  33. Wang L, Guo D-C, Cao J, Gong L, Kamm KE, Regalado E, et al. Mutations in myosin light chain kinase cause familial aortic dissections. Am J Hum Genet. 2010 Nov 12;87(5):701–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Guo D-C, Regalado E, Casteel DE, Santos-Cortez RL, Gong L, Kim JJ, et al. Recurrent gain-of-function mutation in PRKG1 causes thoracic aortic aneurysms and acute aortic dissections. Am J Hum Genet. 2013 Aug 8;93(2):398–404.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhu L, Vranckx R, van Kien PK, Lalande A, Boisset N, Mathieu F, et al. Mutations in myosin heavy chain 11 cause a syndrome associating thoracic aortic aneurysm/aortic dissection and patent ductus arteriosus. Nat Genet. 2006 Jan 29;38(3):343–9.

    CAS  PubMed  Google Scholar 

  36. Pannu H, Tran-Fadulu V, Papke CL, Scherer S, Liu Y, Presley C, et al. MYH11 mutations result in a distinct vascular pathology driven by insulin-like growth factor 1 and angiotensin II. Hum Mol Genet. 2007 Apr 5;16(20):2453–62.

    CAS  PubMed  Google Scholar 

  37. Marfan AB. Un cas de déformation congénitale des quatres membres, plus prononcée aux extrémités, caractérisée par l“allongement des avec un certain degré d”amincissement. Bull Mem Soc Med Hop Paris. 1896 Jan 1;13:220–6.

    Google Scholar 

  38. VA MK, editor. Heritable disorders of connective tissue. St Louis: Mosby CA; 1956.

    Google Scholar 

  39. Pyeritz RE. Marfan syndrome: 30 years of research equals 30 years of additional life expectancy. Heart. 2008 Nov 25;95(3):173–5.

    PubMed  Google Scholar 

  40. Silverman DI, Burton KJ, Gray J, Bosner MS, Kouchoukos NT, Roman MJ, et al. Life expectancy in the Marfan syndrome. Am J Cardiol. 1995 Jan 15;75(2):157–60.

    CAS  PubMed  Google Scholar 

  41. Groth KA, Stochholm K, Hove H, Andersen NH, Gravholt CH. Causes of mortality in the Marfan syndrome (from a Nationwide Register Study). Am J Cardiol. 2018 Oct 1;122(7):1231–5.

    PubMed  Google Scholar 

  42. Braverman AC, Harris KM, Kovacs RJ, Maron BJ. Eligibility and disqualification recommendations for competitive athletes with cardiovascular abnormalities: task force 7: aortic diseases, including Marfan syndrome: a scientific statement from the American Heart Association and American College of Cardiology. Circulation. 2015;132:e303–9.

    PubMed  Google Scholar 

  43. Jondeau G, Detaint D, Tubach F, Arnoult F, Milleron O, Raoux F, et al. Aortic event rate in the Marfan population: a cohort study. Circulation. 2012 Jan 17;125(2):226–32.

    PubMed  Google Scholar 

  44. Meijboom LJ. Pregnancy and aortic root growth in the Marfan syndrome: a prospective study. Eur Heart J. 2005 Mar 21;26(9):914–20.

    PubMed  Google Scholar 

  45. Donnelly RT, Pinto NM, Kocolas I, Yetman AT. The immediate and long-term impact of pregnancy on aortic growth rate and mortality in women with Marfan syndrome. J Am Coll Cardiol. 2012 Jul 17;60(3):224–9.

    PubMed  Google Scholar 

  46. Teixido-Tura G, Franken R, Galuppo V, Gutiérrez García-Moreno L, Borregan M, BJM M, et al. Heterogeneity of aortic disease severity in patients with Loeys-Dietz syndrome. Heart. 2016 Feb 4;102(8):626–32.

    CAS  PubMed  Google Scholar 

  47. Teixidó-Tura G, Franken R, Galuppo V, Gutiérrez García-Moreno L, Borregan M, Mulder BJ, et al. Heterogeneity of aortic disease severity in patients with Loeys-Dietz syndrome. Heart. 2016 Apr;102(8):626–32.

    PubMed  Google Scholar 

  48. Jondeau G, Ropers J, Regalado E, Braverman A, Evangelista A, Teixedo G, et al. International registry of patients carrying TGFBR1 or TGFBR2 mutations: results of the MAC (Montalcino Aortic Consortium). Circ Cardiovasc Genet. 2016 Dec;9(6):548–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Malfait F, Francomano C, Byers P, Belmont J, Berglund B, Black J, et al. The 2017 international classification of the Ehlers-Danlos syndromes. Am J Med Genet C Semin Med Genet. 2017 Mar;175(1):8–26.

    PubMed  Google Scholar 

  50. Byers PH. Ehlers-Danlos syndrome: recent advances and current understanding of the clinical and genetic heterogeneity. J Invest Dermatol. 1994 Nov;103(5 Suppl):47S–52S.

    CAS  PubMed  Google Scholar 

  51. Oderich GS, Panneton JM, Bower TC, Lindor NM, Cherry KJ, Noel AA, et al. The spectrum, management and clinical outcome of Ehlers-Danlos syndrome type IV: a 30-year experience. J Vasc Surg. 2005 Jul;42(1):98–106.

    PubMed  Google Scholar 

  52. Murray ML, Pepin M, Peterson S, Byers PH. Pregnancy-related deaths and complications in women with vascular Ehlers-Danlos syndrome. Genet Med. 2014 Dec;16(12):874–80.

    PubMed  Google Scholar 

  53. Lemire BD, Buncic JR, Kennedy SJ, Dyack SJ, Teebi AS. Congenital mydriasis, patent ductus arteriosus, and congenital cystic lung disease: new syndromic spectrum? Am J Med Genet A. 2004 Dec 15;131(3):318–9.

    PubMed  Google Scholar 

  54. Regalado ES, Mellor-Crummey L, De Backer J, Braverman AC, Ades L, Benedict S, et al. Clinical history and management recommendations of the smooth muscle dysfunction syndrome due to ACTA2 arginine 179 alterations. Genet Med. 2018 Oct;20(10):1206–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Logeswaran T, Friedburg C, Hofmann K, Akintuerk H, Biskup S, Graef M, et al. Two patients with the heterozygous R189H mutation in ACTA2 and Complex congenital heart defects expands the cardiac phenotype of multisystemic smooth muscle dysfunction syndrome. Am J Med Genet A. 2017 Apr;173(4):959–65.

    CAS  PubMed  Google Scholar 

  56. Isselbacher EM. Thoracic and abdominal aortic aneurysms. Circulation. 2005 Feb 15;111(6):816–28.

    PubMed  Google Scholar 

  57. Pyeritz RE. Heritable thoracic aortic disorders. Curr Opin Cardiol. 2014 Jan;29(1):97–102.

    PubMed  Google Scholar 

  58. Albornoz G, Coady M, Roberts M, Davies R, Tranquilli M, Rizzo J, et al. Familial thoracic aortic aneurysms and dissections—incidence, modes of inheritance, and phenotypic patterns. Ann Thorac Surg. 2006 Oct;82(4):1400–5.

    PubMed  Google Scholar 

  59. Coady MA, Rizzo JA, Goldstein LJ, Elefteriades JA. Natural history, pathogenesis, and etiology of thoracic aortic aneurysms and dissections. Cardiol Clin. 1999 Nov;17(4):615–35.

    CAS  PubMed  Google Scholar 

  60. Strande NT, Riggs ER, Buchanan AH, Ceyhan-Birsoy O, DiStefano M, Dwight SS, et al. Evaluating the clinical validity of gene-disease associations: an evidence-based framework developed by the clinical genome resource. Am J Hum Genet. 2017 Jun 1;100(6):895–906.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Renard M, Francis C, Ghosh R, Scott AF, Witmer PD, Adès LC, et al. Clinical validity of genes for heritable thoracic aortic aneurysm and dissection. J Am Coll Cardiol. 2018 Aug 7;72(6):605–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Wooderchak-Donahue W, VanSant-Webb C, Tvrdik T, Plant P, Lewis T, Stocks J, et al. Clinical utility of a next generation sequencing panel assay for Marfan and Marfan-like syndromes featuring aortopathy. Am J Med Genet A. 2015 May 5;167A(8):1747–57.

    PubMed  Google Scholar 

  63. Guo DC, Hostetler EM, Fan Y, Kulmacz RJ, Zhang D. GenTAC Investigators et al. Heritable thoracic aortic disease genes in sporadic aortic dissection. J Am Coll Cardiol. 2017 Nov 28;70(21):2728–30.

    PubMed  PubMed Central  Google Scholar 

  64. Regalado ES, Guo DC, Prakash S, Bensend TA, Flynn K, Estrera A, et al. Aortic disease presentation and outcome associated with ACTA2 mutations. Circ Cardiovasc Genet. 2015 Jun;8(3):457–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Coron F, Rousseau T, Jondeau G, Gautier E, Binquet C, Gouya L, et al. What do French patients and geneticists think about prenatal and preimplantation diagnoses in Marfan syndrome? Prenat Diagn. 2012 Dec;32(13):1318–23.

    CAS  PubMed  Google Scholar 

  66. Radonic T, de Witte P, Groenink M, de Bruin-Bon RACM, Timmermans J, Scholte AJH, et al. Critical appraisal of the revised Ghent criteria for diagnosis of Marfan syndrome. Clin Genet. 2011 Oct;80(4):346–53.

    CAS  PubMed  Google Scholar 

  67. Finkbohner R, Johnston D, Crawford ES, Coselli J, Milewicz DM. Marfan syndrome. Long-term survival and complications after aortic aneurysm repair. Circulation. 1995 Feb 1;91(3):728–33.

    CAS  PubMed  Google Scholar 

  68. Engelfriet PM. Beyond the root: dilatation of the distal aorta in Marfan’s syndrome. Heart. 2006 Jul 19;92(9):1238–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Mulder BJM. The distal aorta in the Marfan syndrome. Neth Heart J. 2008 Nov;16(11):382–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Franken R, El Morabit A, de Waard V, Timmermans J, Scholte AJ, van den Berg MP, et al. Increased aortic tortuosity indicates a more severe aortic phenotype in adults with Marfan syndrome. Int J Cardiol. 2015 Sep 1;194:7–12.

    PubMed  Google Scholar 

  71. Morris SA. Arterial tortuosity in genetic arteriopathies. Curr Opin Cardiol. 2015 Nov;30(6):587–93.

    PubMed  PubMed Central  Google Scholar 

  72. den AW H, Franken R, Zwinderman AH, Timmermans J, Scholte AJ, van den Berg MP, et al. The risk for type B aortic dissection in marfan syndrome. J Am Coll Cardiol. 2015 Jan;65(3):246–54.

    Google Scholar 

  73. Nollen GJ, Groenink M, Tijssen JGP, Van Der Wall EE, Mulder BJM. Aortic stiffness and diameter predict progressive aortic dilatation in patients with Marfan syndrome. Eur Heart J. 2004 Jul;25(13):1146–52.

    PubMed  Google Scholar 

  74. Franken R, Morabit El A, de Waard V, Timmermans J, Scholte AJ, van den Berg MP, et al. Increased aortic tortuosity indicates a more severe aortic phenotype in adults with Marfan syndrome. Int J Cardiol. 2015 May 15;194:7–12.

    PubMed  Google Scholar 

  75. Schoenhoff FS, Jungi S, Czerny M, Roost E, Reineke D, Mátyás G, et al. Acute aortic dissection determines the fate of initially untreated aortic segments in Marfan syndrome. Circulation. 2013 Apr 16;127(15):1569–75.

    PubMed  Google Scholar 

  76. Lemaire SA, de La Cruz KI, Coselli JS. The thoracoabdominal aorta in Marfan syndrome. London: Springer London; 2014. p. 423–34.

    Google Scholar 

  77. Hiratzka LF, Bakris GL, Beckman JA, Bersin RM, Carr VF, Casey DE, et al. ACCF/AHA/AATS/ACR/ASA/SCA/SCAI/SIR/STS/SVM guidelines for the diagnosis and management of patients with thoracic aortic disease: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines, American Association for Thoracic Surgery, American College of Radiology, American Stroke Association, Society of Cardiovascular Anesthesiologists, Society for Cardiovascular Angiography and Interventions, Society of Interventional Radiology, Society of Thoracic Surgeons, and Society for Vascular Medicine. Circulation. 2010;121:e266–369.

    PubMed  Google Scholar 

  78. Sheikhzadeh S, De Backer J, Gorgan N, Rybczynski M, Hillebrand M, Schüler H, et al. The main pulmonary artery in adults: a controlled multicenter study with assessment of echocardiographic reference values, and the frequency of dilatation and aneurysm in Marfan syndrome. Orphanet J Rare Dis. 2014 Dec 10;9(1):203.

    PubMed  PubMed Central  Google Scholar 

  79. Nollen GJ, van Schijndel KE, Timmermans J, Groenink M, Barentsz JO, van der Wall EE, et al. Pulmonary artery root dilatation in Marfan syndrome: quantitative assessment of an unknown criterion. Heart. 2002 May;87(5):470–1.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. De Backer J, Loeys B, Devos D, Dietz H, de Sutter J, de Paepe A. A critical analysis of minor cardiovascular criteria in the diagnostic evaluation of patients with Marfan syndrome. Genet Med 2006 Jul;8(7):401–8. Available from: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=16845272&retmode=ref&cmd=prlinks

  81. de Backer JF, Devos D, Segers P, Matthys D, François K, Gillebert TC, et al. Primary impairment of left ventricular function in Marfan syndrome☆. Int J Cardiol 2006 Oct 10;112(3):353–8. Available from: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=16316698&retmode=ref&cmd=prlinks

  82. Meijboom LJ, Timmermans J, van Tintelen JP, Nollen GJ, De Backer J, van den Berg MP, et al. Evaluation of left ventricular dimensions and function in Marfan’s syndrome without significant valvular regurgitation. Am J Cardiol. 2005 Mar 15;95(6):795–7.

    Google Scholar 

  83. Campens L, Renard M, Trachet B, Segers P, Muiño Mosquera L, de Sutter J, et al. Intrinsic cardiomyopathy in Marfan syndrome: results from in-vivo and ex-vivo studies of the Fbn1(C1039G/+) model and longitudinal findings in humans. Pediatr Res. 2015 Jun;78(3):256–63.

    PubMed  Google Scholar 

  84. Schaeffer BN, Rybczynski M, Sheikhzadeh S, Akbulak RÖ, Moser J, Jularic M, et al. Heart rate turbulence and deceleration capacity for risk prediction of serious arrhythmic events in Marfan syndrome. Clin Res Cardiol. 2015 Dec;104(12):1054–63.

    PubMed  Google Scholar 

  85. van Dijk N, Boer MC, Mulder BJM, van Montfrans GA, Wieling W. Is fatigue in Marfan syndrome related to orthostatic intolerance? Clin Auton Res. 2008 Aug;18(4):187–93.

    PubMed  Google Scholar 

  86. Maumenee IH. The eye in the Marfan syndrome. Trans Am Ophthalmol Soc. 1981;79:684–733.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Dotrelova D, Karel I, Clupkova E. Retinal detachment in Marfan’s syndrome. Characteristics and surgical results. Retina. 1997;17(5):390–6.

    Google Scholar 

  88. Maumenee IH. The eye in the Marfan syndrome. Birth Defects Orig Artic Ser. 1982;18(6):515–24.

    CAS  PubMed  Google Scholar 

  89. Wood JR, Bellamy D, Child AH, Citron KM. Pulmonary disease in patients with Marfan syndrome. Thorax. 1984 Oct;39(10):780–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Rybczynski M, Koschyk D, Karmeier A, Gessler N, Sheikhzadeh S, Bernhardt AMJ, et al. Frequency of sleep apnea in adults with the Marfan syndrome. Am J Cardiol. 2010 Jun 15;105(12):1836–41. Available from: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=20538140&retmode=ref&cmd=prlinks

  91. Kohler M, Pitcher A, Blair E, Risby P, Senn O, Forfar C, et al. The impact of obstructive sleep apnea on aortic disease in Marfan’s syndrome. Respiration. 2013;86(1):39–44.

    Google Scholar 

  92. Oosterhof T, Groenink M, Hulsmans FJ, Mulder BJ, van der Wall EE, Smit R, et al. Quantitative assessment of dural ectasia as a marker for Marfan syndrome. Radiology. 2001 Aug;220(2):514–8.

    CAS  PubMed  Google Scholar 

  93. Villeirs GM, Van Tongerloo AJ, Verstraete KL, Kunnen MF, de Paepe AM. Widening of the spinal canal and dural ectasia in Marfan’s syndrome: assessment by CT. Neuroradiology. 1999 Nov;41(11):850–4.

    Google Scholar 

  94. Sheikhzadeh S, Brockstaedt L, Habermann CR, Sondermann C, Bannas P, Mir TS, et al. Dural ectasia in Loeys-Dietz syndrome: comprehensive study of 30 patients with a TGFBR1 or TGFBR2 mutation. Clin Genet. 2014 Dec;86(6):545–51.

    CAS  PubMed  Google Scholar 

  95. Foran JRH, Pyeritz RE, Dietz HC, Sponseller PD. Characterization of the symptoms associated with dural ectasia in the Marfan patient. Am J Med Genet A. 2005 Apr 1;134A(1):58–65.

    PubMed  Google Scholar 

  96. Bertoli-Avella AM, Gillis E, Morisaki H, Verhagen JMA, de Graaf BM, van de Beek G, et al. Mutations in a TGF-β ligand, TGFB3, cause syndromic aortic aneurysms and dissections. J Am Coll Cardiol. 2015 Apr 7;65(13):1324–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Micha D, Guo D-C, Hilhorst-Hofstee Y, van Kooten F, Atmaja D, Overwater E, et al. SMAD2 mutations are associated with arterial aneurysms and dissections. Hum Mutat. 2015 Aug;6:1145–9.

    Google Scholar 

  98. Cannaerts E, Kempers M, Maugeri A, Marcelis C, Gardeitchik T, Richer J, et al. Novel pathogenic SMAD2 variants in five families with arterial aneurysm and dissection: further delineation of the phenotype. J Med Genet. 2019 Apr;56(4):220–7.

    CAS  PubMed  Google Scholar 

  99. Gupta-Malhotra M, Devereux RB, Dave A, Bell C, Portman R, Milewicz D. Aortic dilatation in children with systemic hypertension. J Am Soc Hypertens. 2014 Jan;9:239–45.

    Google Scholar 

  100. Kono AK, Higashi M, Morisaki H, Morisaki T, Tsutsumi Y, Akutsu K, et al. High prevalence of vertebral artery tortuosity of Loeys-Dietz syndrome in comparison with Marfan syndrome. Jpn J Radiol. 2010 May;28(4):273–7.

    CAS  PubMed  Google Scholar 

  101. Morris SA, Orbach DB, Geva T, Singh MN, Gauvreau K, Lacro RV. Increased vertebral artery tortuosity index is associated with adverse outcomes in children and young adults with connective tissue disorders. Circulation. 2011 Jul 25;124(4):388–96.

    PubMed  Google Scholar 

  102. Kuechler A, Altmüller J, Nürnberg P, Kotthoff S, Kubisch C, Borck G. Exome sequencing identifies a novel heterozygous TGFB3 mutation in a disorder overlapping with Marfan and Loeys-Dietz syndrome. Mol Cell Probes. 2015 Oct;29(5):330–4.

    CAS  PubMed  Google Scholar 

  103. Eckman PM, Hsich E, Rodriguez ER, Gonzalez-Stawinski GV, Moran R, Taylor DO. Impaired systolic function in Loeys-Dietz syndrome: a novel cardiomyopathy? Circ Heart Fail. 2009 Nov;2(6):707–8.

    PubMed  Google Scholar 

  104. Schepers D, Tortora G, Morisaki H, MacCarrick G, Lindsay M, Liang D, et al. A mutation update on the LDS-associated genes TGFB2/3 and SMAD2/3. Hum Mutat. 2018 May;39(5):621–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. van de Laar IMBH, van der Linde D, Oei EHG, Bos PK, Bessems JH, Bierma-Zeinstra SM, et al. Phenotypic spectrum of the SMAD3-related aneurysms-osteoarthritis syndrome. J Med Genet. 2011 Dec 13;49(1):47–57. Available from: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=22167769&retmode=ref&cmd=prlinks

  106. Wischmeijer A, Van Laer L, Tortora G, Bolar NA, Van Camp G, Fransen E, et al. Thoracic aortic aneurysm in infancy in aneurysms-osteoarthritis syndrome due to a novel SMAD3 mutation: further delineation of the phenotype. Am J Med Genet A. 2013 Mar 29;161A(5):1028–35.

    PubMed  Google Scholar 

  107. Hilhorst-Hofstee Y, Scholte AJHA, Rijlaarsdam MEB, van Haeringen A, Kroft LJ, Reijnierse M, et al. An unanticipated copy number variant of chromosome 15 disrupting SMAD3 reveals a three-generation family at serious risk for aortic dissection. Clin Genet. 2013 Apr;83(4):337–44.

    CAS  PubMed  Google Scholar 

  108. Fitzgerald-Butt SM, Klima J, Kelleher K, Chisolm D, McBride KL. Genetic knowledge and attitudes of parents of children with congenital heart defects. Am J Med Genet A. 2014 Sep;164A(12):3069–75.

    PubMed  Google Scholar 

  109. Martens T, Van Herzeele I, De Ryck F, Renard M, de Paepe A, François K, et al. Multiple aneurysms in a patient with aneurysms-osteoarthritis syndrome. Ann Thorac Surg; 2013 Jan 1;95(1):332–5. Available from: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=23272854&retmode=ref&cmd=prlinks

  110. Aubart M, Gobert D, Aubart-Cohen F, Detaint D, Hanna N, d’Indya H, et al. Early-onset osteoarthritis, Charcot-Marie-tooth like neuropathy, autoimmune features, multiple arterial aneurysms and dissections: an unrecognized and life threatening condition. PLoS One. 2014;9(5):e96387.

    PubMed  PubMed Central  Google Scholar 

  111. Panesi P, Foffa I, Sabina S, Ait Alì L, Andreassi MG. Novel TGFBR2 and known missense SMAD3 mutations: two case reports of thoracic aortic aneurysms. Ann Thorac Surg. 2015 Jan;99(1):303–5.

    PubMed  Google Scholar 

  112. Berthet E, Hanna N, Giraud C, Soubrier M. A case of rheumatoid arthritis associated with SMAD3 gene mutation: a new clinical entity? J Rheumatol. 2015 Mar;42(3):556.

    PubMed  Google Scholar 

  113. Courtois A, Coppieters W, Bours V, Defraigne JO, Colige A, Sakalihasan N. A novel SMAD3 mutation caused multiple aneurysms in a patient without osteoarthritis symptoms. Eur J Med Genet. 2017 Apr;60(4):228–31.

    PubMed  Google Scholar 

  114. Grahame R, Pyeritz RE. The Marfan syndrome: joint and skin manifestations are prevalent and correlated. Br J Rheumatol. 1995 Feb;34(2):126–31.

    CAS  PubMed  Google Scholar 

  115. Law C, Bunyan D, Castle B, Day L, Simpson I, Westwood G, et al. Clinical features in a family with an R460H mutation in transforming growth factor beta receptor 2 gene. J Med Genet. 2006 Dec;43(12):908–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Frischmeyer-Guerrerio PA, Guerrerio AL, Oswald G, Chichester K, Myers L, Halushka MK, et al. TGFβ receptor mutations impose a strong predisposition for human allergic disease. Sci Transl Med. 2013 Jul 24;5(195):195ra94.

    PubMed  PubMed Central  Google Scholar 

  117. Sheikhzadeh S, Sondermann C, Rybczynski M, Habermann CR, Brockstaedt L, Keyser B, et al. Comprehensive analysis of dural ectasia in 150 patients with a causative FBN1 mutation. Clin Genet. 2013 Aug;86(3):238–45.

    PubMed  Google Scholar 

  118. Byers PH, Belmont J, Black J, De Backer J, Frank M, Jeunemaitre X, et al. Diagnosis, natural history, and management in vascular Ehlers-Danlos syndrome. Am J Med Genet C Semin Med Genet. 2017 Mar;175(1):40–7.

    PubMed  Google Scholar 

  119. Bergqvist D, Björck M, Wanhainen A. Treatment of vascular Ehlers-danlos syndrome: a systematic review. Ann Surg. 2013 Aug;258(2):257–61.

    PubMed  Google Scholar 

  120. Watanabe S, Ishimitsu T, Inoue K, Tomizawa T, Noguchi Y, Sugishita Y, et al. Type IV Ehlers-Danlos syndrome associated with mitral valve prolapse: a case report. J Cardiol Suppl. 1988;18:97–105–discussion106.

    CAS  PubMed  Google Scholar 

  121. Jaffe AS, Geltman EM, Rodey GE, Uitto J. Mitral valve prolapse: a consistent manifestation of type IV Ehlers-Danlos syndrome. The pathogenetic role of the abnormal production of type III collagen. Circulation. 1981 Jul;64(1):121–5.

    CAS  PubMed  Google Scholar 

  122. Dolan AL, Mishra MB, Chambers JB, Grahame R. Clinical and echocardiographic survey of the Ehlers-Danlos syndrome. Br J Rheumatol. 1997 Apr;36(4):459–62.

    CAS  PubMed  Google Scholar 

  123. Zilocchi M, Macedo TA, Oderich GS, Vrtiska TJ, Biondetti PR, Stanson AW. Vascular Ehlers-Danlos syndrome: imaging findings. AJR Am J Roentgenol. 2007 Sep;189(3):712–9.

    PubMed  Google Scholar 

  124. Heidbreder AE, Ringelstein EB, Dittrich R, Nabavi D, Metze D, Kuhlenbäumer G. Assessment of skin extensibility and joint hypermobility in patients with spontaneous cervical artery dissection and Ehlers-Danlos syndrome. J Clin Neurosci. 2008 Jun;15(6):650–3.

    CAS  PubMed  Google Scholar 

  125. Lind J, Wallenburg HCS. Pregnancy and the Ehlers-Danlos syndrome: a retrospective study in a Dutch population. Acta Obstet Gynecol Scand. 2002 Apr;81(4):293–300.

    PubMed  Google Scholar 

  126. Adès LC, DAVIES R, Haan EA, Holman KJ, Watson KC, Sreetharan D, et al. Aortic dissection, patent ductus arteriosus, iris hypoplasia and brachytelephalangy in a male adolescent. Clin Dysmorphol. 1999 Oct;8(4):269–76.

    PubMed  Google Scholar 

  127. Khan N, Schinzel A, Shuknecht B, Baumann F, Ostergaard JR, Yonekawa Y. Moyamoya angiopathy with dolichoectatic internal carotid arteries, patent ductus arteriosus and pupillary dysfunction: a new genetic syndrome? Eur Neurol. 2004;51(2):72–7.

    PubMed  Google Scholar 

  128. Roulez FMJ, Faes F, Delbeke P, Van Bogaert P, Rodesch G, De Zaeytijd J, et al. Congenital fixed dilated pupils due to ACTA2- multisystemic smooth muscle dysfunction syndrome. J Neuroophthalmol. 2014 Jun;34(2):137–43.

    PubMed  Google Scholar 

  129. Biddinger A, Rocklin M, Coselli J, Milewicz DM. Familial thoracic aortic dilatations and dissections: a case control study. J Vasc Surg. 1997 Mar;25(3):506–11.

    CAS  PubMed  Google Scholar 

  130. Regalado ES, Guo D, Prakash S, Bensend TA, Flynn K, Estrera A, et al. Aortic disease presentation and outcome associated with ACTA2 mutations. Circ Cardiovasc Genet. 2015 Mar 10;8(3):457–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  131. van Kien PK. Mapping of familial thoracic aortic aneurysm/dissection with patent Ductus Arteriosus to 16p12.2-p13.13. Circulation. 2005 Jul 12;112(2):200–6. Available from: http://circ.ahajournals.org/cgi/doi/10.1161/CIRCULATIONAHA.104.506345

  132. Regalado ES, Guo D-C, Santos-Cortez RLP, Hostetler E, Bensend TA, Pannu H, et al. Pathogenic FBN1 variants in familial thoracic aortic aneurysms and dissections. Clin Genet. 2015 Dec; 89 (6), 719–23. Available from: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=26621581&retmode=ref&cmd=prlinks

  133. Milewicz DM, Chen H, Park ES, Petty EM, Zaghi H, Shashidhar G, et al. Reduced penetrance and variable expressivity of familial thoracic aortic aneurysms/dissections. Am J Cardiol. 1998 Aug 15;82(4):474–9.

    CAS  PubMed  Google Scholar 

  134. Freed LA, Levy D, Levine RA, Larson MG, Evans JC, Fuller DL, et al. Prevalence and clinical outcome of mitral-valve prolapse. N Engl J Med. 1999 Jul 1;341(1):1–7.

    CAS  PubMed  Google Scholar 

  135. Guo D-C, Gong L, Regalado ES, Santos-Cortez RL, Zhao R, Cai B, et al. MAT2A mutations predispose individuals to thoracic aortic aneurysms. Am J Hum Genet. 2015 Jan 8;96(1):170–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Dietz HC, Cutting GR, Pyeritz RE, Maslen CL, Sakai LY, Corson GM, et al. Marfan syndrome caused by a recurrent de novo missense mutation in the fibrillin gene. Nature. 1991 Jul 25;352(6333):337–9.

    CAS  PubMed  Google Scholar 

  137. Carmignac V, Thevenon J, Adès L, Callewaert B, Julia S, Thauvin-Robinet C, et al. In-frame mutations in exon 1 of SKI cause dominant Shprintzen-Goldberg syndrome. Am J Hum Genet; 2012 Nov 2;91(5):950–7. Available from: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=23103230&retmode=ref&cmd=prlinks

  138. Doyle AJ, Doyle JJ, Bessling SL, Maragh S, Lindsay ME, Schepers D, et al. Mutations in the TGF-β repressor SKI cause Shprintzen-Goldberg syndrome with aortic aneurysm. Nat Genet. 2012 Nov;44(11):1249–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Coucke PJ. Homozygosity mapping of a gene for arterial tortuosity syndrome to chromosome 20q13. J Med Genet. 2003 Oct 1;40(10):747–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Callewaert B, Renard M, Hucthagowder V, Albrecht B, Hausser I, Blair E, et al. New insights into the pathogenesis of autosomal-dominant cutis laxa with report of five ELN mutations. Hum Mutat. 2011 Apr;32(4):445–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Renard M, Holm T, Veith R, Callewaert BL, Adès LC, Baspinar O, et al. Altered TGFbeta; signaling and cardiovascular manifestations in patients with autosomal recessive cutis laxa type I caused by fibulin-4 deficiency. Eur J Hum Genet. 2010 Apr 14;18(8):895–901.

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Rippe M, De Backer J, Kutsche K, Mosquera LM, Schüler H, Rybczynski M, et al. Mitral valve prolapse syndrome and MASS phenotype: stability of aortic dilatation but progression of mitral valve prolapse. Int J Cardiol Heart Vasc. 2016 Mar 1;10:39–46.

    PubMed  PubMed Central  Google Scholar 

  143. Coucke PJ, Willaert A, Wessels MW, Callewaert B, Zoppi N, De Backer J, et al. Mutations in the facilitative glucose transporter GLUT10 alter angiogenesis and cause arterial tortuosity syndrome. Nat Genet. 2006 Mar 19;38(4):452–7.

    CAS  PubMed  Google Scholar 

  144. Callewaert BL, Willaert A, Kerstjens-Frederikse WS, de Backer J, Devriendt K, Albrecht B, et al. Arterial tortuosity syndrome: clinical and molecular findings in 12 newly identified families. Hum Mutat. 2008 Jan;29(1):150–8.

    CAS  PubMed  Google Scholar 

  145. Kosaki K, Takahashi D, Udaka T, Kosaki R, Matsumoto M, Ibe S, et al. Molecular pathology of Shprintzen-Goldberg syndrome. Am J Med Genet A. 2006 Jan 1;140(1):104–8–authorreply109–10.

    Google Scholar 

  146. Gupta PA, Wallis DD, Chin TO, Northrup H, Tran-Fadulu VT, Towbin JA, et al. FBN2 mutation associated with manifestations of Marfan syndrome and congenital contractural arachnodactyly. J Med Genet. 2004 May;41(5):e56.

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Nishimura A, Sakai H, Ikegawa S, Kitoh H, Haga N, Ishikiriyama S, et al. FBN2, FBN1, TGFBR1, and TGFBR2 analyses in congenital contractural arachnodactyly. Am J Med Genet A. 2007 Apr 1;143A(7):694–8.

    CAS  PubMed  Google Scholar 

  148. Kruger WD, Wang L, Jhee KH, Singh RH, Elsas LJ. Cystathionine beta-synthase deficiency in Georgia (USA): correlation of clinical and biochemical phenotype with genotype. Hum Mutat. 2003 Dec;22(6):434–41.

    CAS  PubMed  Google Scholar 

  149. De Lucca M, Casique L. Characterization of cystathionine beta-synthase gene mutations in homocystinuric Venezuelan patients: identification of one novel mutation in exon 6. Mol Genet Metab. 2004 Mar;81(3):209–15.

    PubMed  Google Scholar 

  150. Shores J, Berger KR, Murphy EA, Pyeritz RE. Progression of aortic dilatation and the benefit of long-term beta-adrenergic blockade in Marfan’s syndrome. N Engl J Med. 1994 May 12;330(19):1335–41.

    CAS  PubMed  Google Scholar 

  151. Engelfriet P, Mulder B. Is there benefit of beta-blocking agents in the treatment of patients with the Marfan syndrome? Int J Cardiol. 2007 Jan 18;114(3):300–2.

    PubMed  Google Scholar 

  152. Habashi JP, Judge DP, Holm TM, Cohn RD, Loeys BL, Cooper TK, et al. Losartan, an AT1 antagonist, prevents aortic aneurysm in a mouse model of Marfan syndrome. Science. 2006 Apr 7;312(5770):117–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Chiu H-H, Wu M-H, Wang J-K, Lu C-W, Chiu S-N, Chen C-A, et al. Losartan added to β-blockade therapy for aortic root dilation in Marfan syndrome: a randomized, open-label pilot study. Mayo Clin Proc. 2013 Mar;88(3):271–6.

    CAS  PubMed  Google Scholar 

  154. Franken R, Mulder BJM. Aortic disease: Losartan versus atenolol in the Marfan aorta-how to treat? Nat Rev Cardiol. 2015 Jun 16;12(8):447–8.

    PubMed  Google Scholar 

  155. Groenink M, den AW H, Franken R, Radonic T, de Waard V, Timmermans J, et al. Losartan reduces aortic dilatation rate in adults with Marfan syndrome: a randomized controlled trial. Eur Heart J. 2013 Sep 2;34(45):3491–500.

    CAS  PubMed  Google Scholar 

  156. Milleron O, Arnoult F, Ropers J, Aegerter P, Detaint D, Delorme G, et al. Marfan Sartan: a randomized, double-blind, placebo-controlled trial. Eur Heart J. 2015 Aug 21;36(32):2160–6.

    PubMed  Google Scholar 

  157. Lacro RV, Dietz HC, Sleeper LA, Yetman AT, Bradley TJ, Colan SD, et al. Atenolol versus Losartan in children and young adults with Marfan’s syndrome. N Engl J Med. 2014 Nov 27;371(22):2061–71.

    Google Scholar 

  158. Forteza A, Evangelista A, Sánchez V, Teixido-Tura G, Sanz P, Gutiérrez L, et al. Efficacy of losartan vs. atenolol for the prevention of aortic dilation in Marfan syndrome: a randomized clinical trial. Eur Heart J. 2015 Oct 29;37(12):978–85.

    PubMed  Google Scholar 

  159. De Backer J. Marfan and Sartans: time to wake up! Eur Heart J. 2015 Jun 1;36(32):2131–3.

    PubMed  Google Scholar 

  160. Erbel R, Aboyans V, Boileau C, Bossone E, Di Bartolomeo R, Authors/Task Force Members, et al. ESC guidelines on the diagnosis and treatment of aortic diseases. Eur Heart J. 2014;35(41):2873–926.

    PubMed  Google Scholar 

  161. Meijboom LJ, Timmermans J, Zwinderman AH, Engelfriet PM, Mulder BJM. Aortic root growth in men and women with the Marfan’s syndrome. Am J Cardiol. 2005 Nov 15;96(10):1441–4.

    Google Scholar 

  162. Davies RR, Gallo A, Coady MA, Tellides G, Botta DM, Burke B, et al. Novel measurement of relative aortic size predicts rupture of thoracic aortic aneurysms. Ann Thorac Surg. 2006 Jan;81(1):169–77.

    PubMed  Google Scholar 

  163. Gott VL, Greene PS, Alejo DE, Cameron DE, Naftel DC, Miller DC, et al. Replacement of the aortic root in patients with Marfan’s syndrome. N Engl J Med. 1999 Apr 29;340(17):1307–13.

    Google Scholar 

  164. David TE, Feindel CM, David CM, Manlhiot C. A quarter of a century of experience with aortic valve-sparing operations. J Thorac Cardiovasc Surg. 2014 Sep;148(3):872–9–discussion879–80.

    Google Scholar 

  165. Lederle FA, Freischlag JA, Kyriakides TC, Matsumura JS, Padberg FT, Kohler TR, et al. Long-term comparison of endovascular and open repair of abdominal aortic aneurysm. N Engl J Med. 2012 Nov 22;367(21):1988–97.

    CAS  PubMed  Google Scholar 

  166. Preventza O, Mohammed S, Cheong BY, Gonzalez L, Ouzounian M, Livesay JJ, et al. Endovascular therapy in patients with genetically triggered thoracic aortic disease: applications and short- and mid-term outcomes. Eur J Cardiothorac Surg. 2014 Aug;46(2):248–53–discussion 253.

    Google Scholar 

  167. Pacini D, Parolari A, Berretta P, Di Bartolomeo R, Alamanni F, Bavaria J. Endovascular treatment for type B dissection in Marfan syndrome: is it worthwhile? Ann Thorac Surg. 2013 Feb;95(2):737–49.

    PubMed  Google Scholar 

  168. Nordon IM, Hinchliffe RJ, Holt PJ, Morgan R, Jahangiri M, Loftus IM, et al. Endovascular management of chronic aortic dissection in patients with Marfan syndrome. J Vasc Surg. 2009 Nov;50(5):987–91.

    PubMed  Google Scholar 

  169. Izgi C, Newsome S, Alpendurada F, Nyktari E, Boutsikou M, Pepper J, Treasure T, Mohiaddin R. External aortic root support to prevent aortic dilatation in patients with Marfan syndrome. J Am Coll Cardiol. 2018;72:1095–105.

    PubMed  Google Scholar 

  170. Meijboom LJ, Groenink M, van der Wall EE, Romkes H, Stoker J, Mulder BJ. Aortic root asymmetry in marfan patients; evaluation by magnetic resonance imaging and comparison with standard echocardiography. Int J Card Imaging. 2000 Jun;16(3):161–8.

    CAS  PubMed  Google Scholar 

  171. Nollen GJ. Aortic pressure-area relation in Marfan patients with and without blocking agents: a new non-invasive approach. Heart. 2004 Mar 1;90(3):314–8. https://doi.org/10.1136/hrt.2003.010702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Nishimura RA, Otto CM, Bonow RO, Carabello BA, Erwin JP, Guyton RA, et al. 2014 AHA/ACC guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on practice guidelines. J Am Coll Cardiol. 2014 Jul;148(1):e1–e132.

    Google Scholar 

  173. Meijboom LJ, Drenthen W, Pieper PG, Groenink M, van der Post JAM, Timmermans J, et al. Obstetric complications in Marfan syndrome. Int J Cardiol. 2006 Jun 7;110(1):53–9.

    PubMed  Google Scholar 

  174. Rossiter JP, Repke JT, Morales AJ, Murphy EA, Pyeritz RE. A prospective longitudinal evaluation of pregnancy in the Marfan syndrome. Am J Obstet Gynecol. 1995 Nov;173(5):1599–606.

    CAS  PubMed  Google Scholar 

  175. Ersbøll AS, Hedegaard M, Sondergaard L, Ersbøll M, Johansen M. Treatment with oral beta-blockers during pregnancy complicated by maternal heart disease increases the risk of fetal growth restriction. BJOG. 2014 Apr;121(5):618–26.

    PubMed  Google Scholar 

  176. Dolan P, Sisko F, Riley E. Anesthetic considerations for Ehlers-Danlos syndrome. Anesthesiology. 1980 Mar;52(3):266–9.

    CAS  PubMed  Google Scholar 

  177. Brooke BS, Arnaoutakis G, McDonnell NB, Black JH. Contemporary management of vascular complications associated with Ehlers-Danlos syndrome. J Vasc Surg. 2010 Jan 1;51(1):131–9.

    PubMed  Google Scholar 

  178. Ong K-T, Perdu J, De Backer J, Bozec E, Collignon P, Emmerich J, et al. Effect of celiprolol on prevention of cardiovascular events in vascular Ehlers-Danlos syndrome: a prospective randomised, open, blinded-endpoints trial. Lancet. 2010 Oct 30;376(9751):1476–84.

    CAS  PubMed  Google Scholar 

  179. Boodhwani M, Andelfinger G, Leipsic J, Lindsay T, MS MM, Therrien J, et al. Canadian Cardiovascular Society position statement on the management of thoracic aortic disease. Can J Cardiol. 2014;30:577–89.

    PubMed  Google Scholar 

  180. Loeys B, de Backer J, van Acker P, Wettinck K, Pals G, Nuytinck L, et al. Comprehensive molecular screening of the FBN1 gene favors locus homogeneity of classical Marfan syndrome. Hum Mutat. 2004 Aug;24(2):140–6.

    CAS  PubMed  Google Scholar 

  181. Proost D, Vandeweyer G, Meester JAN, Salemink S, Kempers M, Ingram C, et al. Performant mutation identification using targeted next generation sequencing of fourteen thoracic aortic aneurysm genes. Hum Mutat. 2015 Apr; 36 (8), 808–814. Available from: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=25907466&retmode=ref&cmd=prlinks

  182. Ziganshin BA, Bailey AE, Coons C, Dykas D, Charilaou P, Tanriverdi LH, et al. Routine genetic testing for thoracic aortic aneurysm and dissection in a clinical setting. Ann Thorac Surg. 2015 Nov;100(5):1604–11.

    PubMed  Google Scholar 

  183. Eline Overwater, Luisa Marsili, Marieke J.H. Baars, Annette F. Baas, Irma van de Beek, Eelco Dulfer, et al. Results of next-generation sequencing gene panel diagnostics including copy-number variation analysis in 810 patients suspected of heritable thoracic aortic disorders. Hum Mutat. 2018 Sep; 39(9):1173–1192. https://doi.org/10.1002/humu.23565. Epub 2018 Jul 12.

  184. Arslan-Kirchner M, Arbustini E, Boileau C, Charron P, Child AH, Collod-Beroud G, et al. Clinical utility gene card for: hereditary thoracic aortic aneurysm and dissection including next-generation sequencing-based approaches. Eur J Hum Genet. 2015 Oct;28:146–50.

    Google Scholar 

  185. Rehm HL, Berg JS, Brooks LD, Bustamante CD, Evans JP, Landrum MJ, et al. ClinGen--the clinical genome resource. N Engl J Med. 2015 Jun 4;372(23):2235–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Corson GM, Chalberg SC, Dietz HC, Charbonneau NL, Sakai LY. Fibrillin binds calcium and is coded by cDNAs that reveal a multidomain structure and alternatively spliced exons at the 5′ end. Genomics. 1993 Aug;17(2):476–84.

    CAS  PubMed  Google Scholar 

  187. Biery NJ, Eldadah ZA, Moore CS, Stetten G, Spencer F, Dietz HC. Revised genomic organization of FBN1 and significance for regulated gene expression. Genomics. 1999 Feb 15;56(1):70–7.

    CAS  PubMed  Google Scholar 

  188. Sengle G, Sakai LY. The fibrillin microfibril scaffold: a niche for growth factors and mechanosensation? Matrix Biol. 2015 May 7;47:3–12.

    CAS  PubMed  Google Scholar 

  189. Hubmacher D, Tiedemann K, Reinhardt DP. Fibrillins: from biogenesis of microfibrils to signaling functions. Curr Top Dev Biol. 2006;75:93–123.

    CAS  PubMed  Google Scholar 

  190. Sakai LY, Keene DR, Renard M, De Backer J. FBN1: the disease-causing gene for Marfan syndrome and other genetic disorders. Gene. 2016;591(1):279–91.

    Google Scholar 

  191. Judge DP, Biery NJ, Keene DR, Geubtner J, Myers L, Huso DL, et al. Evidence for a critical contribution of haploinsufficiency in the complex pathogenesis of Marfan syndrome. J Clin Investig. 2004 Jul 15;114(2):172–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Pereira L, Lee SY, Gayraud B, Andrikopoulos K, Shapiro SD, Bunton T, et al. Pathogenetic sequence for aneurysm revealed in mice underexpressing fibrillin-1. Proc Natl Acad Sci U S A. 1999 Mar 30;96(7):3819–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Bunton TE, Biery NJ, Myers L, Gayraud B, Ramirez F, Dietz HC. Phenotypic alteration of vascular smooth muscle cells precedes elastolysis in a mouse model of Marfan syndrome. Circ Res. 2001 Jan 19;88(1):37–43.

    CAS  PubMed  Google Scholar 

  194. Massagué J. The TGF-beta family of growth and differentiation factors. Cell. 1987 May 22;49(4):437–8.

    PubMed  Google Scholar 

  195. Neptune ER, Frischmeyer PA, Arking DE, Myers L, Bunton TE, Gayraud B, et al. Dysregulation of TGF-beta activation contributes to pathogenesis in Marfan syndrome. Nat Genet. 2003 Mar;33(3):407–11.

    CAS  PubMed  Google Scholar 

  196. Isogai Z, Ono RN, Ushiro S, Keene DR, Chen Y, Mazzieri R, et al. Latent transforming growth factor beta-binding protein 1 interacts with fibrillin and is a microfibril-associated protein. J Biol Chem. 2003 Jan 24;278(4):2750–7.

    CAS  PubMed  Google Scholar 

  197. Dallas SL, Miyazono K, Skerry TM, Mundy GR, Bonewald LF. Dual role for the latent transforming growth factor-beta binding protein in storage of latent TGF-beta in the extracellular matrix and as a structural matrix protein. J Cell Biol. 1995 Oct;131(2):539–49.

    CAS  PubMed  Google Scholar 

  198. Saharinen J, Hyytiäinen M, Taipale J, Keski-Oja J. Latent transforming growth factor-beta binding proteins (LTBPs)--structural extracellular matrix proteins for targeting TGF-beta action. Cytokine Growth Factor Rev. 1999 Jun;10(2):99–117.

    CAS  PubMed  Google Scholar 

  199. Charbonneau NL, Carlson EJ, Tufa S, Sengle G, Manalo EC, Carlberg VM, et al. In vivo studies of mutant fibrillin-1 microfibrils. J Biol Chem. 2010 Aug 6;285(32):24943–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Dietz H. A healthy tension in translational research. J Clin Invest. 2014 Apr 1;124(4):1425–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  201. Jeremy RW, Robertson E, Lu Y, Hambly BD. Perturbations of mechanotransduction and aneurysm formation in heritable aortopathies. Int J Cardiol. 2013 Oct 25;169(1):7–16.

    PubMed  Google Scholar 

  202. Humphrey JD, Milewicz DM, Tellides G, Schwartz MA. Cell biology. Dysfunctional mechanosensing in aneurysms. Science. 2014 May 2;344(6183):477–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  203. Loeys B, Nuytinck L, Delvaux I, De Bie S, de Paepe A. Genotype and phenotype analysis of 171 patients referred for molecular study of the fibrillin-1 gene FBN1 because of suspected Marfan syndrome. Arch Intern Med. 2001 Nov 12;161(20):2447–54.

    CAS  PubMed  Google Scholar 

  204. de Backer J, Nollen GJ, Devos D, Pals G, Coucke P, Verstraete K, et al. Variability of aortic stiffness is not associated with the fibrillin 1 genotype in patients with Marfan’s syndrome. Heart. 2006 Jul;92(7):977–8.

    PubMed  PubMed Central  Google Scholar 

  205. Schrijver I, Liu W, Brenn T, Furthmayr H, Francke U. Cysteine substitutions in epidermal growth factor-like domains of fibrillin-1: distinct effects on biochemical and clinical phenotypes. Am J Hum Genet. 1999 Oct;65(4):1007–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  206. Schrijver I, Liu W, Odom R, Brenn T, Oefner P, Furthmayr H, et al. Premature termination mutations in FBN1: distinct effects on differential allelic expression and on protein and clinical phenotypes. Am J Hum Genet. 2002 Aug;71(2):223–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  207. Comeglio P, Evans AL, Brice G, Cooling RJ, Child AH. Identification of FBN1 gene mutations in patients with ectopia lentis and marfanoid habitus. Br J Ophthalmol. 2002 Dec;86(12):1359–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  208. Faivre L, Collod-Beroud G, Loeys BL, Child A, Binquet C, Gautier E, et al. Effect of mutation type and location on clinical outcome in 1,013 probands with Marfan syndrome or related phenotypes and FBN1 mutations: an international study. Am J Hum Genet. 2007 Sep;81(3):454–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  209. Comeglio P, Johnson P, Arno G, Brice G, Evans A, Aragon-Martin J, et al. The importance of mutation detection in Marfan syndrome and Marfan-related disorders: report of 193 FBN1 mutations. Hum Mutat. 2007 Sep;28(9):928.

    PubMed  Google Scholar 

  210. Baudhuin LM, Kotzer KE, Lagerstedt SA. Increased frequency of FBN1 truncating and splicing variants in Marfan syndrome patients with aortic events. Genet Med. 2015 Mar;17(3):177–87.

    CAS  PubMed  Google Scholar 

  211. Franken R, Groenink M, de Waard V, HMA F, Scholte AJ, van den Berg MP, et al. Genotype impacts survival in Marfan syndrome. Eur Heart J. 2016 Jan 18;37:3285–90.

    CAS  PubMed  Google Scholar 

  212. Nijbroek G, Sood S, McIntosh I, Francomano CA, Bull E, Pereira L, et al. Fifteen novel FBN1 mutations causing Marfan syndrome detected by heteroduplex analysis of genomic amplicons. Am J Hum Genet. 1995 Jul;57(1):8–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  213. Tynan K, Comeau K, Pearson M, Wilgenbus P, Levitt D, Gasner C, et al. Mutation screening of complete fibrillin-1 coding sequence: report of five new mutations, including two in 8-cysteine domains. Hum Mol Genet. 1993 Nov;2(11):1813–21.

    CAS  PubMed  Google Scholar 

  214. Dietz HC, McIntosh I, Sakai LY, Corson GM, Chalberg SC, Pyeritz RE, et al. Four novel FBN1 mutations: significance for mutant transcript level and EGF-like domain calcium binding in the pathogenesis of Marfan syndrome. Genomics. 1993 Aug;17(2):468–75.

    CAS  PubMed  Google Scholar 

  215. Faivre L, Collod-Beroud G, Callewaert B, Child A, Binquet C, Gautier E, et al. Clinical and mutation-type analysis from an international series of 198 probands with a pathogenic FBN1 exons 24-32 mutation. Eur J Hum Genet. 2009 Apr;17(4):491–501.

    CAS  PubMed  Google Scholar 

  216. Morissette R, Schoenhoff F, Xu Z, Shilane DA, Griswold BF, Chen W, et al. Transforming growth factor-β (TGF-β) and inflammation in vascular (Type IV) Ehlers Danlos syndrome. Circ Cardiovasc Genet. 2014 Jan 6;7(1):80–8. https://doi.org/10.1161/CIRCGENETICS.113.000280.

    Article  CAS  PubMed  Google Scholar 

  217. Frank M, Albuisson J, Ranque B, Golmard L, Mazzella J-M, Bal-Theoleyre L, et al. The type of variants at the COL3A1 gene associates with the phenotype and severity of vascular Ehlers-Danlos syndrome. Eur J Hum Genet. 2015 Mar 11;23(12):1657–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  218. Pepin MG, Schwarze U, Rice KM, Liu M, Leistritz D, Byers PH. Survival is affected by mutation type and molecular mechanism in vascular Ehlers-Danlos syndrome (EDS type IV). Genet Med. 2014 Dec;16(12):881–8.

    CAS  PubMed  Google Scholar 

  219. Tromp G, Kuivaniemi H, Stolle C, Pope FM, Prockop DJ. Single base mutation in the type III procollagen gene that converts the codon for glycine 883 to aspartate in a mild variant of Ehlers-Danlos syndrome IV. J Biol Chem. 1989 Nov 15;264(32):19313–7.

    CAS  PubMed  Google Scholar 

  220. Rodriguez-Vita J, Angiotensin II. Activates the Smad pathway in vascular smooth muscle cells by a transforming growth factor- -independent mechanism. Circulation. 2005 May 2;111(19):2509–17.

    CAS  PubMed  Google Scholar 

  221. Guo X, Chen S-Y. Transforming growth factor-β and smooth muscle differentiation. World J Biol Chem. 2012 Mar 26;3(3):41–52.

    PubMed  PubMed Central  Google Scholar 

  222. Wynne BM, Chiao C-W, Webb RC. Vascular smooth muscle cell signaling mechanisms for contraction to Angiotensin II and Endothelin-1. J Am Soc Hypertens. 2009 Mar;3(2):84–95.

    PubMed  PubMed Central  Google Scholar 

  223. Inamoto S, Kwartler CS, Lafont AL, Liang YY, Fadulu VT, Duraisamy S, et al. TGFBR2 mutations alter smooth muscle cell phenotype and predispose to thoracic aortic aneurysms and dissections. Cardiovasc Res. 2010 Dec 1;88(3):520–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  224. Singh P, Carraher C, Schwarzbauer JE. Assembly of fibronectin extracellular matrix. Annu Rev Cell Dev Biol. 2010;26:397–419.

    CAS  PubMed  PubMed Central  Google Scholar 

  225. Sabatier L, Chen D, Fagotto-Kaufmann C, Hubmacher D, McKee MD, Annis DS, et al. Fibrillin assembly requires fibronectin. Mol Biol Cell. 2009 Feb;20(3):846–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  226. Pepin MG, Murray ML, Byers PH. Vascular Ehlers-Danlos syndrome. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, LJH B, Stephens K, Amemiya A, editors. Gene reviews. Seattle: University of Washington; 1999. www.ncbi.nlm.nih.gov–books–NBK1494.

    Google Scholar 

  227. Verhagen JMA, Kempers M, Cozijnsen L, Bouma BJ, Duijnhouwer AL, Post JG, et al. Expert consensus recommendations on the cardiogenetic care for patients with thoracic aortic disease and their first-degree relatives. Int J Cardiol. 2018 May 1;258:243–8.

    PubMed  Google Scholar 

  228. Schievink WI, Schaid DJ, Rogers HM, Piepgras DG, Michels VV. On the inheritance of intracranial aneurysms. Stroke. 1994 Oct;25(10):2028–37.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ingrid M. B. H. van de Laar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mulder, B.J.M., van de Laar, I.M.B.H., De Backer, J. (2020). Heritable Thoracic Aortic Diseases: Syndromal and Isolated (F)TAAD. In: Baars, H.F., Doevendans, P.A.F.M., Houweling, A.C., van Tintelen, J.P. (eds) Clinical Cardiogenetics. Springer, Cham. https://doi.org/10.1007/978-3-030-45457-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-45457-9_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-45456-2

  • Online ISBN: 978-3-030-45457-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics