Skip to main content

An Automatic Overall Survival Time Prediction System for Glioma Brain Tumor Patients Based on Volumetric and Shape Features

  • Conference paper
  • First Online:
Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries (BrainLes 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12659))

Included in the following conference series:

Abstract

An automatic overall survival time prediction system for Glioma brain tumor patients is proposed and developed based on volumetric, location, and shape features. The proposed automatic prediction system consists of three stages: segmentation of brain tumor sub-regions; features extraction; and overall survival time predictions. A deep learning structure based on a modified 3 Dimension (3D) U-Net is proposed to develop an accurate segmentation model to identify and localize the three Glioma brain tumor sub-regions: gadolinium (GD)-enhancing tumor, peritumoral edema, and necrotic and non-enhancing tumor core (NCR/NET). The best performance of a segmentation model is achieved by the modified 3D U-Net based on an Accumulated Encoder (U-Net AE) with a Generalized Dice-Loss (GDL) function trained by the ADAM optimization algorithm. This model achieves Average Dice-Similarity (ADS) scores of 0.8898, 0.8819, and 0.8524 for Whole Tumor (WT), Tumor Core (TC), and Enhancing Tumor (ET), respectively, in the train dataset of the Multimodal Brain Tumor Segmentation challenge (BraTS) 2020. Various combinations of volumetric (based on brain functionality regions), shape, and location features are extracted to train an overall survival time classification model using a Neural Network (NN). The model classifies the data into three classes: short-survivors, mid-survivors, and long-survivors. An information fusion strategy based on features-level fusion and decision-level fusion is used to produce the best prediction model. The best performance is achieved by the ensemble model and shape features model with accuracies of (55.2%) on the BraTS 2020 validation dataset. The ensemble model achieves a competitive accuracy (55.1%) on the BraTS 2020 test dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Suchorska, B., et al.: Complete resection of contrast-enhancing tumor volume is associated with improved survival in recurrent glioblastoma - results from the DIRECTOR trial. Neuro-Oncology 18 (4), 549–556 (01 2016). https://doi.org/10.1093/neuonc/nov326

  2. Brain Tumor: Grades and Prognostic Factors, Approved by the Cancer.Net Editorial Board. https://www.cancer.net/cancer-types/brain-tumor/grades-and-prognostic-factors. Accessed 13 Aug 2020

  3. Menze, B., et al.: The multimodal brain tumor image segmentation benchmark (BRATS), IEEE Trans. Med. Imaging 34(10), 1993–2024 (2015). https://doi.org/10.1109/TMI.2014.2377694

  4. Litjens, G., et al.: A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017)

    Article  Google Scholar 

  5. Esteva, A., et al.: Dermatologist-level classification of skin cancer with deep neural networks. Nature 542, 115–118 (2017)

    Article  Google Scholar 

  6. Esteva, A., et al.: A guide to deep learning in healthcare. Nat. Med. 25, 24–29 (2019)

    Article  Google Scholar 

  7. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  8. Milletari, F.; Navab, N.; Ahmadi, S.A.:V-Net: fully convolutional neural networks for volumetric medical image segmentation, In: 3D Vision Fourth International Conference (3DV), Stanford, California, USA, October 25–28 (2016)

    Google Scholar 

  9. Chen, H., Dou, Q., Yu, L., Qin, J., Heng, P.A.: VoxResNet: deep voxelwise residual networks for brain segmentation from 3D MR Images, J. NeuroImage, 170, 446–455 (2018)

    Google Scholar 

  10. Liu, S., et al.: Prostate cancer diagnosis using deep learning with 3D multiparametric MRI, In: Medical Imaging Computer-Aided Diagnosis Conference, vol. 10134, Orlando, Florida, United States March 2017

    Google Scholar 

  11. Myronenko, A.: 3D MRI brain tumor segmentation using autoencoder regularization. In: Crimi, A., Bakas, S., Kuijf, H., K, Farahani, Reyes, M., van Walsum, Theo (eds.) BrainLes 2018. LNCS, vol. 11384, pp. 311–320. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11726-9_28

    Chapter  Google Scholar 

  12. Sudre, C.H., Li, W., Vercauteren, T., Ourselin, S., Jorge Cardoso, M.: Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations. In: Cardoso, M.J., et al. (eds.) DLMIA/ML-CDS -2017. LNCS, vol. 10553, pp. 240–248. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67558-9_28

    Chapter  Google Scholar 

  13. Feng, X., Tustison, N., Meyer, C.: Brain tumor segmentation using an ensemble of 3d u-nets and overall survival prediction using radiomic features. BrainLes 2018, pp. 279–28876, Springer LNCS11384 (2019)

    Google Scholar 

  14. Weninger, L., Rippel, O., Koppers, S., Merhof, D.: Segmentation of brain tumors and patient survival prediction: methods for the brats 2018 challenge. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11384, pp. 3–12. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11726-9_1

    Chapter  Google Scholar 

  15. Sun, L., Zhang, S., Luo, L.: Tumor segmentation and survival prediction in glioma with deep learning. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11384, pp. 83–93. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11726-9_8

    Chapter  Google Scholar 

  16. Baid, U., et al.: Deep Learning Radiomics Algorithm for Gliomas (DRAG) Model: A Novel Approach Using 3D UNET Based Deep Convolutional Neural Network for Predicting Survival in Gliomas. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11384, pp. 369–379. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11726-9_33

    Chapter  Google Scholar 

  17. Bakas, S., Akbari, H., Sotiras, A., Bilello, M., Rozycki, M., Kirby, J.S., et al.: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Nat. Sci. Data 4, 170117 (2017). https://doi.org/10.1038/sdata.2017.117

    Article  Google Scholar 

  18. Bakas, S., Reyes, M., Jakab, A., Bauer, S., Rempfler, M., Crimi, A., et al.: Identifying the Best Machine Learning Algorithms for Brain Tumor Segmentation, Progression Assessment, and Overall Survival Prediction in the BRATS Challenge, arXiv preprint arXiv:1811.02629 (2018)

  19. Bakas, S., Akbari, H., Sotiras, A., Bilello, M., Rozycki, M., Kirby, J., et al.: Segmentation Labels and Radiomic Features for the Pre-operative Scans of the TCGA-GBM collection. Cancer Imaging Arch. (2017). https://doi.org/https://doi.org/10.7937/k9/tcia.2017.klxwjj1q

  20. Bakas, S., Akbari, H., Sotiras, A., Bilello, M., Rozycki, M., Kirby, J., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-LGG collection. Cancer Imaging Arch. (2017). https://doi.org/10.7937/K9/TCIA.2017.GJQ7R0EF

    Article  Google Scholar 

  21. “Parts of the Brain & Function”, Website: Anatomy info. https://anatomyinfo.com/parts-of-the-brain/. Accessed 20 July 2020

Download references

Acknowledgments

This research was supported by HOWE Foundation Fellowship/College of Engineering-UNLV and Summer Doctoral Research Fellowship/Graduate College-UNLV. We would like to thank Dr. Edwin Oh, Associate Professor, Neurogenetics and Precision Medicine Lab/UNLV, for his valuable help by providing a computer with Titan RTX GPU to train and test the Deep Learning segmentation models.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lina Chato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chato, L., Kachroo, P., Latifi, S. (2021). An Automatic Overall Survival Time Prediction System for Glioma Brain Tumor Patients Based on Volumetric and Shape Features. In: Crimi, A., Bakas, S. (eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2020. Lecture Notes in Computer Science(), vol 12659. Springer, Cham. https://doi.org/10.1007/978-3-030-72087-2_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72087-2_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72086-5

  • Online ISBN: 978-3-030-72087-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics