Skip to main content

The Ratio of Omega-6/Omega-3 Fatty Acid: Implications and Application as a Marker to Diabetes

  • Reference work entry
  • First Online:
Biomarkers in Diabetes

Abstract

Omega-3 and omega-6 groups of polyunsaturated fatty acids (PUFA) are non-interconvertible and metabolically and functionally different, with key opposing metabolic activities in human physiology. The PUFA content of the cell membrane is mostly determined by dietary intake. They are a component of the cellular membrane, improving its fluidity and PUFAs must be released from the membrane by phospholipases in order for signal transmission to occur. Long-chain polyunsaturated fatty acids exert their anti-inflammatory effects by inhibiting lipogenesis and increasing the production of resolvins and protectins. n-3 PUFAs mediate some of these effects by antagonizing n-6 PUFA-induced proinflammatory prostaglandin E formation. Today’s industrialized societies with Westernized diet styles have higher overall energy intake, and n-6 PUFAs, but lower energy expenditure. Omega-3 PUFA attenuates ER stress and increases mitochondrial fatty acid β-oxidation and mitochondrial uncoupling. There is competition between omega-3 fatty acids and omega-6 for desaturation enzymes. The unbalanced omega 6/omega 3 ratio in favor of omega 6 PUFAs contributes to the prevalence of atherosclerosis, obesity, and diabetes. n-3 PUFAs are considered to be more protective against inflammation compared with omega 6 PUFA, suggesting the importance of maintaining an ideal balance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 549.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

17-HpDHA:

17-hydroperoxydocosahexaenoic acid

17S-HDHA:

17(S)-hydroxy Docosahexaenoic Acid

5-HEPE:

5-Hydroxyeicosapentaenoic acid

ALA:

Alpha-linolenic acid

ARA:

Arachidonic acid

DGLA:

Dihomo-γ-linolenic acid

DHA:

Docosahexaenoic acid

EPA:

Eicosapentaenoic acid

ETA:

Eicosatetraenoic acid

GPR120:

G protein-coupled receptor 120

IR:

Insulin Resistance

LA:

Linoleic acid

LC-PUFA:

Long chain polyunsaturated fatty acids

LTB4:

Leukotriene B4

LTs:

Leukotrienes

MaR:

Maresins

NEFA:

Non-esterified fatty acids

PD:

Protectins

PGE2:

Prostaglandin E2

PGs:

Prostaglandins

PPAR-γ:

Peroxisome proliferator-activated receptor gamma

PUFA:

Polyunsaturated fatty acids

Rv:

Resolvins

SPM:

Specialized proresolving mediators

T2DM:

Type 2 Diabetes Mellitus

TAG:

Triacylglycerol

TNF-α:

Tumor Necrosis Factor alpha

TXA2:

Thromboxane A2

Δ:

Delta

ω:

Omega

References

  • Abbadi A, Domergue F, Bauer J, et al. Biosynthesis of very- long-chain polyunsaturated fatty acids in transgenic oilseeds: constraints on their accumulation. Plant Cell. 2004;16(10):2734–48.

    Article  CAS  Google Scholar 

  • Adams S, Lopata A, Smuts C, Baatjies R, Jeebhay M. Relationship between serum omega-3 fatty acid and asthma endpoints. Int J Environ Res Public Health. 2019;16(1):43. https://doi.org/10.3390/ijerph16010043.

  • Andruchow ND, Konishi K, Shatenstein B, Bohbot VD. A lower ratio of omega-6 to omega-3 fatty acids predicts better hippocampus-dependent spatial memory and cognitive status in older adults. Neuropsychology. 2017;31(7):724–34.

    Article  Google Scholar 

  • Bahgat A, Elhady M, Aziz AA, Youness ER, Zakzok E. Omega-6/omega-3 ratio and cognition in children with epilepsy. Ann Pediatría (English Ed). 2019;91(2):88–95.

    Article  Google Scholar 

  • Balic A, Vlasic KD, Zuzul B, Marinovic B, Bukvic MZ. Omega-3 versus omega-6 polyunsaturated fatty acids in the prevention and treatment of inflammatory skin diseases. Int J Mol Sci. 2020;21(3):741, article 0741.

    Article  CAS  Google Scholar 

  • Bathina S, Das UN. Resolvin D1 decreases severity of streptozotocin-induced type 1 diabetes mellitus by enhancing BDNF levels, reducing oxidative stress, and suppressing inflammation. Int J Mol Sci. 2021;22(4):1516.

    Article  CAS  Google Scholar 

  • Bentsen H. Dietary polyunsaturated fatty acids, brain function and mental health. Microb Ecol Health Dis. 2017;28(Suppl 1):article 1281916.

    Google Scholar 

  • Bhardwaj K, Verma N, Trivedi R, Bhardwaj S, Shukla N. Significance of ratio of omega-3 and omega-6 in human health with special reference to flaxseed oil. Int J Biol Chem. 2016;10(1–4):1–6.

    CAS  Google Scholar 

  • Broughton KS, Johnson CS, Pace BK, Liebman M, Kleppinger KM. Reduced asthma symptoms with n-3 fatty acid ingestion are related to 5-series leukotriene production. Am J Clin Nutr. 1997;65(4):1011–7. https://doi.org/10.1093/ajcn/65.4.1011

  • Burdge G. Metabolism ofα -linolenic acid in humans. Prostaglandins Leukot Essent Fat Acids. 2006;75(3):161–8.

    Article  CAS  Google Scholar 

  • Calder PC. Omega-3 polyunsaturated fatty acids and inflammatory processes: nutrition or pharmacology? Br J Clin Pharmacol. 2013;75(3):645–62.

    Article  CAS  Google Scholar 

  • Calder PC. Very long-chain n-3 fatty acids and human health: fact, fiction and the future. Proc Nutr Soc. 2018;77:52–72.

    Article  CAS  Google Scholar 

  • Casula M, Soranna D, Catapano AL, Corrao G. Longterm effect of high dose omega-3 fatty acid supplementation for secondary prevention of cardiovascular outcomes: a meta-analysis of randomized, double blind, placebo-controlled trials. Atheroscler Suppl. 2013;14:243–51.

    Article  Google Scholar 

  • Chaves H, Singh RB, Khan S, Wilczynska A, Takahashi T. The role of functional food security in global health. Elsevier; 2019. High omega-6/omega-3 fatty acid ratio diets and risk of noncommunicable diseases: is the tissue, the main issue? p. 217–59.

    Google Scholar 

  • Clària J, López-Vicario C, Rius B, Titos E. Pro-resolving actions of SPM in adipose tissue biology. Mole Aspects Med. 2017;58:83–92. ISSN 0098-2997.

    Google Scholar 

  • Das UN. Insulin resistance and hyperinsulinemia: are they secondary to an alteration in the metabolism of essential fatty acids? Med Sci Res. 1994;22:243–5.

    CAS  Google Scholar 

  • Das UN. A defect in the activity of Delta6 and Delta5 desaturases may be a factor predisposing to the development of insulin resistance syndrome. Prostaglandins Leukot Essent Fat Acids. 2005;72:343–50.

    Article  CAS  Google Scholar 

  • Day EA, Ford RJ, Steinberg GR. AMPK as a therapeutic target for treating metabolic diseases. Trends Endocrinol Metab. 2017;28:545–60.

    Article  CAS  Google Scholar 

  • Di Pasquale MG. The essentials of essential fatty acids. J Diet Suppl. 2009;6(2):143–61.

    Article  Google Scholar 

  • Donahue SM, Rifas-Shiman SL, Gold DR, Jouni ZE, Gillman MW, Oken E. Prenatal fatty acid status and child adiposity at age 3 years: results from a US pregnancy cohort. Am J Clin Nutr. 2011;93:780–8.

    Article  CAS  Google Scholar 

  • Dong X, Li S, Chen J. Association of dietary ω-3 and ω-6 fatty acids intake with cognitive performance in older adults: National Health and Nutrition Examination Survey (NHANES) 2011–2014. Nutr J. 2020;19(25):1.

    Google Scholar 

  • Dyall SC. Long-chain omega-3 fatty acids and the brain: a review of the independent and shared effects of EPA, DPA and DHA. Front Aging Neurosci. 2015;7:52.

    Article  Google Scholar 

  • Ertunc ME, Hotamisligil GS. Lipid signaling and lipotoxicity in metaflammation: indications for metabolic disease pathogenesis and treatment. J Lipid Res. 2016;57:2099–114.

    Article  CAS  Google Scholar 

  • Food and Agriculture Organization (FAO). The state of the world fisheries and aquaculture 2016. Contributing to food security and nutrition for all. Rome: FAO; 2016. 200p. ISBN 978-92-5-109185-2.

    Google Scholar 

  • Garaulet M, Perez-Llamas F, Perez-Ayala M, Martinez P, de Medina FS, Tebar FJ, et al. Site Q specific differences in the fatty acid composition of abdominal adipose tissue in an obese population from a Mediterranean area: relation with dietary fatty acids, plasma lipid profile, serum insulin, and central obesity. Am J Clin Nutr. 2001;74(5):585–91.

    Article  CAS  Google Scholar 

  • Gladyshev MI, Sushchik NN. Long-chain omega-3 polyunsaturated fatty acids in natural ecosystems and the human diet: assumptions and challenges. Biomol Ther. 2019;9(9):485.

    CAS  Google Scholar 

  • Hainault I, Carlotti M, Hajduch E, Guichard C, Lavau M. Fish oil in a high lard diet prevents obesity, hyperlipemia, and adipocyte insulin resistance in rats. Ann N Y Acad Sci. 1993;683:98–101.

    Article  CAS  Google Scholar 

  • Harwood JL. Recent advances in the biosynthesis of plant fatty acids. Biochim Biophys Acta. 1996;1301:7–56.

    Article  Google Scholar 

  • Hashimoto M, Hossain S. Fatty acids: from membrane ingredients to signalling molecules. In: Biochemistry and health benefits of fatty acids. IntechOpen; 2018.

    Google Scholar 

  • Joshi SR, Parikh RM. India – diabetes capital of the world: now heading towards hypertension. J Assoc Physicians India. 2007;55:323–4.

    Google Scholar 

  • Kaveeshwar SA, Cornwall J. The current state of diabetes mellitus in India. Australas Med J. 2014;7(1):45–8.

    Article  Google Scholar 

  • Kim OY, Lim HH, Yang LI, Chae JS, Lee JH. Fatty acid desaturase (FADS) gene polymorphisms and insulin resistance in association with serum phospholipid polyunsaturated fatty acid composition in healthy Korean men: cross-sectional study. Nutr Metabol. 2011;8(1). https://doi.org/10.1186/1743-7075-8-24.

  • Koundouros N, Poulogiannis G. Reprogramming of fatty acid metabolism in cancer. Br J Cancer. 2020;122:4–22. https://doi.org/10.1038/s41416-019-0650-z.

    Article  CAS  Google Scholar 

  • Kumar A, Goel MK, Jain RB, Khanna P, Chaudhary V. India towards diabetes control: key issues. Australas Med J. 2013;6(10):524–31.

    Article  Google Scholar 

  • Lepretti M, Martucciello S, Burgos Aceves MA, Putti R, Lionetti L. Omega-3 fatty acids and insulin resistance: focus on the regulation of mitochondria and endoplasmic reticulum stress. Nutrients. 2018;10(3):350.

    Article  Google Scholar 

  • Li X, Bi X, Wang S, Zhang Z, Li F, Zhao AZ. Therapeutic potential of ω-3 polyunsaturated fatty acids in human autoimmune diseases. Front Immunol. 2019;10:2241.

    Article  CAS  Google Scholar 

  • Mansouri V, Javanmard SH, Mahdavi M, Tajedini MH. Association of polymorphism in fatty acid desaturase gene with the risk of type 2 diabetes in Iranian population. Adv Biomed Res. 2018;7:98.

    Article  Google Scholar 

  • Mariamenatu AH, Abdu EM. Overconsumption of omega-6 polyunsaturated fatty acids (PUFAs) versus deficiency of omega-3 PUFAs in modern-day diets: the disturbing factor for their “balanced antagonistic metabolic functions” in the human body. J Lipids. 2021;2021:8848161.

    Article  Google Scholar 

  • Mathias RA, Pani V, Chilton FH. Genetic variants in the FADS gene: implications for dietary recommendations for fatty acid intake. Curr Nutr Rep. 2014;3:139–48.

    Article  CAS  Google Scholar 

  • Mazoochian L, Sadeghi MHM, Pourfarzam M. The effect of FADS2 gene rs174583 polymorphism on desaturase activities, fatty acid profile, insulin resistance, biochemical indices, and incidence of type 2 diabetes. J Res Med Sci. 2018;23:47.

    Article  Google Scholar 

  • Molendi-Coste O, Legry V, Leclercq IA. Why and how meet n-3 PUFA dietary recommendations?. Gastroenterol Res Pract. 2011;2011:1–11. https://doi.org/10.1155/2011/364040.

  • Mori Y, Murakawa Y, Katoh S, Hata S, Yokoyama J, Tajima N, et al. Influence of highly purified eicosapentaenoic acid ethyl ester on insulin resistance in the Otsuka long-Evans Tokushima fatty rat, a model of spontaneous non-insulin-dependent diabetes mellitus. Metabolism. 1997;46:1458–64.

    Article  CAS  Google Scholar 

  • Nagy L, Tiuca I-D. Importance of fatty acids in physiopathology of human body, fatty acids [Internet]. Intech Open; 2017. https://www.intechopen.com/books/fatty-acids/importance-of-fatty-acids-in-physiopathology-of-human-body

  • Pereira SL, Leonard AE, Huang YS, Chuang LT, Mukerji P. Identification of two novel microalgal enzymes involved in the conversion of the omega3-fatty acid, eicosapentaenoic acid, into docosahexaenoic acid. Biochem J. 2004;384:357–66.

    Article  CAS  Google Scholar 

  • Perez-Matute P, Perez-Echarri N, Martinez JA, Marti A, Moreno-Aliaga MJ. Eicosapentaenoic acid actions on adiposity and insulin resistance in control and high-fat-fed rats: role of apoptosis, adiponectin and tumour necrosis factor-alpha. Br J Nutr. 2007;97:389–98.

    Article  CAS  Google Scholar 

  • Peyron-Caso S, Fluteau-Nadler M, Kabir M, Guerre-Millo A, Quignard-Boulange G. Regulation of glucose transport and transporter 4 (GLUT-4) in muscle and adipocytes of sucrose-fed rats: effects of N-3 poly and monounsaturated fatty acids. Horm Metab Res. 2002;34:360–6.

    Article  CAS  Google Scholar 

  • Rimoldi OJ, Finarelli GS, Brenner RR. Effects of diabetes and insulin on hepatic delta 6 desaturase gene expression. Biochem Biophys Res Commun. 2001;283:323–6.

    Article  CAS  Google Scholar 

  • Ruiz-López N, Sayanova O, Napier JA, Haslam RP. Metabolic engineering of the omega-3 long chain polyunsaturated fatty acid biosynthetic pathway into transgenic plants. J Exp Bot. 2012;63(7):2397–410.

    Article  Google Scholar 

  • Ruiz-Lopez N, Sayanova O, Napier JA, Haslam RP. Metabolic engineering of the omega-3 long chain polyunsaturated fatty acid biosynthetic pathway into transgenic plants. J Exp Bot. 2012;63:2397–410.

    Article  CAS  Google Scholar 

  • Russo GL. Dietary n-6 and n-3 polyunsaturated fatty acids: from biochemistry to clinical implications in cardiovascular prevention. Biochem Pharmacol. 2009;77(6):937–46.

    Article  CAS  Google Scholar 

  • Sayanova OV, Napier JA. Eicosapentaenoic acid: biosynthetic routes and the potential for synthesis in transgenic plants. Phytochemistry. 2004;65:147–58.

    Article  CAS  Google Scholar 

  • Schaeffer L, Gohlke H, Muller M, Heid IM, Palmer LJ, Kompauer, et al. Common genetic variants of the FADS1 FADS2 gene cluster and their reconstructed haplotypes are associated with the fatty acid composition in phospholipids. Hum Mol Genet. 2006;15(11):1745–56.

    Article  CAS  Google Scholar 

  • Shetty S, Devi UH, Kumari SN. Fatty acid desaturase 2 (FADS2) gene polymorphism in type 2 diabetes mellitus- a case- control study. RJPBCS. 2019;10(1):537–43.

    CAS  Google Scholar 

  • Shetty SS, Praveen SKN, Shetty K. ω-6/ω-3 fatty acid ratio as an essential predictive biomarker in the management of type 2 diabetes mellitus. Nutrition. 2020;79-80110968. https://doi.org/10.1016/j.nut.2020.110968

  • Shevchenko A, Simons K. Lipidomics: coming to grips with lipid diversity. Nat Rev Mol Cell Biol. 2010;11(8):593–8.

    Article  CAS  Google Scholar 

  • Simopoulos AP. Is insulin resistance influenced by dietary linoleic acid and trans fatty acids? Free Rad Biol Med. 1994;17(4):367–72.

    Article  CAS  Google Scholar 

  • Simopoulos AP. The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed Pharmacother. 2002;56(8):365–79. https://doi.org/10.1016/S0753-3322(02)00253-6

  • Simopoulos AP. Omega-6/omega-3 essential fatty acid ratio and chronic diseases. Food Rev Int. 2004;20(1):77–90.

    Article  CAS  Google Scholar 

  • Simopoulos AP. Evolutionary aspects of diet, the omega- 6/omega-3 ratio and genetic variation: nutritional implications for chronic diseases. Biomed Pharmacother. 2006;60(9):502–7.

    Article  CAS  Google Scholar 

  • Simopoulos AP. The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Exp Biol Med. 2008;233(6):674–88.

    Article  CAS  Google Scholar 

  • Simopoulos AP. Omega-6/omega-3 essential fatty acids: biological effects. World Rev Nutr Diet. 2009;99:1–16. https://doi.org/10.1159/000192755. Epub 2009 Jan 9. PMID: 19136835.

  • Simopoulos AP. Genetic variants in the metabolism of omega-6 and omega-3 fatty acids: their role in the determination of nutritional requirements and chronic disease risk. Exp Biol Med. 2010;235(7):785–95. https://doi.org/10.1258/ebm.2010.009298

  • Simopoulos AP. Healthy agriculture, healthy nutrition, healthy people, vol. 102. Karger Publishers; 2011. Importance of the omega-6/omega-3 balance in health and disease: evolutionary aspects of diet; p. 10–21.

    Google Scholar 

  • Simopoulos AP. The impact of the Bellagio report on healthy agriculture, healthy nutrition, healthy people: scientific and policy aspects and the international network of centers for genetics, nutrition and fitness for health. J Nutrigenet Nutrigenom. 2015;7:189–209.

    Google Scholar 

  • Simopoulos AP. An increase in the omega-6/omega-3 fatty acid ratio increases the risk for obesity. Nutrients. 2016;8(3):128. https://doi.org/10.3390/nu8030128.

    Article  CAS  Google Scholar 

  • Sokoła-Wysoczańska E, Wysoczański T, Wagner J, et al. Polyunsaturated fatty acids and their potential therapeutic role in cardiovascular system disorders – a review. Nutrients. 2018;10(10):article 1561.

    Article  Google Scholar 

  • Tocher DR. Omega-3 long-chain polyunsaturated fatty acids and aquaculture in perspective. Aquaculture. 2015;449:94–107.

    Article  CAS  Google Scholar 

  • Tsurutani Y, Inoue K, Sugisawa C, Saito J, Omura M, Nishikawa T. Increased serum dihomo-γ-linolenic acid levels are associated with obesity, body fat accumulation, and insulin resistance in Japanese patients with type 2 diabetes. Int Med. 2018;57(20):2929–35.

    Article  CAS  Google Scholar 

  • Uttaro AD. Biosynthesis of polyunsaturated fatty acids in lower eukaryotes. IUBMB Life. 2006;58:563–71.

    Article  CAS  Google Scholar 

  • Wang X, Chan CB. n-3 polyunsaturated fatty acids and insulin secretion. J Endocrinol. 2015;224(3):R97–R106.

    Article  CAS  Google Scholar 

  • Ward OP, Singh A. Omega-3/6 fatty acids: alternative sources of production. Process Biochem. 2005;40:3627–5652.

    Article  CAS  Google Scholar 

  • Weiser MJ, Butt CM, Mohajeri MH. Docosahexaenoic acid and cognition throughout the lifespan. Nutrients. 2016;8:99.

    Article  Google Scholar 

  • Wu Y, Ding Y, Tanaka Y, Zhang W. Risk factors contributing to type 2 diabetes and recent advances in the treatment and prevention. Int J Med Sci. 2014;11(11):1185–200.

    Article  Google Scholar 

  • Yary T, Voutilainen S, Tuomainen T-P, Ruusunen A, Nurmi T, Virtanen JK. Am J Clin Nutr. 2016;103(5):1337–43. https://doi.org/10.3945/ajcn.115.128629

  • Zhou X-R, Green AG, Singh SP. Caenorhabditis elegans Δ12-desaturase FAT-2 is a bifunctional desaturase able to desaturate a diverse range of fatty acid substrates at the Δ12 and Δ15 positions. J Biol Chem. 2011;286:43644–50.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shilpa S. Shetty .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Shetty, S.S., Suchetha Kumari, N., Varadarajan, R. (2023). The Ratio of Omega-6/Omega-3 Fatty Acid: Implications and Application as a Marker to Diabetes. In: Patel, V.B., Preedy, V.R. (eds) Biomarkers in Diabetes. Biomarkers in Disease: Methods, Discoveries and Applications. Springer, Cham. https://doi.org/10.1007/978-3-031-08014-2_23

Download citation

Publish with us

Policies and ethics