Skip to main content

Population and Individual Level Meal Response Patterns in Continuous Glucose Data

  • Conference paper
  • First Online:
Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU 2022)

Abstract

Diabetes research has changed with the introduction of wearables that are able to continuously collect physiological data (e.g., blood glucose levels), which has allowed for data-driven solutions. In this context, patients are still expected to self-record events tied to their daily routines (e.g., meals). Since self-recording is prone to errors, automatic detection of meal events could improve the quality of event data and reduce registration burden. In this paper, we investigate the feasibility of meal detection from continuous glucose data by using population level data compared to individual data. We discuss the advantages and disadvantages of both approaches based on a method to identify patterns in time series that can be used to map the characteristics of a glucose signal response to a meal event. Event responses, i.e., subsequences that come right after a recorded event, are identified and fuzzy clustering is used to group different types of them. Our results indicate that both population and individual data give comparable results, which suggests that both could be used interchangeably to develop event identification models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    smarthealth.cs.ohio.edu/OhioT1DM-dataset.html.

  2. 2.

    http://github.com/omadson/fuzzy-c-means.

  3. 3.

    http://github.com/TDAmeritrade/stumpy.

References

  1. Agrawal, R., Faloutsos, C., Swami, A.: Efficient similarity search in sequence databases. In: Lomet, D.B. (ed.) FODO 1993. LNCS, vol. 730, pp. 69–84. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-57301-1_5

    Chapter  Google Scholar 

  2. Behera, A.: Use of artificial intelligence for management and identification of complications in diabetes. Clin. Diabetol. 10(2), 221–225 (2021). https://doi.org/10.5603/DK.a2021.0007

    Article  Google Scholar 

  3. Bezdek, J.C., Ehrlich, R., Full, W.: FCM: the fuzzy c-means clustering algorithm. Comput. Geosci. 10(2–3), 191–203 (1984). https://doi.org/10.1016/0098-3004(84)90020-7

    Article  Google Scholar 

  4. Caiado, J., Ann Maharaj, E., D’Urso, P.: Time-series clustering. Handbook of Cluster Analysis, pp. 241–264 (2015). https://doi.org/10.1201/b19706

  5. Dassau, E., Bequette, B.W., Buckingham, B.A., Doyle, F.J.: Detection of a meal using continuous glucose monitoring. Diabetes Care 31(2), 295–300 (2008). https://doi.org/10.2337/dc07-1293

    Article  Google Scholar 

  6. Dias, M.L.D.: fuzzy-c-means: An implementation of fuzzy \(c\)-means clustering algorithm, September 2021. https://doi.org/10.5281/zenodo.5497844

  7. Ding, H., Trajcevski, G., Scheuermann, P., Wang, X., Keogh, E.: Querying and mining of time series data: experimental comparison of representations and distance measures. Proc. VLDB Endow. 1(2), 1542–1552 (2008). https://doi.org/10.14778/1454159.1454226

  8. F. de Carvalho, D., Kaymak, U., Van Gorp, P., van Riel, N.: A Markov model for inferring event types on diabetes patients data. Healthcare Analyt. 100024 (2022). https://doi.org/10.1016/j.health.2022.100024

  9. Fagherazzi, G.: Deep digital phenotyping and digital twins for precision health: time to dig deeper. J. Med. Internet Res. 22(3), e16770 (2020). https://doi.org/10.2196/16770

    Article  Google Scholar 

  10. Felizardo, V., Garcia, N.M., Pombo, N., Megdiche, I.: Data-based algorithms and models using diabetics real data for blood glucose and hypoglycaemia prediction - a systematic literature review. Artif. Intell. Med. 118, 102120 (2021). https://doi.org/10.1016/j.artmed.2021.102120

    Article  Google Scholar 

  11. Huang, M., Xia, Z., Wang, H., Zeng, Q., Wang, Q.: The range of the value for the fuzzifier of the fuzzy c-means algorithm. Pattern Recogn. Lett. 33(16), 2280–2284 (2012). https://doi.org/10.1016/j.patrec.2012.08.014

    Article  Google Scholar 

  12. International Diabetes Federation: IDF Diabetes Atlas. Brussels, Belgium: International Diabetes Federation, 10 edn. (2021)

    Google Scholar 

  13. Javed, A., Lee, B.S., Rizzo, D.M.: A benchmark study on time series clustering. Mach. Learn. Appl. 1, 100001 (2020)

    Google Scholar 

  14. Law, S.M.: STUMPY: a powerful and scalable Python library for time series data mining. J. Open Source Software 4(39), 1504 (2019)

    Article  Google Scholar 

  15. Liao Warren, T.: Clustering of time series data - a survey. Pattern Recogn. 38(11), 1857–1874 (2005)

    Article  Google Scholar 

  16. Maas, A.H., et al.: A physiology-based model describing heterogeneity in glucose metabolism: the core of the Eindhoven diabetes education simulator (E-DES). J. Diabetes Sci. Technol. 9(2), 282–292 (2015). https://doi.org/10.1177/1932296814562607

    Article  Google Scholar 

  17. Marling, C., Bunescu, R.: The OhioT1DM dataset for blood glucose level prediction: update 2020. In: CEUR Workshop Proceedings, vol. 2675, pp. 71–74 (2020)

    Google Scholar 

  18. Nathan, D.M.: The diabetes control and complications trial/epidemiology of diabetes interventions and complications study at 30 years: overview. Diabetes Care 37(1), 9–16 (2014). https://doi.org/10.2337/dc13-2112

    Article  Google Scholar 

  19. Ozkan, I., Turksen, I.B.: Upper and lower values for the level of fuzziness in FCM. Stud. Fuzziness Soft Comput. 215, 99–112 (2007). https://doi.org/10.1007/978-3-540-71258-9-6

    Article  MathSciNet  MATH  Google Scholar 

  20. Sim, S., Bae, H., Choi, Y.: Likelihood-based multiple imputation by event chain methodology for repair of imperfect event logs with missing data. In: Proceedings - 2019 International Conference on Process Mining, ICPM 2019, pp. 9–16 (2019). https://doi.org/10.1109/ICPM.2019.00013

  21. Vlachos, M., Lin, J., Keogh, E., Gunopulos, D.: A wavelet-based anytime algorithm for k-means clustering of time series. In: Workshop on Clustering High Dimensionality Data and Its Applications, at the 3rd SIAM International Conference on Data Mining, pp. 1–3 (2003)

    Google Scholar 

  22. Ye, L., Keogh, E.: Time series shapelets: a new primitive for data mining. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. KDD 2009, New York, NY, USA, pp. 947–956. Association for Computing Machinery (2009). https://doi.org/10.1145/1557019.1557122

  23. Yeh, C.C.M., et al.: Matrix profile I: all pairs similarity joins for time series: a unifying view that includes motifs, discords and shapelets. In: 2016 IEEE 16th International Conference on Data Mining (ICDM), pp. 1317–1322 (2016). https://doi.org/10.1109/ICDM.2016.0179

  24. Yeh, C.-C.M., Zhu, Y., Ulanova, L., Begum, N., Ding, Y., Dau, H.A., Zimmerman, Z., Silva, D.F., Mueen, A., Keogh, E.: Time series joins, motifs, discords and shapelets: a unifying view that exploits the matrix profile. Data Min. Knowl. Disc. 32(1), 83–123 (2017). https://doi.org/10.1007/s10618-017-0519-9

    Article  MathSciNet  MATH  Google Scholar 

  25. Yu, J., Cheng, Q., Huang, H.: Analysis of the weighting exponent in the FCM. IEEE Trans. Syst. Man Cybern. B Cybern. 34(1), 634–639 (2004). https://doi.org/10.1109/TSMCB.2003.810951

    Article  Google Scholar 

  26. Zheng, M., Ni, B., Kleinberg, S.: Automated meal detection from continuous glucose monitor data through simulation and explanation. J. Am. Med. Inform. Assoc. 26(12), 1592–1599 (2019). https://doi.org/10.1093/jamia/ocz159

    Article  Google Scholar 

  27. Zhu, Y., et al.: Matrix profile II: exploiting a novel algorithm and GPUs to break the one hundred million barrier for time series motifs and joins. In: 2016 IEEE 16th International Conference on Data Mining (ICDM), pp. 739–748. IEEE (2017). https://doi.org/10.1109/icdm.2016.0085

Download references

Acknowledgment

This publication is part of the project DiaGame (with project number 628.011.027) of the research programme Data2Person which is (partly) financed by the Dutch Research Council (NWO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danilo Ferreira de Carvalho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

de Carvalho, D.F., Kaymak, U., Van Gorp, P., van Riel, N. (2022). Population and Individual Level Meal Response Patterns in Continuous Glucose Data. In: Ciucci, D., et al. Information Processing and Management of Uncertainty in Knowledge-Based Systems. IPMU 2022. Communications in Computer and Information Science, vol 1602. Springer, Cham. https://doi.org/10.1007/978-3-031-08974-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08974-9_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08973-2

  • Online ISBN: 978-3-031-08974-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics