Skip to main content

Thy(–im)munosenescence: The Ageing of the Thymus and Its Impact on the Immune System

  • Chapter
  • First Online:
Immunosenescence

Part of the book series: Birkhäuser Advances in Infectious Diseases ((BAID))

Abstract

The function of the thymus strongly decreases with age and this process is accelerated upon puberty. Based on this observation and the knowledge of the central role of the thymus for the maturation of naïve CD4+ and CD8+ T cells, a contribution of the thymus involution to the ageing of the immune system has been postulated. In this chapter, after a brief description of the role of the thymus for immunity, its involution during ageing and the impact on the immunity in the elderly are described. Furthermore, I will discuss attempts to boost thymus function aiming at a rejuvenation of the “old” immune system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Janeway C, Murphy KP, Travers P, Walport M (2008) Janeway’s immuno biology, 7th edn. Garland Science, New York

    Google Scholar 

  2. Josefowicz SZ, Rudensky A (2009) Control of regulatory T cell lineage commitment and maintenance. Immunity 30:616–625

    Article  CAS  PubMed  Google Scholar 

  3. Ueno T, Saito F, Gray DH et al (2004) CCR7 signals are essential for cortex-medulla migration of developing thymocytes. J Exp Med 200:493–505

    Article  CAS  PubMed  Google Scholar 

  4. Flores KG, Li J, Sempowski GD, Haynes BF, Hale LP (1999) Analysis of the human thymic perivascular space during aging. J Clin Invest 104:1031–1039

    Article  CAS  PubMed  Google Scholar 

  5. Steinmann GG (1986) Changes in the human thymus during aging. Curr Top Pathol 75:43–88

    Article  CAS  PubMed  Google Scholar 

  6. Gui J, Zhu X, Dohkan J, Cheng L, Barnes PF, Su DM (2007) The aged thymus shows normal recruitment of lymphohematopoietic progenitors but has defects in thymic epithelial cells. Int Immunol 19:1201–1211

    Article  CAS  PubMed  Google Scholar 

  7. Li L, Hsu HC, Grizzle WE et al (2003) Cellular mechanism of thymic involution. Scand J Immunol 57:410–422

    Article  CAS  PubMed  Google Scholar 

  8. Sutherland JS, Goldberg GL, Hammett MV et al (2005) Activation of thymic regeneration in mice and humans following androgen blockade. J Immunol 175:2741–2753

    CAS  PubMed  Google Scholar 

  9. Venken K, Hellings N, Broekmans T, Hensen K, Rummens JL, Stinissen P (2008) Natural naive CD4 + CD25 + CD127low regulatory T cell (Treg) development and function are disturbed in multiple sclerosis patients: recovery of memory Treg homeostasis during disease progression. J Immunol 180:6411–6420

    CAS  PubMed  Google Scholar 

  10. Rosenkranz D, Weyer S, Tolosa E et al (2007) Higher frequency of regulatory T cells in the elderly and increased suppressive activity in neurodegeneration. J Neuroimmunol 188:117–127

    Article  CAS  PubMed  Google Scholar 

  11. Gregg R, Smith CM, Clark FJ et al (2005) The number of human peripheral blood CD4+ CD25high regulatory T cells increases with age. Clin Exp Immunol 140:540–546

    Article  CAS  PubMed  Google Scholar 

  12. Tenorio AR, Spritzler J, Martinson J et al (2009) The effect of aging on T-regulatory cell frequency in HIV infection. Clin Immunol 130:298–303

    Article  CAS  PubMed  Google Scholar 

  13. Goldberg GL, Sutherland JS, Hammet MV et al (2005) Sex steroid ablation enhances lymphoid recovery following autologous hematopoietic stem cell transplantation. Transplantation 80:1604–1613

    Article  PubMed  Google Scholar 

  14. Heng TS, Goldberg GL, Gray DH, Sutherland JS, Chidgey AP, Boyd RL (2005) Effects of castration on thymocyte development in two different models of thymic involution. J Immunol 175:2982–2993

    CAS  PubMed  Google Scholar 

  15. Sutherland JS, Spyroglou L, Muirhead JL et al (2008) Enhanced immune system regeneration in humans following allogeneic or autologous hemopoietic stem cell transplantation by temporary sex steroid blockade. Clin Cancer Res 14:1138–1149

    Article  CAS  PubMed  Google Scholar 

  16. Taub DD, Longo DL (2005) Insights into thymic aging and regeneration. Immunol Rev 205:72–93

    Article  CAS  PubMed  Google Scholar 

  17. Napolitano LA, Lo JC, Gotway MB et al (2002) Increased thymic mass and circulating naive CD4 T cells in HIV-1-infected adults treated with growth hormone. AIDS 16:1103–1111

    Article  CAS  PubMed  Google Scholar 

  18. Pearce DJ, Anjos-Afonso F, Ridler CM, Eddaoudi A, Bonnet D (2007) Age-dependent increase in side population distribution within hematopoiesis: implications for our understanding of the mechanism of aging. Stem Cells 25:828–835

    Article  CAS  PubMed  Google Scholar 

  19. Rossi DJ, Bryder D, Zahn JM et al (2005) Cell intrinsic alterations underlie hematopoietic stem cell aging. Proc Natl Acad Sci USA 102:9194–9199

    Article  CAS  PubMed  Google Scholar 

  20. Sudo K, Ema H, Morita Y, Nakauchi H (2000) Age-associated characteristics of murine hematopoietic stem cells. J Exp Med 192:1273–1280

    Article  CAS  PubMed  Google Scholar 

  21. Liang Y, Van Zant G, Szilvassy SJ (2005) Effects of aging on the homing and engraftment of murine hematopoietic stem and progenitor cells. Blood 106:1479–1487

    Article  CAS  PubMed  Google Scholar 

  22. Morrison SJ, Wandycz AM, Akashi K, Globerson A, Weissman IL (1996) The aging of hematopoietic stem cells. Nat Med 2:1011–1016

    Article  CAS  PubMed  Google Scholar 

  23. Baron RL, McClennan BL, Lee JK, Lawson TL (1982) Computed tomography of transitional-cell carcinoma of the renal pelvis and ureter. Radiology 144:125–130

    CAS  PubMed  Google Scholar 

  24. Moore AV, Korobkin M, Olanow W et al (1983) Age-related changes in the thymus gland: CT-pathologic correlation. Am J Roentgenol 141:241–246

    CAS  Google Scholar 

  25. Francis IR, Glazer GM, Bookstein FL, Gross BH (1985) The thymus: reexamination of age-related changes in size and shape. Am J Roentgenol 145:249–254

    CAS  Google Scholar 

  26. Douek DC, McFarland RD, Keiser PH et al (1998) Changes in thymic function with age and during the treatment of HIV infection. Nature 396:690–695

    Article  CAS  PubMed  Google Scholar 

  27. Stulnig T, Maczek C, Bock G, Majdic O, Wick G (1995) Reference intervals for human peripheral blood lymphocyte subpopulations from ‘healthy’ young and aged subjects. Int Arch Allergy Immunol 108:205–210

    Article  CAS  PubMed  Google Scholar 

  28. Utsuyama M, Hirokawa K, Kurashima C et al (1992) Differential age-change in the numbers of CD4 + CD45RA + and CD4 + CD29+ T cell subsets in human peripheral blood. Mech Ageing Dev 63:57–68

    Article  CAS  PubMed  Google Scholar 

  29. Kohler S, Thiel A (2009) Life after the thymus: CD31+ and CD31- human naive CD4+ T-cell subsets. Blood 113:769–774

    Article  CAS  PubMed  Google Scholar 

  30. Thiel A, Alexander T, Schmidt CA et al (2008) Direct assessment of thymic reactivation after autologous stem cell transplantation. Acta Haematol 119:22–27

    Article  PubMed  Google Scholar 

  31. Haines CJ, Giffon TD, Lu LS et al (2009) Human CD4+ T cell recent thymic emigrants are identified by protein tyrosine kinase 7 and have reduced immune function. J Exp Med 206:275–285

    Article  CAS  PubMed  Google Scholar 

  32. McFarland RD, Douek DC, Koup RA, Picker LJ (2000) Identification of a human recent thymic emigrant phenotype. Proc Natl Acad Sci USA 97:4215–4220

    Article  CAS  PubMed  Google Scholar 

  33. Teixeira L, Valdez H, McCune JM et al (2001) Poor CD4 T cell restoration after suppression of HIV-1 replication may reflect lower thymic function. AIDS 15:1749–1756

    Article  CAS  PubMed  Google Scholar 

  34. Smith KY, Valdez H, Landay A et al (2000) Thymic size and lymphocyte restoration in patients with human immunodeficiency virus infection after 48 weeks of zidovudine, lamivudine, and ritonavir therapy. J Infect Dis 181:141–147

    Article  CAS  PubMed  Google Scholar 

  35. Ye P, Kourtis AP, Kirschner DE (2003) Reconstitution of thymic function in HIV-1 patients treated with highly active antiretroviral therapy. Clin Immunol 106:95–105

    Article  CAS  PubMed  Google Scholar 

  36. Muraro PA, Douek DC, Packer A et al (2005) Thymic output generates a new and diverse TCR repertoire after autologous stem cell transplantation in multiple sclerosis patients. J Exp Med 201:805–816

    Article  CAS  PubMed  Google Scholar 

  37. Talvensaari K, Clave E, Douay C et al (2002) A broad T-cell repertoire diversity and an efficient thymic function indicate a favorable long-term immune reconstitution after cord blood stem cell transplantation. Blood 99:1458–1464

    Article  CAS  PubMed  Google Scholar 

  38. Mackall CL, Fleisher TA, Brown MR et al (1995) Age, thymopoiesis, and CD4+ T-lymphocyte regeneration after intensive chemotherapy. N Engl J Med 332:143–149

    Article  CAS  PubMed  Google Scholar 

  39. Clave E, Rocha V, Talvensaari K et al (2005) Prognostic value of pretransplantation host thymic function in HLA-identical sibling hematopoietic stem cell transplantation. Blood 105:2608–2613

    Article  CAS  PubMed  Google Scholar 

  40. Cwynarski K, Ainsworth J, Cobbold M et al (2001) Direct visualization of cytomegalovirus-specific T-cell reconstitution after allogeneic stem cell transplantation. Blood 97:1232–1240

    Article  CAS  PubMed  Google Scholar 

  41. Gandhi MK, Wills MR, Okecha G et al (2003) Late diversification in the clonal composition of human cytomegalovirus-specific CD8+ T cells following allogeneic hemopoietic stem cell transplantation. Blood 102:3427–3438

    Article  CAS  PubMed  Google Scholar 

  42. Kalina T, Lu H, Zhao Z et al (2005) De novo generation of CD4 T cells against viruses present in the host during immune reconstitution. Blood 105:2410–2414

    Article  CAS  PubMed  Google Scholar 

  43. Hayes KA, Koksoy S, Phipps AJ, Buck WR, Kociba GJ, Mathes LE (2005) Lentivirus-specific cytotoxic T-lymphocyte responses are rapidly lost in thymectomized cats infected with feline immunodeficiency virus. J Virol 79:8237–8242

    Article  CAS  PubMed  Google Scholar 

  44. Miller NE, Bonczyk JR, Nakayama Y, Suresh M (2005) Role of thymic output in regulating CD8 T-cell homeostasis during acute and chronic viral infection. J Virol 79:9419–9429

    Article  CAS  PubMed  Google Scholar 

  45. Vezys V, Masopust D, Kemball CC et al (2006) Continuous recruitment of naive T cells contributes to heterogeneity of antiviral CD8 T cells during persistent infection. J Exp Med 203:2263–2269

    Article  CAS  PubMed  Google Scholar 

  46. Wheeler CJ, Black KL, Liu G et al (2003) Thymic CD8+ T cell production strongly influences tumor antigen recognition and age-dependent glioma mortality. J Immunol 171:4927–4933

    CAS  PubMed  Google Scholar 

  47. Gerli R, Paganelli R, Cossarizza A et al (1999) Long-term immunologic effects of thymectomy in patients with myasthenia gravis. J Allergy Clin Immunol 103:865–872

    Article  CAS  PubMed  Google Scholar 

  48. Loughry A, Fairchild S, Athanasou N, Edwards J, Hall FC (2005) Inflammatory arthritis and dermatitis in thymectomized, CD25+ cell-depleted adult mice. Rheumatology (Oxford) 44:299–308

    Article  CAS  Google Scholar 

  49. Haynes L, Maue AC (2009) Effects of aging on T cell function. Curr Opin Immunol 21:414–417

    Article  CAS  PubMed  Google Scholar 

  50. Clise-Dwyer K, Huston GE, Buck AL, Duso DK, Swain SL (2007) Environmental and intrinsic factors lead to antigen unresponsiveness in CD4(+) recent thymic emigrants from aged mice. J Immunol 178:1321–1331

    CAS  PubMed  Google Scholar 

  51. Boursalian TE, Golob J, Soper DM, Cooper CJ, Fink PJ (2004) Continued maturation of thymic emigrants in the periphery. Nat Immunol 5:418–425

    Article  CAS  PubMed  Google Scholar 

  52. Houston EG Jr, Nechanitzky R, Fink PJ (2008) Cutting edge: contact with secondary lymphoid organs drives postthymic T cell maturation. J Immunol 181:5213–5217

    CAS  PubMed  Google Scholar 

  53. Hale JS, Boursalian TE, Turk GL, Fink PJ (2006) Thymic output in aged mice. Proc Natl Acad Sci USA 103:8447–8452

    Article  CAS  PubMed  Google Scholar 

  54. Haynes L, Eaton SM, Burns EM, Randall TD, Swain SL (2005) Newly generated CD4 T cells in aged animals do not exhibit age-related defects in response to antigen. J Exp Med 201:845–851

    Article  CAS  PubMed  Google Scholar 

  55. Kieper WC, Jameson SC (1999) Homeostatic expansion and phenotypic conversion of naive T cells in response to self peptide/MHC ligands. Proc Natl Acad Sci USA 96:13306–13311

    Article  CAS  PubMed  Google Scholar 

  56. Le Campion A, Bourgeois C, Lambolez F et al (2002) Naive T cells proliferate strongly in neonatal mice in response to self-peptide/self-MHC complexes. Proc Natl Acad Sci USA 99:4538–4543

    Article  PubMed  CAS  Google Scholar 

  57. Min B, McHugh R, Sempowski GD, Mackall C, Foucras G, Paul WE (2003) Neonates support lymphopenia-induced proliferation. Immunity 18:131–140

    Article  CAS  PubMed  Google Scholar 

  58. Tanchot C, Le Campion A, Leaument S, Dautigny N, Lucas B (2001) Naive CD4(+) lymphocytes convert to anergic or memory-like cells in T cell-deprived recipients. Eur J Immunol 31:2256–2265

    Article  CAS  PubMed  Google Scholar 

  59. Kimmig S, Przybylski GK, Schmidt CA et al (2002) Two subsets of naive T helper cells with distinct T cell receptor excision circle content in human adult peripheral blood. J Exp Med 195:789–794

    Article  CAS  PubMed  Google Scholar 

  60. Kohler S, Wagner U, Pierer M et al (2005) Post-thymic in vivo proliferation of naive CD4+ T cells constrains the TCR repertoire in healthy human adults. Eur J Immunol 35:1987–1994

    Article  CAS  PubMed  Google Scholar 

  61. Kilpatrick RD, Rickabaugh T, Hultin LE et al (2008) Homeostasis of the naive CD4+ T cell compartment during aging. J Immunol 180:1499–1507

    CAS  PubMed  Google Scholar 

  62. Goronzy JJ, Weyand CM (2005) T cell development and receptor diversity during aging. Curr Opin Immunol 17:468–475

    Article  CAS  PubMed  Google Scholar 

  63. Wack A, Cossarizza A, Heltai S et al (1998) Age-related modifications of the human alphabeta T cell repertoire due to different clonal expansions in the CD4+ and CD8+ subsets. Int Immunol 10:1281–1288

    Article  CAS  PubMed  Google Scholar 

  64. Pachlopnik Schmid JM, Junge SA, Hossle JP et al (2006) Transient hemophagocytosis with deficient cellular cytotoxicity, monoclonal immunoglobulin M gammopathy, increased T-cell numbers, and hypomorphic NEMO mutation. Pediatrics 117:e1049–e1056

    Google Scholar 

  65. Ahmed M, Lanzer KG, Yager EJ, Adams PS, Johnson LL, Blackman MA (2009) Clonal expansions and loss of receptor diversity in the naive CD8 T cell repertoire of aged mice. J Immunol 182:784–792

    Article  CAS  PubMed  Google Scholar 

  66. Bousso P, Wahn V, Douagi I et al (2000) Diversity, functionality, and stability of the T cell repertoire derived in vivo from a single human T cell precursor. Proc Natl Acad Sci USA 97:274–278

    Article  CAS  PubMed  Google Scholar 

  67. Woodland DL, Kotzin BL, Palmer E (1990) Functional consequences of a T cell receptor D beta 2 and J beta 2 gene segment deletion. J Immunol 144:379–385

    CAS  PubMed  Google Scholar 

  68. Nanda NK, Apple R, Sercarz E (1991) Limitations in plasticity of the T-cell receptor repertoire. Proc Natl Acad Sci USA 88:9503–9507

    Article  CAS  PubMed  Google Scholar 

  69. Funauchi M, Farrant J, Moreno C, Webster AD (1995) Defects in antigen-driven lymphocyte responses in common variable immunodeficiency (CVID) are due to a reduction in the number of antigen-specific CD4+ T cells. Clin Exp Immunol 101:82–88

    Article  CAS  PubMed  Google Scholar 

  70. Yager EJ, Ahmed M, Lanzer K, Randall TD, Woodland DL, Blackman MA (2008) Age-associated decline in T cell repertoire diversity leads to holes in the repertoire and impaired immunity to influenza virus. J Exp Med 205:711–723

    Article  CAS  PubMed  Google Scholar 

  71. King C, Ilic A, Koelsch K, Sarvetnick N (2004) Homeostatic expansion of T cells during immune insufficiency generates autoimmunity. Cell 117:265–277

    Article  CAS  PubMed  Google Scholar 

  72. Azevedo RI, Soares MV, Barata JT et al (2009) IL-7 sustains CD31 expression in human naive CD4+ T cells and preferentially expands the CD31+ subset in a PI3K-dependent manner. Blood 113:2999–3007

    Article  CAS  PubMed  Google Scholar 

  73. Dowling MR, Hodgkin PD (2009) Modelling naive T-cell homeostasis: consequences of heritable cellular lifespan during ageing. Immunol Cell Biol 87:445–456

    Article  CAS  PubMed  Google Scholar 

  74. Jones SC, Clise-Dwyer K, Huston G et al (2008) Impact of post-thymic cellular longevity on the development of age-associated CD4+ T cell defects. J Immunol 180:4465–4475

    CAS  PubMed  Google Scholar 

  75. Kobrynski LJ, Sullivan KE (2007) Velocardiofacial syndrome, DiGeorge syndrome: the chromosome 22q11.2 deletion syndromes. Lancet 370:1443–1452

    Article  CAS  PubMed  Google Scholar 

  76. Sullivan KE, Jawad AF, Randall P et al (1998) Lack of correlation between impaired T cell production, immunodeficiency, and other phenotypic features in chromosome 22q11.2 deletion syndromes. Clin Immunol Immunopathol 86:141–146

    Article  CAS  PubMed  Google Scholar 

  77. Kanaya Y, Ohga S, Ikeda K et al (2006) Maturational alterations of peripheral T cell subsets and cytokine gene expression in 22q11.2 deletion syndrome. Clin Exp Immunol 144:85–93

    Article  CAS  PubMed  Google Scholar 

  78. Chinen J, Rosenblatt HM, Smith EO, Shearer WT, Noroski LM (2003) Long-term assessment of T-cell populations in DiGeorge syndrome. J Allergy Clin Immunol 111:573–579

    Article  PubMed  Google Scholar 

  79. Piliero LM, Sanford AN, McDonald-McGinn DM, Zackai EH, Sullivan KE (2004) T-cell homeostasis in humans with thymic hypoplasia due to chromosome 22q11.2 deletion syndrome. Blood 103:1020–1025

    Article  CAS  PubMed  Google Scholar 

  80. Kornfeld SJ, Zeffren B, Christodoulou CS, Day NK, Cawkwell G, Good RA (2000) DiGeorge anomaly: a comparative study of the clinical and immunologic characteristics of patients positive and negative by fluorescence in situ hybridization. J Allergy Clin Immunol 105:983–987

    Article  CAS  PubMed  Google Scholar 

  81. Eberle P, Berger C, Junge S et al (2009) Persistent low thymic activity and non-cardiac mortality in children with chromosome 22q11.2 microdeletion and partial DiGeorge syndrome. Clin Exp Immunol 155:189–198

    Article  CAS  PubMed  Google Scholar 

  82. Chinen J, Shearer WT (2003) Basic and clinical immunology. J Allergy Clin Immunol 111:S813–818

    Article  CAS  PubMed  Google Scholar 

  83. Sullivan KE, McDonald-McGinn D, Driscoll DA, Emanuel BS, Zackai EH, Jawad AF (1999) Longitudinal analysis of lymphocyte function and numbers in the first year of life in chromosome 22q11.2 deletion syndrome (DiGeorge syndrome/velocardiofacial syndrome). Clin Diagn Lab Immunol 6:906–911

    CAS  PubMed  Google Scholar 

  84. Davis CM, Kancherla VS, Reddy A et al (2008) Development of specific T-cell responses to Candida and tetanus antigens in partial DiGeorge syndrome. J Allergy Clin Immunol 122:1194–1199

    Article  CAS  PubMed  Google Scholar 

  85. Cancrini C, Romiti ML, Finocchi A et al (2005) Post-natal ontogenesis of the T-cell receptor CD4 and CD8 Vbeta repertoire and immune function in children with DiGeorge syndrome. J Clin Immunol 25:265–274

    Article  CAS  PubMed  Google Scholar 

  86. Markert ML, Alexieff MJ, Li J et al (2004) Postnatal thymus transplantation with immunosuppression as treatment for DiGeorge syndrome. Blood 104:2574–2581

    Article  CAS  PubMed  Google Scholar 

  87. Pierdominici M, Mazzetta F, Caprini E et al (2003) Biased T-cell receptor repertoires in patients with chromosome 22q11.2 deletion syndrome (DiGeorge syndrome/velocardiofacial syndrome). Clin Exp Immunol 132:323–331

    Article  CAS  PubMed  Google Scholar 

  88. Gennery AR, Barge D, O’Sullivan JJ, Flood TJ, Abinun M, Cant AJ (2002) Antibody deficiency and autoimmunity in 22q11.2 deletion syndrome. Arch Dis Child 86:422–425

    Article  CAS  PubMed  Google Scholar 

  89. Schubert MS, Moss RB (1992) Selective polysaccharide antibody deficiency in familial DiGeorge syndrome. Ann Allergy 69:231–238

    CAS  PubMed  Google Scholar 

  90. McLean-Tooke A, Barge D, Spickett GP, Gennery AR (2008) Immunologic defects in 22q11.2 deletion syndrome. J Allergy Clin Immunol 122:362–367, e361–e364

    Google Scholar 

  91. Rubinstein A, Pelet B, Schweizer V (1976) Immunological decay in thymectomized infants. Helv Paediatr Acta 30:425–433

    CAS  PubMed  Google Scholar 

  92. Wells WJ, Parkman R, Smogorzewska E, Barr M (1998) Neonatal thymectomy: does it affect immune function? J Thorac Cardiovasc Surg 115:1041–1046

    Article  CAS  PubMed  Google Scholar 

  93. Turan T, Turan A, Arslan C, Kinoglu B, Sarioglu T (2004) How does neonatal thymectomy affect the immune system? Acta Cardiol 59:511–513

    Article  PubMed  Google Scholar 

  94. Brearley S, Gentle TA, Baynham MI, Roberts KD, Abrams LD, Thompson RA (1987) Immunodeficiency following neonatal thymectomy in man. Clin Exp Immunol 70:322–327

    CAS  PubMed  Google Scholar 

  95. Eysteinsdottir JH, Freysdottir J, Haraldsson A et al (2004) The influence of partial or total thymectomy during open heart surgery in infants on the immune function later in life. Clin Exp Immunol 136:349–355

    Article  CAS  PubMed  Google Scholar 

  96. Eysteinsdottir JH, Freysdottir J, Skaftadottir I, Helgason H, Haraldsson A, Ogmundsdottir HM (2009) Vbeta usage and T regulatory cells in children following partial or total thymectomy after open heart surgery in infancy. Scand J Immunol 69:162–168

    Article  CAS  PubMed  Google Scholar 

  97. Prelog M, Keller M, Geiger R et al (2009) Thymectomy in early childhood: significant alterations of the CD4(+)CD45RA(+)CD62L(+) T cell compartment in later life. Clin Immunol 130:123–132

    Article  CAS  PubMed  Google Scholar 

  98. Mancebo E, Clemente J, Sanchez J et al (2008) Longitudinal analysis of immune function in the first 3 years of life in thymectomized neonates during cardiac surgery. Clin Exp Immunol 154:375–383

    Article  CAS  PubMed  Google Scholar 

  99. Prelog M, Wilk C, Keller M et al (2008) Diminished response to tick-borne encephalitis vaccination in thymectomized children. Vaccine 26:595–600

    Article  CAS  PubMed  Google Scholar 

  100. Ogle BM, West LJ, Driscoll DJ et al (2006) Effacing of the T cell compartment by cardiac transplantation in infancy. J Immunol 176:1962–1967

    CAS  PubMed  Google Scholar 

  101. Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M (1995) Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 155:1151–1164

    CAS  PubMed  Google Scholar 

  102. Surh CD, Sprent J (2008) Homeostasis of naive and memory T cells. Immunity 29:848–862

    Article  CAS  PubMed  Google Scholar 

  103. Kim HR, Hwang KA, Park SH, Kang I (2008) IL-7 and IL-15: biology and roles in T-Cell immunity in health and disease. Crit Rev Immunol 28:325–339

    Article  PubMed  Google Scholar 

  104. Mackall CL, Fry TJ, Bare C, Morgan P, Galbraith A, Gress RE (2001) IL-7 increases both thymic-dependent and thymic-independent T-cell regeneration after bone marrow transplantation. Blood 97:1491–1497

    Article  CAS  PubMed  Google Scholar 

  105. Beq S, Nugeyre MT (2006) Ho Tsong Fang R, et al. IL-7 induces immunological improvement in SIV-infected rhesus macaques under antiviral therapy. J Immunol 176:914–922

    CAS  PubMed  Google Scholar 

  106. Fry TJ, Moniuszko M, Creekmore S et al (2003) IL-7 therapy dramatically alters peripheral T-cell homeostasis in normal and SIV-infected nonhuman primates. Blood 101:2294–2299

    Article  CAS  PubMed  Google Scholar 

  107. Storek J, Gillespy T 3rd, Lu H et al (2003) Interleukin-7 improves CD4 T-cell reconstitution after autologous CD34 cell transplantation in monkeys. Blood 101:4209–4218

    Article  CAS  PubMed  Google Scholar 

  108. Andrew D, Aspinall R (2001) Il-7 and not stem cell factor reverses both the increase in apoptosis and the decline in thymopoiesis seen in aged mice. J Immunol 166:1524–1530

    CAS  PubMed  Google Scholar 

  109. Pido-Lopez J, Imami N, Andrew D, Aspinall R (2002) Molecular quantitation of thymic output in mice and the effect of IL-7. Eur J Immunol 32:2827–2836

    Article  CAS  PubMed  Google Scholar 

  110. Chu YW, Memon SA, Sharrow SO et al (2004) Exogenous IL-7 increases recent thymic emigrants in peripheral lymphoid tissue without enhanced thymic function. Blood 104:1110–1119

    Article  CAS  PubMed  Google Scholar 

  111. Phillips JA, Brondstetter TI, English CA, Lee HE, Virts EL, Thoman ML (2004) IL-7 gene therapy in aging restores early thymopoiesis without reversing involution. J Immunol 173:4867–4874

    CAS  PubMed  Google Scholar 

  112. Sportes C, Hakim FT, Memon SA et al (2008) Administration of rhIL-7 in humans increases in vivo TCR repertoire diversity by preferential expansion of naive T cell subsets. J Exp Med 205:1701–1714

    Article  CAS  PubMed  Google Scholar 

  113. Min D, Panoskaltsis-Mortari A, Kuro OM, Hollander GA, Blazar BR, Weinberg KI (2007) Sustained thymopoiesis and improvement in functional immunity induced by exogenous KGF administration in murine models of aging. Blood 109:2529–2537

    Article  CAS  PubMed  Google Scholar 

  114. Guimond M, Leonard WJ, Spolski R et al (2008) Thymic stromal lymphopoietin is not necessary or sufficient to mediate the thymopoietic effects of keratinocyte growth factor. Blood 111:969–970

    Article  CAS  PubMed  Google Scholar 

  115. Seggewiss R, Lore K, Guenaga FJ et al (2007) Keratinocyte growth factor augments immune reconstitution after autologous hematopoietic progenitor cell transplantation in rhesus macaques. Blood 110:441–449

    Article  CAS  PubMed  Google Scholar 

  116. Min D, Taylor PA, Panoskaltsis-Mortari A et al (2002) Protection from thymic epithelial cell injury by keratinocyte growth factor: a new approach to improve thymic and peripheral T-cell reconstitution after bone marrow transplantation. Blood 99:4592–4600

    Article  CAS  PubMed  Google Scholar 

  117. Kelly RM, Highfill SL, Panoskaltsis-Mortari A et al (2008) Keratinocyte growth factor and androgen blockade work in concert to protect against conditioning regimen-induced thymic epithelial damage and enhance T-cell reconstitution after murine bone marrow transplantation. Blood 111:5734–5744

    Article  CAS  PubMed  Google Scholar 

  118. French RA, Broussard SR, Meier WA et al (2002) Age-associated loss of bone marrow hematopoietic cells is reversed by GH and accompanies thymic reconstitution. Endocrinology 143:690–699

    Article  CAS  PubMed  Google Scholar 

  119. Welniak LA, Sun R, Murphy WJ (2002) The role of growth hormone in T-cell development and reconstitution. J Leukoc Biol 71:381–387

    CAS  PubMed  Google Scholar 

  120. Dixit VD, Yang H, Sun Y et al (2007) Ghrelin promotes thymopoiesis during aging. J Clin Invest 117:2778–2790

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Kohler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Basel AG

About this chapter

Cite this chapter

Kohler, S. (2012). Thy(–im)munosenescence: The Ageing of the Thymus and Its Impact on the Immune System. In: Thiel, A. (eds) Immunosenescence. Birkhäuser Advances in Infectious Diseases. Springer, Basel. https://doi.org/10.1007/978-3-0346-0219-8_3

Download citation

Publish with us

Policies and ethics