Skip to main content

Surgical Navigation: An Overview of the State-of-the-Art Clinical Applications

  • Chapter
  • First Online:
Radioguided Surgery

Abstract

Anatomical and/or functional imaging modalities like computed tomography (CT), magnetic resonance imaging (MRI) and ultrasound, often combined with contrast agents, and molecular imaging modalities like single-photon emission computed tomography (SPECT) and positron emission tomography (PET) have become standard tools to aid in the diagnosis, monitoring and treatment of disease or injury. Yet, translating this wealth of detailed preoperative imaging information into better surgical treatment and clinical outcome is an ongoing challenge. Patient scans usually provide a 3D map of the disease, often placed in the context of the patient’s anatomy, that surgeons can use as a reference to guide them during an intervention. It would be very convenient for the surgeon to know exactly where surgical tools are on this map relative to the target location or, even better, to be provided with an optimal path from the tools towards the target.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rassweiler J, et al. Surgical navigation in urology: European perspective. Curr Opin Urol. 2014;24(1):81–97.

    Article  PubMed  Google Scholar 

  2. Willems P, et al. Neuronavigation and surgery of intracerebral tumours. J Neurol. 2006;253(9):1123–36.

    Article  CAS  PubMed  Google Scholar 

  3. Watanabe E, et al. Three-dimensional digitizer (neuronavigator): new equipment for computed tomography-guided stereotaxic surgery. Surg Neurol. 1987;27(6):543–7.

    Article  CAS  PubMed  Google Scholar 

  4. Roberts DW, et al. A frameless stereotaxic integration of computerized tomographic imaging and the operating microscope. J Neurosurg. 1986;65(4):545–9.

    Article  CAS  PubMed  Google Scholar 

  5. Balter JM, et al. Accuracy of a wireless localization system for radiotherapy. Int J Radiat Oncol Biol Phys. 2005;61(3):933–7.

    Article  PubMed  Google Scholar 

  6. Krücker J, et al. Clinical utility of real-time fusion guidance for biopsy and ablation. J Vasc Interv Radiol. 2011;22(4):515–24.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Larson AN, et al. The accuracy of navigation and 3D image-guided placement for the placement of pedicle screws in congenital spine deformity. J Pediatr Orthop. 2012;32(6):e23–9.

    Article  PubMed  Google Scholar 

  8. Gander T, et al. Patient specific implants (PSI) in reconstruction of orbital floor and wall fractures. J Craniomaxillofac Surg. 2015;43(1):126–30.

    Article  PubMed  Google Scholar 

  9. Rana M, et al. Increasing the accuracy of orbital reconstruction with selective laser melted patient-specific implants combined with intraoperative navigation. J Oral Maxillofac Surg. 2015;73(6):1113–8.

    Article  PubMed  Google Scholar 

  10. Matziolis G, et al. A prospective, randomized study of computer-assisted and conventional total knee arthroplasty. J Bone Joint Surg Am. 2007;89(2):236–43.

    Article  PubMed  Google Scholar 

  11. Ungi T, Lasso A, Fichtinger G. Tracked ultrasound in navigated spine interventions. In: Spinal imaging and image analysis. Cham: Springer; 2015. p. 469–94.

    Google Scholar 

  12. Bluemel C, et al. Freehand SPECT for image-guided sentinel lymph node biopsy in breast cancer. Eur J Nucl Med Mol Imaging. 2013;40(11):1656–61.

    Article  PubMed  Google Scholar 

  13. Heuveling DA. Evaluation of the use of freehand SPECT for sentinel node biopsy in early stage oral carcinoma. Oral Oncol. 2015;51(3):287–90.

    Article  PubMed  Google Scholar 

  14. Unsgaard G, et al. Neuronavigation by intraoperative three-dimensional ultrasound: initial experience during brain tumor resection. Neurosurgery. 2002;50(4):804–12.

    Article  PubMed  Google Scholar 

  15. Fenster A, Downey DB, Cardinal HN. Three-dimensional ultrasound imaging. Phys Med Biol. 2001;46(5):R67.

    Article  CAS  PubMed  Google Scholar 

  16. Wendler T, et al. First demonstration of 3-D lymphatic mapping in breast cancer using freehand SPECT. Eur J Nucl Med Mol Imaging. 2010;37(8):1452–61.

    Article  PubMed  Google Scholar 

  17. Bluemel C, et al. Freehand SPECT‐guided sentinel lymph node biopsy in early oral squamous cell carcinoma. Head Neck. 2014;36(11):E112–6.

    Article  PubMed  Google Scholar 

  18. Navab N, et al. First deployments of augmented reality in operating rooms. Computer. 2012;7:48–55.

    Article  Google Scholar 

  19. Rueckert D, et al. Nonrigid registration using free-form deformations: application to breast MR images. IEEE Trans Med Imaging. 1999;18(8):712–21.

    Article  CAS  PubMed  Google Scholar 

  20. Roberts DW, et al. Intraoperative brain shift and deformation: a quantitative analysis of cortical displacement in 28 cases. Neurosurgery. 1998;43(4):749–58.

    Article  CAS  PubMed  Google Scholar 

  21. Ferrant M, et al. Registration of 3-D intraoperative MR images of the brain using a finite-element biomechanical model. IEEE Trans Med Imaging. 2001;20(12):1384–97.

    Article  CAS  PubMed  Google Scholar 

  22. van Rikxoort EM, et al. Adaptive local multi-atlas segmentation: application to heart segmentation in chest CT scans. Proc. SPIE 6914, Medical Imaging 2008: Image Processing, 691407. DOI:10.1117/12.772301.

    Google Scholar 

  23. Kandel EI, Schavinsky YV. Stereotaxic apparatus and operations in Russia in the 19th century. J Neurosurg. 1972;37(4):407–11.

    Article  CAS  PubMed  Google Scholar 

  24. Beckmann E. CT scanning the early days. BJR. 2005;79(937):5–8.

    Google Scholar 

  25. Germano IM. The NeuroStation system for image‐guided, frameless stereotaxy. Neurosurgery. 1995;37(2):348–50.

    Article  Google Scholar 

  26. Gumprecht HK, Widenka DC, Lumenta CB. BrainLab VectorVision Neuronavigation System: technology and clinical experiences in 131 cases. Neurosurgery. 1999;44(1):97–104.

    Article  CAS  PubMed  Google Scholar 

  27. Khan FM, Gibbons JP. Khan’s the physics of radiation therapy. Philadelphia: Lippincott Williams & Wilkins; 2014.

    Google Scholar 

  28. Holl EM, et al. Improving targeting in image-guided frame-based deep brain stimulation. Neurosurgery. 2010;67:ons437–47.

    Google Scholar 

  29. Hakime A, et al. Electromagnetic-tracked biopsy under ultrasound guidance: preliminary results. Cardiovasc Intervent Radiol. 2012;35(4):898–905.

    Article  PubMed  Google Scholar 

  30. Lei P, et al. Real-time tracking of liver motion and deformation using a flexible needle. Int J Comput Assist Radiol Surg. 2011;6(3):435–46.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Müller SA, et al. Navigated liver biopsy using a novel soft tissue navigation system versus CT-guided liver biopsy in a porcine model: a prospective randomized trial. Acad Radiol. 2010;17(10):1282–7.

    Article  PubMed  Google Scholar 

  32. Jacobs L. Positive margins: the challenge continues for breast surgeons. Ann Surg Oncol. 2008;15(5):1271–2.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Maesawa S, et al. Clinical indications for high-field 1.5 T intraoperative magnetic resonance imaging and neuro-navigation for neurosurgical procedures-review of initial 100 cases. Neurol Med Chir. 2009;49(8):340–50.

    Article  Google Scholar 

  34. Grunert P, et al. Basic principles and clinical applications of neuronavigation and intraoperative computed tomography. Comput Aided Surg. 1998;3(4):166–73.

    Article  CAS  PubMed  Google Scholar 

  35. Mariani G, et al. A review on the clinical uses of SPECT/CT. Eur J Nucl Med Mol Imaging. 2010;37(10):1959–85.

    Article  PubMed  Google Scholar 

  36. van den Berg N, et al. Hybrid tracers for sentinel node biopsy. Q J Nucl Med Mol Imaging. 2014;58:193–206.

    Google Scholar 

  37. Histed SN, et al. Review of functional/anatomic imaging in oncology. Nucl Med Commun. 2012;33(4):349.

    Article  PubMed  PubMed Central  Google Scholar 

  38. van den Berg NS, et al. Multimodal surgical guidance during sentinel node biopsy for melanoma: combined gamma tracing and fluorescence imaging of the sentinel node through use of the hybrid tracer indocyanine green-(99m)Tc-nanocolloid. Radiology. 2015;275(2):521–9.

    Article  PubMed  Google Scholar 

  39. Brouwer OR, et al. A hybrid radioactive and fluorescent tracer for sentinel node biopsy in penile carcinoma as a potential replacement for blue dye. Eur Urol. 2014;65(3):600–9.

    Article  CAS  PubMed  Google Scholar 

  40. KleinJan GH, et al. Optimisation of fluorescence guidance during robot-assisted laparoscopic sentinel node biopsy for prostate cancer. Eur Urol. 2014;66(6):991–8.

    Article  PubMed  Google Scholar 

  41. Eiber M, et al. Evaluation of hybrid 68Ga-PSMA-ligand PET/CT in 248 patients with biochemical recurrence after radical prostatectomy. J Nucl Med. 2015;56(5):668–74.

    Google Scholar 

  42. Povoski SP, et al. A comprehensive overview of radioguided surgery using gamma detection probe technology. World J Surg Oncol. 2009;7(1):11.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Heller S, Zanzonico P. Nuclear probes and intraoperative gamma cameras. Semin Nucl Med. 2011;41(3):166–81.

    Google Scholar 

  44. Brouwer OR, et al. Feasibility of intraoperative navigation to the sentinel node in the groin using preoperatively acquired single photon emission computerized tomography data: transferring functional imaging to the operating room. J Urol. 2014;192(6):1810–6.

    Article  PubMed  Google Scholar 

  45. Rahbar K, et al. Intraoperative 3-D mapping of parathyroid adenoma using freehand SPECT. EJNMMI Res. 2012;2(1):51.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Mandapathil M, et al. Freehand SPECT for sentinel lymph node detection in patients with head and neck cancer: first experiences. Acta Otolaryngol. 2014;134(1):100–4.

    Article  PubMed  Google Scholar 

  47. Engelen T, et al. The next evolution in radioguided surgery: breast cancer related sentinel node localization using a freehandSPECT-mobile gamma camera combination. Am J Nucl Med Mol Imaging. 2015;5(3):233–45.

    Google Scholar 

  48. Brouwer OR, et al. Comparing the hybrid fluorescent–radioactive tracer indocyanine green–99mTc-nanocolloid with 99mTc-nanocolloid for sentinel node identification: a validation study using lymphoscintigraphy and SPECT/CT. J Nucl Med. 2012;53(7):1034–40.

    Article  CAS  PubMed  Google Scholar 

  49. Brouwer OR, et al. Image navigation as a means to expand the boundaries of fluorescence-guided surgery. Phys Med Biol. 2012;57(10):3123.

    Article  PubMed  Google Scholar 

  50. Chin PT, et al. Multispectral visualization of surgical safety-margins using fluorescent marker seeds. Am J Nucl Med Mol Imaging. 2012;2(2):151.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Rambani R, Varghese M. Computer assisted navigation in orthopaedics and trauma surgery. Orthop Trauma. 2014;28(1):50–7.

    Google Scholar 

  52. Bauwens K, et al. Navigated total knee replacement. J Bone Joint Surg Am. 2007;89(2):261–9.

    Article  PubMed  Google Scholar 

  53. Gandhi R, et al. Computer navigation in total hip replacement: a meta-analysis. Int Orthop. 2009;33(3):593–7.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Ledonio CGT, et al. Pediatric pedicle screws: comparative effectiveness and safety. J Bone Joint Surg Am. 2011;93(13):1227–34.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was partially supported by a Eurostars grant (Hybrid Navigator; Grant No. E! 7555), an NWO-STW-VIDI grant (Grant No. STW BGT11272), and a European Research Council under the European Union’s Seventh Framework Program (FP7/2007-2013) grant (Grant No. 2012-20120314).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fijs W. B. van Leeuwen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Waelkens, P., van Oosterom, M.N., van den Berg, N.S., Navab, N., van Leeuwen, F.W.B. (2016). Surgical Navigation: An Overview of the State-of-the-Art Clinical Applications. In: Herrmann, K., Nieweg, O., Povoski, S. (eds) Radioguided Surgery. Springer, Cham. https://doi.org/10.1007/978-3-319-26051-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26051-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26049-5

  • Online ISBN: 978-3-319-26051-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics