Skip to main content

CBCT and Micro-CT on the Study of Root Canal Anatomy

  • Chapter
  • First Online:
The Root Canal Anatomy in Permanent Dentition

Abstract

A thorough understanding of the canal morphology and its variations in all groups of teeth is a basic requirement for the success of the endodontic therapy. Over the last century, the complexity of the root canal system was well documented using several methods including three-dimensional wax models, conventional and digital radiography, resin injection, macroscopic and microscopic evaluations, tooth sectioning, clearing techniques, radiographic methods with radiopaque contrast media, and scanning electron microscopy. These techniques have been used successfully over many years, but their destructive nature produced irreversible changes in the specimens and many artifacts. Technological advancements in three-dimensional computed tomographic imaging have given rise to more accurate methods for clinical and laboratory evaluations of tooth anatomy. In the last decades, cone beam computed tomography (CBCT) and high-resolution micro-computed tomography (micro-CT) have gained increasing significance in dental research allowing the detailed study of canal anatomy because they offered a nondestructive reproducible technique that could be applied quantitatively as well as qualitatively for two- and three-dimensional accurate assessment of the root canal system. This chapter is focused on the description of the main results obtained in the in vivo and ex vivo research studies on the root and root canal anatomy using CBCT and micro-CT imaging technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Martins JN, Marques D, Mata A, Carames J. Clinical efficacy of electronic apex locators: systematic review. J Endod. 2014;40:759–77.

    Article  PubMed  Google Scholar 

  2. Bender IB. Factors influencing the radiographic appearance of bony lesions. J Endod. 1982;8:161–70.

    Article  PubMed  Google Scholar 

  3. Scarfe WC, Levin MD, Gane D, Farman AG. Use of cone beam computed tomography in endodontics. Int J Dent. 2009;2009:634567.

    Article  PubMed  Google Scholar 

  4. Patel S. New dimensions in endodontic imaging: Part 2. Cone beam computed tomography. Int Endod J. 2009;42:463–75.

    Article  PubMed  Google Scholar 

  5. Hatcher DC. Operational principles for cone-beam computed tomography. J Am Dent Assoc. 2010;141:3s–6s.

    Article  PubMed  Google Scholar 

  6. AAE and AAOMR Joint Position Statement: use of cone beam computed tomography in Endodontics 2015 update. Oral Surg Oral Med Oral Pathol Oral Radiol. 2015;120:508–12.

    Google Scholar 

  7. Patel S, Durack C, Abella F, Shemesh H, Roig M, Lemberg K. Cone beam computed tomography in endodontics – a review. Int Endod J. 2015;48:3–15.

    Article  PubMed  Google Scholar 

  8. Ludlow JB, Ivanovic M. Comparative dosimetry of dental CBCT devices and 64-slice CT for oral and maxillofacial radiology. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2008;106:106–14.

    Article  PubMed  Google Scholar 

  9. Schulze R, Heil U, Gross D, Bruellmann DD, Dranischnikow E, Schwanecke U, et al. Artefacts in CBCT: a review. Dentomaxillofac Radiol. 2011;40:265–73.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Spin-Neto R, Wenzel A. Patient movement and motion artefacts in cone beam computed tomography of the dentomaxillofacial region: a systematic literature review. Oral Surg Oral Med Oral Pathol Oral Radiol. 2016;121:425–33.

    Article  PubMed  Google Scholar 

  11. Spin-Neto R, Matzen LH, Schropp L, Gotfredsen E, Wenzel A. Factors affecting patient movement and re-exposure in cone beam computed tomography examination. Oral Surg Oral Med Oral Pathol Oral Radiol. 2015;119:572–8.

    Article  PubMed  Google Scholar 

  12. Spin-Neto R, Matzen LH, Schropp L, Liedke GS, Gotfredsen E, Wenzel A. Radiographic observers’ ability to recognize patient movement during cone beam CT. Dentomaxillofac Radiol. 2014;43:20130449.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Nagarajappa AK, Dwivedi N, Tiwari R. Artifacts: the downturn of CBCT image. J Int Soc Prev Community Dent. 2015;5:440–5.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Harvey SC, Patel S. Cone beam computed tomography. In: Patel S, Harvey S, Shemesh H, Durack C, editors. Cone beam computed tomography in endodontics. United Kingdom: Quintessence Publishing; 2016.

    Google Scholar 

  15. Harvey SC, Patel S. Using CBCT: dose, risks and artefacts. In: Patel S, Harvey S, Shemesh H, Durack C, editors. Cone beam computed tomography in endodontics. United Kingdom: Quintessence Publishing; 2016.

    Google Scholar 

  16. Bürklein S, Heck R, Schäfer E. Evaluation of the root canal anatomy of maxillary and mandibular premolars in a selected German population using cone-beam computed tomographic data. J Endod. 2017;43:1448–52.

    Article  PubMed  Google Scholar 

  17. Ramos Brito AC, Verner FS, Junqueira RB, Yamasaki MC, Queiroz PM, Freitas DQ, et al. Detection of fractured endodontic instruments in root canals: comparison between different digital radiography systems and cone-beam computed tomography. J Endod. 2017;43:544–9.

    Article  PubMed  Google Scholar 

  18. Versiani MA, Pécora JD, Sousa-Neto MD. Update in root canal anatomy of permanent teeth using microcomputed tomography. In: Basrani B, editor. Endodontic irrigation: chemical disinfection of the root canal system. Switzerland: Springer International Publishing AG; 2015. p. 15–44.

    Chapter  Google Scholar 

  19. Cho YD, Lee JE, Chung Y, Lee WC, Seol YJ, Lee YM, et al. Collaborative management of combined periodontal-endodontic lesions with a palatogingival groove: a case series. J Endod. 2017;43:332–7.

    Article  PubMed  Google Scholar 

  20. Blattner TC, George N, Lee CC, Kumar V, Yelton CD. Efficacy of cone-beam computed tomography as a modality to accurately identify the presence of second mesiobuccal canals in maxillary first and second molars: a pilot study. J Endod. 2010;36:867–70.

    Article  PubMed  Google Scholar 

  21. Domark JD, Hatton JF, Benison RP, Hildebolt CF. An ex vivo comparison of digital radiography and cone-beam and micro computed tomography in the detection of the number of canals in the mesiobuccal roots of maxillary molars. J Endod. 2013;39:901–5.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Michetti J, Maret D, Mallet JP, Diemer F. Validation of cone beam computed tomography as a tool to explore root canal anatomy. J Endod. 2010;36:1187–90.

    Article  PubMed  Google Scholar 

  23. Sousa TO, Haiter-Neto F, Nascimento EHL, Peroni LV, Freitas DQ, Hassan B. Diagnostic accuracy of periapical radiography and cone-beam computed tomography in identifying root canal configuration of human premolars. J Endod. 2017;43:1176–9.

    Article  PubMed  Google Scholar 

  24. Zhang D, Chen J, Lan G, Li M, An J, Wen X, et al. The root canal morphology in mandibular first premolars: a comparative evaluation of cone-beam computed tomography and micro-computed tomography. Clin Oral Investig. 2017;21:1007–12.

    Article  PubMed  Google Scholar 

  25. Maret D, Peters OA, Galibourg A, Dumoncel J, Esclassan R, Kahn JL, et al. Comparison of the accuracy of 3-dimensional cone-beam computed tomography and micro-computed tomography reconstructions by using different voxel sizes. J Endod. 2014;40:1321–6.

    Article  PubMed  Google Scholar 

  26. Sousa TO, Hassan B, Mirmohammadi H, Shemesh H, Haiter-Neto F. Feasibility of cone-beam computed tomography in detecting lateral canals before and after root canal treatment: an ex vivo study. J Endod. 2017;43:1014–7.

    Article  PubMed  Google Scholar 

  27. Pécora JD, Estrela C, Bueno MR, Porto OC, Alencar AH, Sousa-Neto MD, et al. Detection of root canal isthmuses in molars by map-reading dynamic using CBCT images. Braz Dent J. 2013;24:569–74.

    Article  PubMed  Google Scholar 

  28. Aktan AM, Yildirim C, Culha E, Demir E, Ertugrul Ciftci M. Detection of second mesiobuccal canals in maxillary first molars using a new angle of cone beam computed tomography. Iran J Radiol. 2016;13:e31155.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Altunsoy M, Ok E, Nur BG, Aglarci OS, Gungor E, Colak M. Root canal morphology analysis of maxillary permanent first and second molars in a southeastern Turkish population using cone-beam computed tomography. J Dent Sci. 2015;10:401–7.

    Article  Google Scholar 

  30. Betancourt P, Navarro P, Munoz G, Fuentes R. Prevalence and location of the secondary mesiobuccal canal in 1,100 maxillary molars using cone beam computed tomography. BMC Med Imaging. 2016;16:66–73.

    Google Scholar 

  31. Falcao CA, Albuquerque VC, Amorim NL, Freitas SA, Santos TC, Matos FT, et al. Frequency of the mesiopalatal canal in upper first permanent molars viewed through computed tomography. Acta Odontol Latinoam. 2016;29:54–9.

    PubMed  Google Scholar 

  32. Ghobashy AM, Nagy MM, Bayoumi AA. Evaluation of root and canal morphology of maxillary permanent molars in an Egyptian population by cone-beam computed tomography. J Endod. 2017;43:1089–92.

    Article  PubMed  Google Scholar 

  33. Guo J, Vahidnia A, Sedghizadeh P, Enciso R. Evaluation of root and canal morphology of maxillary permanent first molars in a North American population by cone-beam computed tomography. J Endod. 2014;40:635–9.

    Article  PubMed  Google Scholar 

  34. Jing YN, Ye X, Liu DG, Zhang ZY, Ma XC. Cone-beam computed tomography was used for study of root and canal morphology of maxillary first and second molars. Beijing Da Xue Xue Bao. 2014;46:958–62.

    PubMed  Google Scholar 

  35. Kim Y, Lee SJ, Woo J. Morphology of maxillary first and second molars analyzed by cone-beam computed tomography in a korean population: variations in the number of roots and canals and the incidence of fusion. J Endod. 2012;38:1063–8.

    Article  PubMed  Google Scholar 

  36. Lee JH, Kim KD, Lee JK, Park W, Jeong JS, Lee Y, et al. Mesiobuccal root canal anatomy of Korean maxillary first and second molars by cone-beam computed tomography. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2011;111:785–91.

    Article  PubMed  Google Scholar 

  37. Martins JNR, Marques D, Francisco H, Carames J. Gender influence on the number of roots and root canal system configuration in human permanent teeth of a Portuguese subpopulation. Quintessence Int. 2018;2:103–11.

    Google Scholar 

  38. Naseri M, Safi Y, Akbarzadeh Baghban A, Khayat A, Eftekhar L. Survey of anatomy and root canal morphology of maxillary first molars regarding age and gender in an Iranian population using cone-beam computed tomography. Iran Endod J. 2016;11:298–303.

    PubMed  PubMed Central  Google Scholar 

  39. Ratanajirasut R, Panichuttra A, Panmekiate S. A cone-beam computed tomographic study of root and canal morphology of maxillary first and second permanent molars in a Thai population. J Endod. 2018;44:56–61.

    Article  PubMed  Google Scholar 

  40. Reis AG, Grazziotin-Soares R, Barletta FB, Fontanella VR, Mahl CR. Second canal in mesiobuccal root of maxillary molars is correlated with root third and patient age: a cone-beam computed tomographic study. J Endod. 2013;39:588–92.

    Article  PubMed  Google Scholar 

  41. Zhang Y, Xu H, Wang D, Gu Y, Wang J, Tu S, et al. Assessment of the second mesiobuccal root canal in maxillary first molars: a cone-beam computed tomographic study. J Endod. 2017;43:1990–6.

    Article  PubMed  Google Scholar 

  42. Zheng QH, Wang Y, Zhou XD, Wang Q, Zheng GN, Huang DM. A cone-beam computed tomography study of maxillary first permanent molar root and canal morphology in a Chinese population. J Endod. 2010;36:1480–4.

    Article  PubMed  Google Scholar 

  43. Betancourt P, Navarro P, Cantin M, Fuentes R. Cone-beam computed tomography study of prevalence and location of MB2 canal in the mesiobuccal root of the maxillary second molar. Int J Clin Exp Med. 2015;8:9128–34.

    PubMed  PubMed Central  Google Scholar 

  44. Wu D, Zhang G, Liang R, Zhou G, Wu Y, Sun C, et al. Root and canal morphology of maxillary second molars by cone-beam computed tomography in a native Chinese population. J Int Med Res. 2017;45:830–42.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Beshkenadze E, Chipashvili N. Anatomo-morphological features of the root canal system in Georgian population – cone-beam computed tomography study. Georgian Med News. 2015;247:7–14.

    Google Scholar 

  46. Estrela C, Bueno MR, Couto GS, Rabelo LE, Alencar AH, Silva RG, et al. Study of root canal anatomy in human permanent teeth in a subpopulation of Brazil's center region using cone-beam computed tomography – Part 1. Braz Dent J. 2015;26:530–6.

    Article  PubMed  Google Scholar 

  47. Martins JNR, Marques D, Mata A, Carames J. Root and root canal morphology of the permanent dentition in a Caucasian population: a cone-beam computed tomography study. Int Endod J. 2017;50:1013–26.

    Article  PubMed  Google Scholar 

  48. Çapar ID, Ertas H, Arslan H, Tarim Ertas E. A retrospective comparative study of cone-beam computed tomography versus rendered panoramic images in identifying the presence, types, and characteristics of dens invaginatus in a Turkish population. J Endod. 2015;41:473–8.

    Article  PubMed  Google Scholar 

  49. da Silva EJ, de Castro RW, Nejaim Y, Silva AI, Haiter-Neto F, Silberman A, et al. Evaluation of root canal configuration of maxillary and mandibular anterior teeth using cone beam computed tomography: an in-vivo study. Quintessence Int. 2016;47:19–24.

    PubMed  Google Scholar 

  50. Somalinga Amardeep N, Raghu S, Natanasabapathy V. Root canal morphology of permanent maxillary and mandibular canines in Indian population using cone beam computed tomography. Anat Res Int. 2014;2014:731859.

    PubMed  PubMed Central  Google Scholar 

  51. Han T, Ma Y, Yang L, Chen X, Zhang X, Wang Y. A study of the root canal morphology of mandibular anterior teeth using cone-beam computed tomography in a Chinese subpopulation. J Endod. 2014;40:1309–14.

    Article  PubMed  Google Scholar 

  52. Lin Z, Hu Q, Wang T, Ge J, Liu S, Zhu M, et al. Use of CBCT to investigate the root canal morphology of mandibular incisors. Surg Radiol Anat. 2014;36:877–82.

    Article  PubMed  Google Scholar 

  53. Liu J, Luo J, Dou L, Yang D. CBCT study of root and canal morphology of permanent mandibular incisors in a Chinese population. Acta Odontol Scand. 2014;72:26–30.

    Article  PubMed  Google Scholar 

  54. Zhao Y, Dong YT, Wang XY, Wang ZH, Li G, Liu MQ, et al. Cone-beam computed tomography analysis of root canal configuration of 4 674 mandibular anterior teeth. Beijing Da Xue Xue Bao. 2014;46:95–9.

    PubMed  Google Scholar 

  55. Zhengyan Y, Keke L, Fei W, Yueheng L, Zhi Z. Cone-beam computed tomography study of the root and canal morphology of mandibular permanent anterior teeth in a Chongqing population. Ther Clin Risk Manag. 2016;12:19–25.

    PubMed  Google Scholar 

  56. Arslan H, Ertas H, Ertas ET, Kalabalık F, Saygılı G, Çapar ID. Evaluating root canal configuration of mandibular incisors with cone-beam computed tomography in a Turkish population. J Dent Sci. 2015;10:359–64.

    Article  Google Scholar 

  57. Shemesh A, Levin A, Katzenell V, Itzhak JB, Avraham Z, Levinson O, et al. Root anatomy and root canal morphology of mandibular canines in Israeli population. Refuat Hapeh Vehashinayim. 2016;33:19–23. 60

    Google Scholar 

  58. Soleymani A, Namaryan N, Moudi E, Gholinia A. Root canal morphology of mandibular canine in an Iranian population: a CBCT assessment. Iran Endod J. 2017;12:78–82.

    PubMed  PubMed Central  Google Scholar 

  59. Altunsoy M, Ok E, Nur BG, Aglarci OS, Gungor E, Colak M. A cone-beam computed tomography study of the root canal morphology of anterior teeth in a Turkish population. Eur J Dent. 2014;8:302–6.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Jain P, Balasubramanian S, Sundaramurthy J, Natanasabapathy V. A cone beam computed tomography of the root canal morphology of maxillary anterior teeth in an institutional-based study in Chennai urban population: an in vitro study. J Int Soc Prev Community Dent. 2017;7:S68–74.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Monsarrat P, Arcaute B, Peters OA, Maury E, Telmon N, Georgelin-Gurgel M, et al. Interrelationships in the variability of root canal anatomy among the permanent teeth: a full-mouth approach by cone-beam CT. PLoS One. 2016;11:e0165329.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Torres HM, Arruda JJ, Silva-Filho JMD, Faria DLB, Nascimento MCC, Torres EM. Maxillary canine morphology: comparative and descriptive analysis from periapical radiographs and cone beam computed tomography. Gen Dent. 2017;65:37–41.

    PubMed  Google Scholar 

  63. Aminsobhani M, Sadegh M, Meraji N, Razmi H, Kharazifard MJ. Evaluation of the root and canal morphology of mandibular permanent anterior teeth in an Iranian population by cone-beam computed tomography. J Dent (Tehran). 2013;10:358–66.

    Google Scholar 

  64. Kamtane S, Ghodke M. Morphology of mandibular incisors: a study on CBCT. Pol J Radiol. 2016;81:15–6.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Kayaoglu G, Peker I, Gumusok M, Sarikir C, Kayadugun A, Ucok O. Root and canal symmetry in the mandibular anterior teeth of patients attending a dental clinic: CBCT study. Braz Oral Res. 2015;29:1–7.

    Article  Google Scholar 

  66. Shemesh A, Kavalerchik E, Levin A, Ben Itzhak J, Levinson O, Lvovsky A, et al. Root canal morphology evaluation of central and lateral mandibular incisors using cone-beam computed tomography in an Israeli population. J Endod. 2018;44:51–5.

    Article  PubMed  Google Scholar 

  67. Verma GR, Bhadage C, Bhoosreddy AR, Vedpathak PR, Mehrotra GP, Nerkar AC, et al. Cone beam computed tomography study of root canal morphology of permanent mandibular incisors in Indian subpopulation. Pol J Radiol. 2017;82:371–5.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Tian YY, Guo B, Zhang R, Yu X, Wang H, Hu T, et al. Root and canal morphology of maxillary first premolars in a Chinese subpopulation evaluated using cone-beam computed tomography. Int Endod J. 2012;45:996–1003.

    Article  PubMed  Google Scholar 

  69. Bulut DG, Kose E, Ozcan G, Sekerci AE, Canger EM, Sisman Y. Evaluation of root morphology and root canal configuration of premolars in the Turkish individuals using cone beam computed tomography. Eur J Dent. 2015;9:551–7.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Huang YD, Wu J, Sheu RJ, Chen MH, Chien DL, Huang YT, et al. Evaluation of the root and root canal systems of mandibular first premolars in northern Taiwanese patients using cone-beam computed tomography. J Formos Med Assoc. 2015;114:1129–34.

    Article  PubMed  Google Scholar 

  71. Park JB, Kim N, Park S, Kim Y, Ko Y. Evaluation of root anatomy of permanent mandibular premolars and molars in a Korean population with cone-beam computed tomography. Eur J Dent. 2013;7:94–101.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Felsypremila G, Vinothkumar TS, Kandaswamy D. Anatomic symmetry of root and root canal morphology of posterior teeth in Indian subpopulation using cone beam computed tomography: a retrospective study. Eur J Dent. 2015;9:500–7.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Martins JNR, Francisco H, Ordinola-Zapata R. Prevalence of C-shaped configurations in the mandibular first and second premolars: a cone-beam computed tomographic in vivo study. J Endod. 2017;43:890–5.

    Article  PubMed  Google Scholar 

  74. Abella F, Teixido LM, Patel S, Sosa F, Duran-Sindreu F, Roig M. Cone-beam computed tomography analysis of the root canal morphology of maxillary first and second premolars in a spanish population. J Endod. 2015;41:1241–7.

    Article  PubMed  Google Scholar 

  75. Ok E, Altunsoy M, Nur BG, Aglarci OS, Colak M, Gungor E. A cone-beam computed tomography study of root canal morphology of maxillary and mandibular premolars in a Turkish population. Acta Odontol Scand. 2014;72:701–6.

    Article  PubMed  Google Scholar 

  76. Yang L, Chen X, Tian C, Han T, Wang Y. Use of cone-beam computed tomography to evaluate root canal morphology and locate root canal orifices of maxillary second premolars in a Chinese subpopulation. J Endod. 2014;40:630–4.

    Article  PubMed  Google Scholar 

  77. Arslan H, Çapar ID, Ertas ET, Ertas H, Akcay M. A cone-beam computed tomographic study of root canal systems in mandibular premolars in a Turkish population: theoretical model for determining orifice shape. Eur J Dent. 2015;9:11–9.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Khademi A, Mehdizadeh M, Sanei M, Sadeqnejad H, Khazaei S. Comparative evaluation of root canal morphology of mandibular premolars using clearing and cone beam computed tomography. Dent Res J (Isfahan). 2017;14:321–5.

    Article  Google Scholar 

  79. Kazemipoor M, Hajighasemi A, Hakimian R. Gender difference and root canal morphology in mandibular premolars: a cone-beam computed tomography study in an Iranian population. Contemp Clin Dent. 2015;6:401–4.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Kazemipoor M, Poorkheradmand M, Rezaeian M, Safi Y. Evaluation by CBCT of root and canal morphology in mandibular premolars in an Iranian population. Chin J Dent Res. 2015;18:191–6.

    PubMed  Google Scholar 

  81. Liao Q, Han JL, Xu X. Analysis of canal morphology of mandibular first premolar. Shanghai Kou Qiang Yi Xue. 2011;20:517–21.

    PubMed  Google Scholar 

  82. Llena C, Fernandez J, Ortolani PS, Forner L. Cone-beam computed tomography analysis of root and canal morphology of mandibular premolars in a Spanish population. Imaging Sci Dent. 2014;44:221–7.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Salarpour M, Farhad Mollashahi N, Mousavi E, Salarpour E. Evaluation of the effect of tooth type and canal configuration on crown size in mandibular premolars by cone-beam computed tomography. Iran Endod J. 2013;8:153–6.

    PubMed  PubMed Central  Google Scholar 

  84. Shetty A, Hegde MN, Tahiliani D, Shetty H, Bhat GT, Shetty S. A three-dimensional study of variations in root canal morphology using cone-beam computed tomography of mandibular premolars in a South Indian population. J Clin Diagn Res. 2014;8:22–4.

    Google Scholar 

  85. Yang H, Tian C, Li G, Yang L, Han X, Wang Y. A cone-beam computed tomography study of the root canal morphology of mandibular first premolars and the location of root canal orifices and apical foramina in a Chinese subpopulation. J Endod. 2013;39:435–8.

    Article  PubMed  Google Scholar 

  86. Yu X, Guo B, Li KZ, Zhang R, Tian YY, Wang H, et al. Cone-beam computed tomography study of root and canal morphology of mandibular premolars in a western Chinese population. BMC Med Imaging. 2012;12:18–22.

    Google Scholar 

  87. Martins JN, Mata A, Marques D, Carames J. Prevalence of root fusions and main root canal merging in human upper and lower molars: a cone-beam computed tomography in vivo study. J Endod. 2016;42:900–8.

    Article  PubMed  Google Scholar 

  88. Jo HH, Min JB, Hwang HK. Analysis of C-shaped root canal configuration in maxillary molars in a Korean population using cone-beam computed tomography. Restor Dent Endod. 2016;41:55–62.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Martins JN, Mata A, Marques D, Anderson C, Carames J. Prevalence and characteristics of the maxillary C-shaped molar. J Endod. 2016;42:383–9.

    Article  PubMed  Google Scholar 

  90. Silva EJ, Nejaim Y, Silva AI, Haiter-Neto F, Zaia AA, Cohenca N. Evaluation of root canal configuration of maxillary molars in a Brazilian population using cone-beam computed tomographic imaging: an in vivo study. J Endod. 2014;40:173–6.

    Article  PubMed  Google Scholar 

  91. Tian XM, Yang XW, Qian L, Wei B, Gong Y. Analysis of the root and canal morphologies in maxillary first and second molars in a Chinese population using cone-beam computed tomography. J Endod. 2016;42:696–701.

    Article  PubMed  Google Scholar 

  92. Khademi A, Zamani Naser A, Bahreinian Z, Mehdizadeh M, Najarian M, Khazaei S. Root morphology and canal configuration of first and second maxillary molars in a selected Iranian population: a cone-beam computed tomography evaluation. Iran Endod J. 2017;12:288–92.

    PubMed  PubMed Central  Google Scholar 

  93. Li L, Zhan FL, Jin YW. Preliminary study on root canal morphology of maxillary second molars. Shanghai Kou Qiang Yi Xue. 2014;23:179–83.

    PubMed  Google Scholar 

  94. Abuabara A, Baratto-Filho F, Aguiar Anele J, Leonardi DP, Sousa-Neto MD. Efficacy of clinical and radiological methods to identify second mesiobuccal canals in maxillary first molars. Acta Odontol Scand. 2013;71:205–9.

    Article  PubMed  Google Scholar 

  95. Alrahabi M, Sohail Zafar M. Evaluation of root canal morphology of maxillary molars using cone beam computed tomography. Pak J Med Sci. 2015;31:426–30.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Baratto Filho F, Zaitter S, Haragushiku GA, de Campos EA, Abuabara A, Correr GM. Analysis of the internal anatomy of maxillary first molars by using different methods. J Endod. 2009;35:337–42.

    Article  PubMed  Google Scholar 

  97. Ghoncheh Z, Zade BM, Kharazifard MJ. Root morphology of the maxillary first and second molars in an Iranian population using cone beam computed tomography. J Dent (Tehran). 2017;14:115–22.

    Google Scholar 

  98. Gu Y, Wang W, Ni L. Four-rooted permanent maxillary first and second molars in a northwestern Chinese population. Arch Oral Biol. 2015;60:811–7.

    Article  PubMed  Google Scholar 

  99. Hiebert BM, Abramovitch K, Rice D, Torabinejad M. Prevalence of second mesiobuccal canals in maxillary first molars detected using cone-beam computed tomography, direct occlusal access, and coronal plane grinding. J Endod. 2017;43:1711–5.

    Article  PubMed  Google Scholar 

  100. Lyra CM, Delai D, Pereira KC, Pereira GM, Pasternak Junior B, Oliveira CA. Morphology of mesiobuccal root canals of maxillary first molars: a comparison of CBCT scanning and cross-sectioning. Braz Dent J. 2015;26:525–9.

    Article  PubMed  Google Scholar 

  101. Neelakantan P, Subbarao C, Ahuja R, Subbarao CV, Gutmann JL. Cone-beam computed tomography study of root and canal morphology of maxillary first and second molars in an Indian population. J Endod. 2010;36:1622–7.

    Article  PubMed  Google Scholar 

  102. Nikoloudaki GE, Kontogiannis TG, Kerezoudis NP. Evaluation of the root and canal morphology of maxillary permanent molars and the incidence of the second mesiobuccal root canal in Greek population using cone-beam computed tomography. Open Dent J. 2015;9:267–72.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Perez-Heredia M, Ferrer-Luque CM, Bravo M, Castelo-Baz P, Ruiz-Pinon M, Baca P. Cone-beam computed tomographic study of root anatomy and canal configuration of molars in a Spanish population. J Endod. 2017;43:1511–6.

    Article  PubMed  Google Scholar 

  104. Plotino G, Tocci L, Grande NM, Testarelli L, Messineo D, Ciotti M, et al. Symmetry of root and root canal morphology of maxillary and mandibular molars in a white population: a cone-beam computed tomography study in vivo. J Endod. 2013;39:1545–8.

    Article  PubMed  Google Scholar 

  105. Rouhani A, Bagherpour A, Akbari M, Azizi M, Nejat A, Naghavi N. Cone-beam computed tomography evaluation of maxillary first and second molars in Iranian population: a morphological study. Iran Endod J. 2014;9:190–4.

    PubMed  PubMed Central  Google Scholar 

  106. Shenoi RP, Ghule HM. CBVT analysis of canal configuration of the mesio-buccal root of maxillary first permanent molar teeth: an in vitro study. Contemp Clin Dent. 2012;3:277–81.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Zhang R, Yang H, Yu X, Wang H, Hu T, Dummer PM. Use of CBCT to identify the morphology of maxillary permanent molar teeth in a Chinese subpopulation. Int Endod J. 2011;44:162–9.

    Article  PubMed  Google Scholar 

  108. Kim SY, Kim BS, Woo J, Kim Y. Morphology of mandibular first molars analyzed by cone-beam computed tomography in a Korean population: variations in the number of roots and canals. J Endod. 2013;39:1516–21.

    Article  PubMed  Google Scholar 

  109. Wang Y, Zheng QH, Zhou XD, Tang L, Wang Q, Zheng GN, et al. Evaluation of the root and canal morphology of mandibular first permanent molars in a western Chinese population by cone-beam computed tomography. J Endod. 2010;36:1786–9.

    Article  PubMed  Google Scholar 

  110. Zhang R, Wang H, Tian YY, Yu X, Hu T, Dummer PM. Use of cone-beam computed tomography to evaluate root and canal morphology of mandibular molars in Chinese individuals. Int Endod J. 2011;44:990–9.

    Article  PubMed  Google Scholar 

  111. Zhang X, Xiong S, Ma Y, Han T, Chen X, Wan F, et al. A cone-beam computed tomographic study on mandibular first molars in a Chinese subpopulation. PLoS One. 2015;10:e0134919.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Huang CC, Chang YC, Chuang MC, Lai TM, Lai JY, Lee BS, et al. Evaluation of root and canal systems of mandibular first molars in Taiwanese individuals using cone-beam computed tomography. J Formos Med Assoc. 2010;109:303–8.

    Article  PubMed  Google Scholar 

  113. Tu MG, Huang HL, Hsue SS, Hsu JT, Chen SY, Jou MJ, et al. Detection of permanent three-rooted mandibular first molars by cone-beam computed tomography imaging in taiwanese individuals. J Endod. 2009;35:503–7.

    Article  PubMed  Google Scholar 

  114. Silva EJ, Nejaim Y, Silva AV, Haiter-Neto F, Cohenca N. Evaluation of root canal configuration of mandibular molars in a Brazilian population by using cone-beam computed tomography: an in vivo study. J Endod. 2013;39:849–52.

    Article  PubMed  Google Scholar 

  115. von Zuben M, Martins JNR, Berti L, Cassim I, Flynn D, Gonzalez JA, et al. Worldwide prevalence of mandibular second molar c-shaped morphologies evaluated by cone-beam computed tomography. J Endod. 2017;43:1442–7.

    Article  Google Scholar 

  116. Torres A, Jacobs R, Lambrechts P, Brizuela C, Cabrera C, Concha G, et al. Characterization of mandibular molar root and canal morphology using cone beam computed tomography and its variability in Belgian and Chilean population samples. Imaging Sci Dent. 2015;45:95–101.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Nur BG, Ok E, Altunsoy M, Aglarci OS, Colak M, Gungor E. Evaluation of the root and canal morphology of mandibular permanent molars in a south-eastern Turkish population using cone-beam computed tomography. Eur J Dent. 2014;8:154–9.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Mukhaimer RH. Evaluation of root canal configuration of mandibular first molars in a Palestinian population by using cone-beam computed tomography: an ex vivo study. Int Sch Res Notices. 2014;2014:583621.

    PubMed  PubMed Central  Google Scholar 

  119. Akbarzadeh N, Aminoshariae A, Khalighinejad N, Palomo JM, Syed A, Kulild JC, et al. The association between the anatomic landmarks of the pulp chamber floor and the prevalence of middle mesial canals in mandibular first molars: an in vivo analysis. J Endod. 2017;43:1797–801.

    Article  PubMed  Google Scholar 

  120. Caputo BV, Noro Filho GA, de Andrade Salgado DM, Moura-Netto C, Giovani EM, Costa C. Evaluation of the root canal morphology of molars by using cone-beam computed tomography in a Brazilian population: Part I. J Endod. 2016;42:1604–7.

    Article  PubMed  Google Scholar 

  121. Celikten B, Tufenkci P, Aksoy U, Kalender A, Kermeoglu F, Dabaj P, et al. Cone beam CT evaluation of mandibular molar root canal morphology in a Turkish Cypriot population. Clin Oral Investig. 2016;20:2221–6.

    Article  PubMed  Google Scholar 

  122. Demirbuga S, Sekerci AE, Dincer AN, Cayabatmaz M, Zorba YO. Use of cone-beam computed tomography to evaluate root and canal morphology of mandibular first and second molars in Turkish individuals. Med Oral Patol Oral Cir Bucal. 2013;18:e737–44.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Madani ZS, Mehraban N, Moudi E, Bijani A. Root and canal morphology of mandibular molars in a selected Iranian population using cone-beam computed tomography. Iran Endod J. 2017;12:143–8.

    PubMed  PubMed Central  Google Scholar 

  124. Mokhtari H, Niknami M, Mokhtari Zonouzi HR, Sohrabi A, Ghasemi N, Akbari Golzar A. Accuracy of cone-beam computed tomography in determining the root canal morphology of mandibular first molars. Iran Endod J. 2016;11:101–5.

    PubMed  PubMed Central  Google Scholar 

  125. Rahimi S, Mokhtari H, Ranjkesh B, Johari M, Frough Reyhani M, Shahi S, et al. Prevalence of extra roots in permanent mandibular first molars in Iranian population: a CBCT analysis. Iran Endod J. 2017;12:70–3.

    PubMed  PubMed Central  Google Scholar 

  126. Shemesh A, Levin A, Katzenell V, Ben Itzhak J, Levinson O, Zini A, et al. Prevalence of 3- and 4-rooted first and second mandibular molars in the Israeli population. J Endod. 2015;41:338–42.

    Article  PubMed  Google Scholar 

  127. Kim Y, Roh BD, Shin Y, Kim BS, Choi YL, Ha A. Morphological characteristics and classification of mandibular first molars having 2 distal roots or canals: 3-dimensional biometric analysis using cone-beam computed tomography in a Korean population. J Endod. 2018;44:46–50.

    Article  PubMed  Google Scholar 

  128. Kim SY, Kim BS, Kim Y. Mandibular second molar root canal morphology and variants in a Korean subpopulation. Int Endod J. 2016;49:136–44.

    Article  PubMed  Google Scholar 

  129. Pawar AM, Pawar M, Kfir A, Singh S, Salve P, Thakur B, et al. Root canal morphology and variations in mandibular second molar teeth of an Indian population: an in vivo cone-beam computed tomography analysis. Clin Oral Investig. 2017;21:2801–9.

    Article  PubMed  Google Scholar 

  130. Ladeira DB, Cruz AD, Freitas DQ, Almeida SM. Prevalence of C-shaped root canal in a Brazilian subpopulation: a cone-beam computed tomography analysis. Braz Oral Res. 2014;28:39–45.

    Article  PubMed  Google Scholar 

  131. Martins JN, Mata A, Marques D, Carames J. Prevalence of C-shaped mandibular molars in the Portuguese population evaluated by cone-beam computed tomography. Eur J Dent. 2016;10:529–35.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Shemesh A, Levin A, Katzenell V, Itzhak JB, Levinson O, Avraham Z, et al. C-shaped canals-prevalence and root canal configuration by cone beam computed tomography evaluation in first and second mandibular molars-a cross-sectional study. Clin Oral Investig. 2017;21:2039–44.

    Article  PubMed  Google Scholar 

  133. Zheng Q, Zhang L, Zhou X, Wang Q, Wang Y, Tang L, et al. C-shaped root canal system in mandibular second molars in a Chinese population evaluated by cone-beam computed tomography. Int Endod J. 2011;44:857–62.

    Article  PubMed  Google Scholar 

  134. Zhang Q, Chen H, Fan B, Fan W, Gutmann JL. Root and root canal morphology in maxillary second molar with fused root from a native Chinese population. J Endod. 2014;40:871–5.

    Article  PubMed  Google Scholar 

  135. Helvacioglu-Yigit D, Sinanoglu A. Use of cone-beam computed tomography to evaluate C-shaped root canal systems in mandibular second molars in a Turkish subpopulation: a retrospective study. Int Endod J. 2013;46:1032–8.

    PubMed  Google Scholar 

  136. Sinanoglu A, Helvacioglu-Yigit D. Analysis of C-shaped canals by panoramic radiography and cone-beam computed tomography: root-type specificity by longitudinal distribution. J Endod. 2014;40:917–21.

    Article  PubMed  Google Scholar 

  137. Elliott JC, Dover SD. X-ray microtomography. J Microsc. 1982;126:211–3.

    Article  PubMed  Google Scholar 

  138. Stock SR. Microcomputed tomography: methodology and applications. Boca Raton: CRC Press; 2009.

    Google Scholar 

  139. Peters OA, Laib A, Ruegsegger P, Barbakow F. Three-dimensional analysis of root canal geometry by high-resolution computed tomography. J Dent Res. 2000;79:1405–9.

    Article  PubMed  Google Scholar 

  140. Versiani MA, Pécora JD, Sousa-Neto MD. The anatomy of two-rooted mandibular canines determined using micro-computed tomography. Int Endod J. 2011;44:682–7.

    Article  PubMed  Google Scholar 

  141. Versiani MA, Pécora JD, Sousa-Neto MD. Root and root canal morphology of four-rooted maxillary second molars: a micro-computed tomography study. J Endod. 2012;38:977–82.

    Article  PubMed  Google Scholar 

  142. Versiani MA, Pécora JD, Sousa-Neto MD. Microcomputed tomography analysis of the root canal morphology of single-rooted mandibular canines. Int Endod J. 2013;46:800–7.

    Article  PubMed  Google Scholar 

  143. Ketcham RA, Carlson WD. Acquisition, optimization and interpretation of X-ray computed tomographic imagery: applications to the geosciences. Comput Geosci. 2001;27:381–400.

    Article  Google Scholar 

  144. Wang G, Vannier MW. Overview on micro-CT scanners for biomedical applications. Adv Imaging. 2001;16:22–7.

    Google Scholar 

  145. Feldkamp LA, Davis LC, Kress JW. Practical cone-beam algorithm. J Opt Soc Am. 1984;1:612–9.

    Article  Google Scholar 

  146. Pham DL, Xu C, Prince JL. Current methods in medical image segmentation. Annu Rev Biomed Eng. 2000;2:315–37.

    Article  PubMed  Google Scholar 

  147. Nielsen RB, Alyassin AM, Peters DD, Carnes DL, Lancaster J. Microcomputed tomography: an advanced system for detailed endodontic research. J Endod. 1995;21:561–8.

    Article  PubMed  Google Scholar 

  148. Rhodes JS, Ford TR, Lynch JA, Liepins PJ, Curtis RV. Micro-computed tomography: a new tool for experimental endodontology. Int Endod J. 1999;32:165–70.

    Article  PubMed  Google Scholar 

  149. Dowker SE, Davis GR, Elliott JC. X-ray microtomography: nondestructive three-dimensional imaging for in vitro endodontic studies. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1997;83:510–6.

    Article  PubMed  Google Scholar 

  150. Bjørndal L, Carlsen O, Thuesen G, Darvann T, Kreiborg S. External and internal macromorphology in 3D-reconstructed maxillary molars using computerized X-ray microtomography. Int Endod J. 1999;32:3–9.

    Article  PubMed  Google Scholar 

  151. Green EN. Microscopic investigation of root canal diameters. J Am Dent Assoc. 1958;57:636–44.

    Article  PubMed  Google Scholar 

  152. Gilles J, Reader A. An SEM investigation of the mesiolingual canal in human maxillary first and second molars. Oral Surg Oral Med Oral Pathol. 1990;70:638–43.

    Article  PubMed  Google Scholar 

  153. Wu MK, R’Oris A, Barkis D, Wesselink PR. Prevalence and extent of long oval canals in the apical third. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2000;89:739–43.

    Article  PubMed  Google Scholar 

  154. Cheung GS, Yang J, Fan B. Morphometric study of the apical anatomy of C-shaped root canal systems in mandibular second molars. Int Endod J. 2007;40:239–46.

    Article  PubMed  Google Scholar 

  155. Peters OA, Laib A, Gohring TN, Barbakow F. Changes in root canal geometry after preparation assessed by high-resolution computed tomography. J Endod. 2001;27:1–6.

    Article  PubMed  Google Scholar 

  156. Siqueira JF Jr, Alves FRF, Versiani MA, Rocas IN, Almeida BM, Neves MAS, et al. Correlative bacteriologic and micro-computed tomographic analysis of mandibular molar mesial canals prepared by Self-Adjusting File, Reciproc, and Twisted File systems. J Endod. 2013;39:1044–50.

    Article  PubMed  Google Scholar 

  157. Versiani MA, Steier L, De-Deus G, Tassani S, Pécora JD, Sousa-Neto MD. Micro-computed tomography study of oval-shaped canals prepared with the Self-adjusting File, Reciproc, WaveOne, and Protaper Universal systems. J Endod. 2013;39:1060–6.

    Article  PubMed  Google Scholar 

  158. Gu Y, Lee JK, Spangberg LS, Lee Y, Park CM, Seo DG, et al. Minimum-intensity projection for in-depth morphology study of mesiobuccal root. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2011;112:671–7.

    Article  PubMed  Google Scholar 

  159. Hosoya N, Yoshida T, Iino F, Arai T, Mishima A, Kobayashi K. Detection of a secondary mesio-buccal canal in maxillary first molar: a comparative study. J Conserv Dent. 2012;15:127–31.

    Article  PubMed  PubMed Central  Google Scholar 

  160. Kim Y, Chang SW, Lee JK, Chen IP, Kaufman B, Jiang J, et al. A micro-computed tomography study of canal configuration of multiple-canalled mesiobuccal root of maxillary first molar. Clin Oral Investig. 2013;17:1541–6.

    Article  PubMed  Google Scholar 

  161. Lee JK, Ha BH, Choi JH, Heo SM, Perinpanayagam H. Quantitative three-dimensional analysis of root canal curvature in maxillary first molars using micro-computed tomography. J Endod. 2006;32:941–5.

    Article  PubMed  Google Scholar 

  162. Park JW, Lee JK, Ha BH, Choi JH, Perinpanayagam H. Three-dimensional analysis of maxillary first molar mesiobuccal root canal configuration and curvature using micro-computed tomography. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009;108:437–42.

    Article  PubMed  Google Scholar 

  163. Somma F, Leoni D, Plotino G, Grande NM, Plasschaert A. Root canal morphology of the mesiobuccal root of maxillary first molars: a micro-computed tomographic analysis. Int Endod J. 2009;42:165–74.

    Article  PubMed  Google Scholar 

  164. Verma P, Love RM. A micro CT study of the mesiobuccal root canal morphology of the maxillary first molar tooth. Int Endod J. 2011;44:210–7.

    Article  PubMed  Google Scholar 

  165. Yamada M, Ide Y, Matsunaga S, Kato H, Nakagawa K. Three-dimensional analysis of Mesiobuccal root canal of japanese maxillary first molar using Micro-CT. Bull Tokyo Dent Coll. 2011;52:77–84.

    Article  PubMed  Google Scholar 

  166. Cleghorn BM, Christie WH, Dong CC. Anomalous mandibular premolars: a mandibular first premolar with three roots and a mandibular second premolar with a C-shaped canal system. Int Endod J. 2008;41:1005–14.

    Article  PubMed  Google Scholar 

  167. Marca C, Dummer PM, Bryant S, Vier-Pelisser FV, So MV, Fontanella V, et al. Three-rooted premolar analyzed by high-resolution and cone beam CT. Clin Oral Investig. 2013;17:1535–40.

    Article  PubMed  Google Scholar 

  168. Ordinola-Zapata R, Bramante CM, Villas-Boas MH, Cavenago BC, Duarte MH, Versiani MA. Morphologic micro-computed tomography analysis of mandibular premolars with three root canals. J Endod. 2013;39:1130–5.

    Article  PubMed  Google Scholar 

  169. Gu Y, Lu Q, Wang H, Ding Y, Wang P, Ni L. Root canal morphology of permanent three-rooted mandibular first molars – Part I: Pulp floor and root canal system. J Endod. 2010;36:990–4.

    Article  PubMed  Google Scholar 

  170. Gu Y, Lu Q, Wang P, Ni L. Root canal morphology of permanent three-rooted mandibular first molars: Part II—Measurement of root canal curvatures. J Endod. 2010;36:1341–6.

    Article  PubMed  Google Scholar 

  171. Gu Y, Zhou P, Ding Y, Wang P, Ni L. Root canal morphology of permanent three-rooted mandibular first molars: Part III—An odontometric analysis. J Endod. 2011;37:485–90.

    Article  PubMed  Google Scholar 

  172. Li X, Liu N, Ye L, Nie X, Zhou X, Wen X, et al. A micro-computed tomography study of the location and curvature of the lingual canal in the mandibular first premolar with two canals originating from a single canal. J Endod. 2012;38:309–12.

    Article  PubMed  Google Scholar 

  173. Fan B, Yang J, Gutmann JL, Fan M. Root canal systems in mandibular first premolars with C-shaped root configurations. Part I: Microcomputed tomography mapping of the radicular groove and associated root canal cross-sections. J Endod. 2008;34:1337–41.

    Article  PubMed  Google Scholar 

  174. Fan B, Ye W, Xie E, Wu H, Gutmann JL. Three-dimensional morphological analysis of C-shaped canals in mandibular first premolars in a Chinese population. Int Endod J. 2012;45:1035–41.

    Article  PubMed  Google Scholar 

  175. Gu YC, Zhang YP, Liao ZG, Fei XD. A micro-computed tomographic analysis of wall thickness of C-shaped canals in mandibular first premolars. J Endod. 2013;39:973–6.

    Article  PubMed  Google Scholar 

  176. Fan B, Cheung GS, Fan M, Gutmann JL, Bian Z. C-shaped canal system in mandibular second molars: Part I—Anatomical features. J Endod. 2004;30:899–903.

    Article  PubMed  Google Scholar 

  177. Fan B, Cheung GS, Fan M, Gutmann JL, Fan W. C-shaped canal system in mandibular second molars: Part II—Radiographic features. J Endod. 2004;30:904–8.

    Article  PubMed  Google Scholar 

  178. Fan B, Min Y, Lu G, Yang J, Cheung GS, Gutmann JL. Negotiation of C-shaped canal systems in mandibular second molars. J Endod. 2009;35:1003–8.

    Article  PubMed  Google Scholar 

  179. Fan W, Fan B, Gutmann JL, Cheung GS. Identification of C-shaped canal in mandibular second molars. Part I: Radiographic and anatomical features revealed by intraradicular contrast medium. J Endod. 2007;33:806–10.

    Article  PubMed  Google Scholar 

  180. Fan W, Fan B, Gutmann JL, Fan M. Identification of a C-shaped canal system in mandibular second molars. Part III. Anatomic features revealed by digital subtraction radiography. J Endod. 2008;34:1187–90.

    Article  PubMed  Google Scholar 

  181. Gao Y, Fan B, Cheung GS, Gutmann JL, Fan M. C-shaped canal system in mandibular second molars. Part IV: 3-D morphological analysis and transverse measurement. J Endod. 2006;32:1062–5.

    Article  PubMed  Google Scholar 

  182. Min Y, Fan B, Cheung GS, Gutmann JL, Fan M. C-shaped canal system in mandibular second molars. Part III: The morphology of the pulp chamber floor. J Endod. 2006;32:1155–9.

    Article  PubMed  Google Scholar 

  183. Gu YC. A micro-computed tomographic analysis of maxillary lateral incisors with radicular grooves. J Endod. 2011;37:789–92.

    Article  PubMed  Google Scholar 

  184. Gu Y, Zhang Y, Liao Z. Root and canal morphology of mandibular first premolars with radicular grooves. Arch Oral Biol. 2013;58:1609–17.

    Article  PubMed  Google Scholar 

  185. Li J, Li L, Pan Y. Anatomic study of the buccal root with furcation groove and associated root canal shape in maxillary first premolars by using micro-computed tomography. J Endod. 2013;39:265–8.

    Article  PubMed  Google Scholar 

  186. Fan B, Pan Y, Gao Y, Fang F, Wu Q, Gutmann JL. Three-dimensional morphologic analysis of isthmuses in the mesial roots of mandibular molars. J Endod. 2010;36:1866–9.

    Article  PubMed  Google Scholar 

  187. Gu L, Wei X, Ling J, Huang X. A microcomputed tomographic study of canal isthmuses in the mesial root of mandibular first molars in a Chinese population. J Endod. 2009;35:353–6.

    Article  PubMed  Google Scholar 

  188. Harris SP, Bowles WR, Fok A, McClanahan SB. An anatomic investigation of the mandibular first molar using micro-computed tomography. J Endod. 2013;39:1374–8.

    Article  PubMed  Google Scholar 

  189. Mannocci F, Peru M, Sherriff M, Cook R, Pitt Ford TR. The isthmuses of the mesial root of mandibular molars: a micro-computed tomographic study. Int Endod J. 2005;38:558–63.

    Article  PubMed  Google Scholar 

  190. Villas-Boas MH, Bernardineli N, Cavenago BC, Marciano M, Del Carpio-Perochena A, de Moraes IG, et al. Micro-computed tomography study of the internal anatomy of mesial root canals of mandibular molars. J Endod. 2011;37:1682–6.

    Article  PubMed  Google Scholar 

  191. Leoni GB, Versiani MA, Pécora JD, Sousa-Neto MD. Micro-computed tomographic analysis of the root canal morphology of mandibular incisors. J Endod. 2014;40:710–6.

    Article  PubMed  Google Scholar 

  192. Almeida MM, Bernardineli N, Ordinola-Zapata R, Villas-Boas MH, Amoroso-Silva PA, Brandão CG, et al. Micro-computed tomography analysis of the root canal anatomy and prevalence of oval canals in mandibular incisors. J Endod. 2013;39:1529–33.

    Article  Google Scholar 

  193. Liu N, Li X, Ye L, An J, Nie X, Liu L, et al. A micro-computed tomography study of the root canal morphology of the mandibular first premolar in a population from southwestern China. Clin Oral Investig. 2013;17:999–1007.

    Article  PubMed  Google Scholar 

  194. Meder-Cowherd L, Williamson AE, Johnson WT, Vasilescu D, Walton R, Qian F. Apical morphology of the palatal roots of maxillary molars by using micro-computed tomography. J Endod. 2011;37:1162–5.

    Article  PubMed  Google Scholar 

  195. Elnour M, Khabeer A, AlShwaimi E. Evaluation of root canal morphology of maxillary second premolars in a Saudi Arabian sub-population: an in vitro microcomputed tomography study. Saudi Dent J. 2016;28:162–8.

    Article  PubMed  PubMed Central  Google Scholar 

  196. Hartmann RC, Baldasso FE, Sturmer CP, Acauan MD, Scarparo RK, Morgental RD, et al. Clinically relevant dimensions of 3-rooted maxillary premolars obtained via high-resolution computed tomography. J Endod. 2013;39:1639–45.

    Article  PubMed  Google Scholar 

  197. Johnsen GF, Sundnes J, Wengenroth J, Haugen HJ. Methodology for morphometric analysis of modern human contralateral premolars. J Comput Assist Tomogr. 2016;40:617–25.

    Article  PubMed  Google Scholar 

  198. Alkaabi W, AlShwaimi E, Farooq I, Goodis HE, Chogle SM. A micro-computed tomography study of the root canal morphology of mandibular first premolars in an Emirati population. Med Princ Pract. 2017;26:118–24.

    Article  PubMed  Google Scholar 

  199. Chen J, Li X, Su Y, Zhang D, Wen X, Nie X, et al. A micro-computed tomography study of the relationship between radicular grooves and root canal morphology in mandibular first premolars. Clin Oral Investig. 2014;19:329–34.

    Article  PubMed  Google Scholar 

  200. Dou L, Li D, Xu T, Tang Y, Yang D. Root anatomy and canal morphology of mandibular first premolars in a Chinese population. Sci Rep. 2017;7:750–6.

    Google Scholar 

  201. Ordinola-Zapata R, Monteiro Bramante C, Gagliardi Minotti P, Cavalini Cavenago B, Gutmann JL, Moldauer BI, et al. Micro-CT evaluation of C-shaped mandibular first premolars in a Brazilian subpopulation. Int Endod J. 2015;48:807–13.

    Article  PubMed  Google Scholar 

  202. Briseño-Marroquin B, Paqué F, Maier K, Willershausen B, Wolf TG. Root canal morphology and configuration of 179 maxillary first molars by means of micro-computed tomography: an ex vivo study. J Endod. 2015;41:2008–13.

    Article  PubMed  Google Scholar 

  203. ElAyouti A, Hulber JM, Judenhofer MS, Connert T, Mannheim JG, Lost C, et al. Apical constriction: location and dimensions in molars-a micro-computed tomography study. J Endod. 2014;40:1095–9.

    Article  PubMed  Google Scholar 

  204. Lee KW, Kim Y, Perinpanayagam H, Lee JK, Yoo YJ, Lim SM, et al. Comparison of alternative image reformatting techniques in micro-computed tomography and tooth clearing for detailed canal morphology. J Endod. 2014;40:417–22.

    Article  PubMed  Google Scholar 

  205. Marceliano-Alves M, Alves FR, Mendes Dde M, Provenzano JC. Micro-computed tomography analysis of the root canal morphology of palatal roots of maxillary first molars. J Endod. 2016;42:280–3.

    Article  PubMed  Google Scholar 

  206. Ordinola-Zapata R, Martins JN, Bramante CM, Villas-Boas MH, Duarte MH, Versiani MA. Morphological evaluation of maxillary second molars with fused roots: a micro-CT study. Int Endod J. 2017;50:1192–200.

    Article  PubMed  Google Scholar 

  207. Tomaszewska IM, Leszczynski B, Wrobel A, Gladysz T, Duncan HF. A micro-computed tomographic (micro-CT) analysis of the root canal morphology of maxillary third molar teeth. Ann Anat. 2018;215:83–92.

    Article  PubMed  Google Scholar 

  208. Amoroso-Silva PA, Ordinola-Zapata R, Duarte MA, Gutmann JL, del Carpio-Perochena A, Bramante CM, et al. Micro-computed tomographic analysis of mandibular second molars with C-shaped root canals. J Endod. 2015;41:890–5.

    Article  PubMed  Google Scholar 

  209. Barsness SA, Bowles WR, Fok A, McClanahan SB, Harris SP. An anatomical investigation of the mandibular second molar using micro-computed tomography. Surg Radiol Anat. 2015;37:267–72.

    Article  PubMed  Google Scholar 

  210. Filpo-Perez C, Bramante CM, Villas-Boas MH, Hungaro Duarte MA, Versiani MA, Ordinola-Zapata R. Micro-computed tomographic analysis of the root canal morphology of the distal root of mandibular first molar. J Endod. 2015;41:231–6.

    Article  PubMed  Google Scholar 

  211. Keleş A, Keskin C. A micro-computed tomographic study of band-shaped root canal isthmuses, having their floor in the apical third of mesial roots of mandibular first molars. Int Endod J. 2018:2:240–6.

    Article  PubMed  Google Scholar 

  212. Keleş A, Keskin C. Apical root canal morphology of mesial roots of mandibular first molar teeth with Vertucci Type II configuration by means of micro-computed tomography. J Endod. 2017;43:481–5.

    Article  PubMed  Google Scholar 

  213. Keleş A, Keskin C. Detectability of middle mesial root canal orifices by troughing technique in mandibular molars: a micro-computed tomographic study. J Endod. 2017;43:1329–31.

    Article  PubMed  Google Scholar 

  214. Kim Y, Perinpanayagam H, Lee JK, Yoo YJ, Oh S, Gu Y, et al. Comparison of mandibular first molar mesial root canal morphology using micro-computed tomography and clearing technique. Acta Odontol Scand. 2015;73:427–32.

    Article  PubMed  Google Scholar 

  215. Lamia AF, McDonald NJ. Microcomputed tomographic evaluation of mandibular molars with single distal canals. Gen Dent. 2015;63:33–7.

    PubMed  Google Scholar 

  216. Lee JK, Yoo YJ, Perinpanayagam H, Ha BH, Lim SM, Oh SR, et al. Three-dimensional modelling and concurrent measurements of root anatomy in mandibular first molar mesial roots using micro-computed tomography. Int Endod J. 2015;48:380–9.

    Article  PubMed  Google Scholar 

  217. Min Y, Ma JZ, Shen Y, Cheung GS, Gao Y. A micro-computed tomography study of the negotiation and anatomical feature in apical root canal of mandibular molars. Scanning. 2016;38:819–24.

    Article  PubMed  Google Scholar 

  218. Ordinola-Zapata R, Bramante CM, Versiani MA, Moldauer BI, Topham G, Gutmann JL, et al. Comparative accuracy of the Clearing Technique, CBCT and Micro-CT methods in studying the mesial root canal configuration of mandibular first molars. Int Endod J. 2017;50:90–6.

    Article  PubMed  Google Scholar 

  219. Rodrigues CT, Oliveira-Santos C, Bernardineli N, Duarte MA, Bramante CM, Minotti-Bonfante PG, et al. Prevalence and morphometric analysis of three-rooted mandibular first molars in a Brazilian subpopulation. J Appl Oral Sci. 2016;24:535–42.

    Article  PubMed  PubMed Central  Google Scholar 

  220. Souza-Flamini LE, Leoni GB, Chaves JF, Versiani MA, Cruz-Filho AM, Pecora JD, et al. The radix entomolaris and paramolaris: a micro-computed tomographic study of 3-rooted mandibular first molars. J Endod. 2014;40:1616–21.

    Article  PubMed  Google Scholar 

  221. Versiani MA, Ordinola-Zapata R, Keleş A, Alcin H, Bramante CM, Pécora JD, et al. Middle mesial canals in mandibular first molars: a micro-CT study in different populations. Arch Oral Biol. 2016;61:130–7.

    Article  PubMed  Google Scholar 

  222. Wolf TG, Paqué F, Zeller M, Willershausen B, Briseño-Marroquin B. Root canal morphology and configuration of 118 mandibular first molars by means of micro-computed tomography: an ex vivo study. J Endod. 2016;42:610–4.

    Article  PubMed  Google Scholar 

  223. Johnstone M, Parashos P. Endodontics and the ageing patient. Aust Dent J. 2015;60 Suppl 1:20–7.

    Article  PubMed  Google Scholar 

  224. Gani OA, Boiero CF, Correa C, Masin I, Machado R, Silva EJ, et al. Morphological changes related to age in mesial root canals of permanent mandibular first molars. Acta Odontol Latinoam. 2014;27:105–9.

    PubMed  Google Scholar 

  225. Thomas RP, Moule AJ, Bryant R. Root canal morphology of maxillary permanent first molar teeth at various ages. Int Endod J. 1993;26:257–67.

    Article  PubMed  Google Scholar 

  226. Peiris HR, Pitakotuwage TN, Takahashi M, Sasaki K, Kanazawa E. Root canal morphology of mandibular permanent molars at different ages. Int Endod J. 2008;41:828–35.

    Article  PubMed  Google Scholar 

  227. Nosrat A, Deschenes RJ, Tordik PA, Hicks ML, Fouad AF. Middle mesial canals in mandibular molars: incidence and related factors. J Endod. 2015;41:28–32.

    Article  PubMed  Google Scholar 

  228. Neaverth EJ, Kotler LM, Kaltenbach RF. Clinical investigation (in vivo) of endodontically treated maxillary first molars. J Endod. 1987;13:506–12.

    Article  PubMed  Google Scholar 

  229. Martins J, Ordinola-Zapata R, Marques D, Francisco H, Caramês J. Differences in root canal system configuration in human permanent teeth at different age groups. Int Endod J. 2018. https://doi.org/10.1111/iej.12896.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge N. R. Martins .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Martins, J.N.R., Versiani, M.A. (2019). CBCT and Micro-CT on the Study of Root Canal Anatomy. In: Versiani, M., Basrani, B., Sousa-Neto, M. (eds) The Root Canal Anatomy in Permanent Dentition. Springer, Cham. https://doi.org/10.1007/978-3-319-73444-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73444-6_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-73443-9

  • Online ISBN: 978-3-319-73444-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics