Skip to main content

The Topography of the N70 Component of the Visual Evoked Potential in Humans

  • Conference paper
Topographic Brain Mapping of EEG and Evoked Potentials

Abstract

The latency of the so-called PI00 or major positive wave of the pattern visual evoked potential (VEP) is deservedly used as a most reliable indicator of retinal and optic nerve neuropathy. The fact that it occurs with such a long latency has given rise to considerable interest in the possibility of utilizing earlier VEP components for clinical diagnosis, in the hope of establishing at which anatomical level of visual processing an abnormality may have occurred. The earliest reported components, which occur as a short “burst” of oscillations, have been studied using very bright, brief flash stimulation. In the single study using pattern stimulation evidence was reported that components near 30 ms show spatial tuning and do not arise from the retina. Unfortunately, the amplitude of these oscillatory potentials is small and therefore at this stage of technology their clinical utility is rather doubtful. On the other hand, pattern elicited VEPs, which have nearly 10 times the amplitude of oscillatory scalp potentials, are reported to contain “unreliable” components preceding the P100. Nevertheless, there are components of the VEP which precede the P100. In particular, a negative wave, which we shall label N70 for convenience, has some physiologically and clinically intriguing properties. In this paper we shall summarize the evidence for the propostion that one of the reasons why N70 is considered unreliable is the use of inappropriate stimulation.

The author and publisher gratefully acknowledge that the cost of colour prints was kindly subsidized by Dantec Elektronik

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Barrett G, Blumhardt L, Halliday AM, Halliday E, Kriss A (1976) A paradox in the lateralisation of the visual evoked response. Nature 261:253–255

    Article  Google Scholar 

  • Bender MB, Furlow LT (1945) Visual disturbances produced by bilateral lesions of the occipital lobes with central scotomas. Arch Neurol Psychiatr 53:165–170

    Google Scholar 

  • Bender MB, Bodis-Wollner I (1978) Visual dysfunctions in optic tract lesions. Ann Neurol 3:187–193

    Article  PubMed  CAS  Google Scholar 

  • Bertrand O, Perrin F, Pernier J (1985) A theoretical justification of the average reference in topographic evoked potential studies. Electroencephalogr Clin Neurophysiol 62:462–464

    Article  PubMed  CAS  Google Scholar 

  • Bodis-Wollner I, Hendley CD (1979) On the separability of two mechanisms involved in the detection of grating patterns in humans. J Physiol (Lond) 201:251–263

    Google Scholar 

  • Bodis-Wollner I, Diamond S (1976) The measurement of spatial contrast sensitivity in cases of blurred vision associated with cerebral lesions. Brain 99:695–710

    Article  PubMed  CAS  Google Scholar 

  • Bodis-Wollner I, Barris M, Mylin LH, Julesz B, Kropfl W (1981) Binocular stimulation reveals cortical components of the human VEP. Electroencephalogr Clin Neurophysiol 52:298–385

    Article  PubMed  CAS  Google Scholar 

  • Bodis-Wollner I, Ghilardi MF, Mylin LH (1986) The importance of stimulus selection in the VEP practice: the clinical relevance of visual physiology. In: Bodis-Wollner I, Cracco RQ (eds) Evoked potentials. Liss, New York, pp 15–27

    Google Scholar 

  • Campbell FW, Green DC (1965) Optical and retinal factors affecting visual resolution. J Physiol (Lond) 181:576–593

    CAS  Google Scholar 

  • Chiappa KH (1983) Evoked potentials in clinical medicine. Raven, New York, p 28

    Google Scholar 

  • Duffy FH (1982) Topographic display of evoked potentials: clinical applications of brain electrical activity mapping (BEAM). Ann NY Acad Sci 388:183–196

    Article  PubMed  CAS  Google Scholar 

  • Glaser JS (1978) Neuro-ophthalmology. Harper and Row, Hagerstown, pp 18–19

    Google Scholar 

  • Halliday AM (1982) The visual evoked response in healthy subjects. In: Halliday AM (ed) Evoked potentials in clinical testing. Churchill-Livingstone, Edinburgh, pp 71–120

    Google Scholar 

  • Hoeppner TJ, Bergen D, Morell F (1984) Hemispheric asymmetry of VEPs in patients with well defined occipital lesions. Electroencephalogr Clin Neurophysiol 57:310–319

    Article  PubMed  CAS  Google Scholar 

  • Jeffreys PA, Axford JG (1972) Source locations of pattern specific components of human VEPs I and II. Exp Brain Res 16:1–40

    PubMed  CAS  Google Scholar 

  • Jones R, Keck MJ (1978) Visual evoked response as a function of grating spatial frequency. Invest Ophathalmol Vis Sci 17:652–659

    CAS  Google Scholar 

  • Lesevre N (1976) Topographical analysis of the pattern evoked response (PER): its application to the study of macular and peripheral vision in normal people and in some pathological cases. Doc Ophthalmol Proc Series 10:87–102

    Article  Google Scholar 

  • Lesevre N, Joseph JP (1979) Modifications of the pattern evoked potential in relation to the stimulated part of the visual field (clues for the most probable origins of each component). Electroencephalogr Clin Neurophysiol 47:183–190

    Article  PubMed  CAS  Google Scholar 

  • Lesevre N (1982) Chronotopographical analysis of the human evoked potential in relation to the visual field (data from normal individuals and hemianopic patients). Ann NY Acad Sci 388:156–183

    Article  PubMed  CAS  Google Scholar 

  • Mauguiere F, Giard MH, Ibanez V, Pernier J (1985) Sequential spatial maps of visual potentials evoked by checkerboard-pattern response topography Rev Electroencephalogr Neurophysiol Clin 15(2): 129–137

    CAS  Google Scholar 

  • Onofrj M, Bodis-Wollner I, Mylin LH (1982) VEP diagnosis of field defects in patients with chiasmatic and retrochiasmatic lesions. J Neurol Neurosurg Psychiatry 45:294–302

    Article  PubMed  CAS  Google Scholar 

  • Parker DM, Salzen EA, Lishman JR (1982) Visual evoked responses elicited by the onset and offset of sinusoidal gratings: latency, waveform and topographic characteristics. Invest Ophthalmol Vis Sci 22:675–680

    PubMed  CAS  Google Scholar 

  • Paulus W, Homberg V, Cunningham K, Halliday AM, Rohde N (1984) Colour and luminance components of foveal visual responses in man. Electroencephalogr Clin Neurophysiol 58:107–119

    Article  PubMed  CAS  Google Scholar 

  • Perrin F, Pernier J, Bertrand O, Giard MH, Echallier JF (1987) Mapping of scalp potentials by surface spline interpolation. Electroencephalogr Clin Neurophysiol 66:75–81

    Article  PubMed  CAS  Google Scholar 

  • Perry VH, Cowey A (1985) The ganglion cell and cone distributions in the monkey’s retina: implications for central magnification factors. Vision Res 25:1795–1810

    Article  PubMed  CAS  Google Scholar 

  • Plant GT, Zimmern RL, Durden K (1983) Transient VEPs to the pattern reversal and onset of sinusoidal gratings. Electroencephalogr Clin Neurophysiol 56:147–158

    Article  PubMed  CAS  Google Scholar 

  • Robson JG, Graham N (1981) Probability summation and regional variation in contrast sensitivity across the visual field. Vision Res 21:409–418

    Article  PubMed  CAS  Google Scholar 

  • Schade DH (1956) Optical and photoelectric analog of the eye. J Opt Soc Am [A] 46:721–739

    Article  Google Scholar 

  • Stensaas SS, Eddington DK, Dobelle WH (1974) The topography and variability of the primary visual cortex in man. J Neurosurg 40:747–755

    Article  PubMed  CAS  Google Scholar 

  • Thickbroom GW, Carroll WM, Mastaglia FL (1985) Dipole source derivation. Application to the half-field PEV. Biomed Comp 16:17

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bódis-Wollner, I., Mylin, L., Frković, S. (1989). The Topography of the N70 Component of the Visual Evoked Potential in Humans. In: Maurer, K. (eds) Topographic Brain Mapping of EEG and Evoked Potentials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-72658-3_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-72658-3_45

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-72660-6

  • Online ISBN: 978-3-642-72658-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics