Skip to main content

Disorders of Phosphorus Metabolism

  • Chapter
  • First Online:
Pediatric Kidney Disease

Abstract

In the past decade, research in genetic disorders of hypophosphatemic disorders has significantly expanded our understanding of phosphate metabolism. X-linked hypophosphatemic rickets is the most common inherited form of rickets due to renal phosphate wasting. The common denominator for all types of rickets is hypophosphatemia, leading to inadequate supply of the mineral to the growing bone. Recent understanding of the mechanisms of disease and role of fibroblast growth factor 23 hypophosphatemic disorders disorders have opened new potential therapeutic avenues. We will discuss the genetic and clinical features of hypophosphatemic disorders and provide understanding and treatment options.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Winters RW, Graham JB, Williams TF, McFalls VW, Burnett CH. A genetic study of familial hypophosphatemia and vitamin D resistant rickets with a review of the literature. Medicine (Baltimore). 1958;37(2):97–142.

    Article  CAS  Google Scholar 

  2. Carpenter TO. The expanding family of hypophosphatemic syndromes. J Bone Miner Metab. 2012;30(1):1–9.

    Article  CAS  PubMed  Google Scholar 

  3. Tiosano D, Hochberg Z. Hypophosphatemia: the common denominator of all rickets. J Bone Miner Metab. 2009;27(4):392–401.

    Article  PubMed  Google Scholar 

  4. Penido MG, Alon US. Hypophosphatemic rickets due to perturbations in renal tubular function. Pediatr Nephrol. 2014;29(3):361–73.

    Article  PubMed  Google Scholar 

  5. Gaucher C, Walrant-Debray O, Nguyen TM, Esterle L, Garabedian M, Jehan F. PHEX analysis in 118 pedigrees reveals new genetic clues in hypophosphatemic rickets. Hum Genet. 2009;125(4):401–11.

    Article  PubMed  Google Scholar 

  6. A gene (PEX) with homologies to endopeptidases is mutated in patients with X-linked hypophosphatemic rickets. The HYP consortium. Nat Genet. 1995;11(2):130–6.

    Google Scholar 

  7. Beck-Nielsen SS, Brixen K, Gram J, Brusgaard K. Mutational analysis of PHEX, FGF23, DMP1, SLC34A3 and CLCN5 in patients with hypophosphatemic rickets. J Hum Genet. 2012;57(7):453–8.

    Article  CAS  PubMed  Google Scholar 

  8. Biber J, Hernando N, Forster I. Phosphate transporters and their function. Annu Rev Physiol. 2013;75:535–50.

    Article  CAS  PubMed  Google Scholar 

  9. Bergwitz C, Roslin NM, Tieder M, et al. SLC34A3 mutations in patients with hereditary hypophosphatemic rickets with hypercalciuria predict a key role for the sodium-phosphate cotransporter NaPi-IIc in maintaining phosphate homeostasis. Am J Hum Genet. 2006;78(2):179–92.

    Article  CAS  PubMed  Google Scholar 

  10. Huqun, Izumi S, Miyazawa H, et al. Mutations in the SLC34A2 gene are associated with pulmonary alveolar microlithiasis. Am J Respir Crit Care Med. 2007;175(3):263–8.

    Article  CAS  PubMed  Google Scholar 

  11. Bergwitz C, Juppner H. Regulation of phosphate homeostasis by PTH, vitamin D, and FGF23. Annu Rev Med. 2010;61:91–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kido S, Miyamoto K, Mizobuchi H, et al. Identification of regulatory sequences and binding proteins in the type II sodium/phosphate cotransporter NPT2 gene responsive to dietary phosphate. J Biol Chem. 1999;274(40):28256–63.

    Article  CAS  PubMed  Google Scholar 

  13. Murer H, Biber J. Molecular mechanisms of renal apical na/phosphate cotransport. Annu Rev Physiol. 1996;58:607–18.

    Article  CAS  PubMed  Google Scholar 

  14. Zivicnjak M, Schnabel D, Billing H, et al. Age-related stature and linear body segments in children with X-linked hypophosphatemic rickets. Pediatr Nephrol. 2011;26(2):223–31.

    Article  PubMed  Google Scholar 

  15. Beck-Nielsen SS, Brusgaard K, Rasmussen LM, et al. Phenotype presentation of hypophosphatemic rickets in adults. Calcif Tissue Int. 2010;87(2):108–19.

    Article  CAS  PubMed  Google Scholar 

  16. Kruse K, Hinkel GK, Griefahn B. Calcium metabolism and growth during early treatment of children with X-linked hypophosphataemic rickets. Eur J Pediatr. 1998;157(11):894–900.

    Article  CAS  PubMed  Google Scholar 

  17. Makitie O, Doria A, Kooh SW, Cole WG, Daneman A, Sochett E. Early treatment improves growth and biochemical and radiographic outcome in X-linked hypophosphatemic rickets. J Clin Endocrinol Metab. 2003;88(8):3591–7.

    Article  CAS  PubMed  Google Scholar 

  18. Quinlan C, Guegan K, Offiah A, et al. Growth in PHEX-associated X-linked hypophosphatemic rickets: the importance of early treatment. Pediatr Nephrol. 2012;27(4):581–8.

    Article  PubMed  Google Scholar 

  19. Schnabel D, Haffner D. Rickets. Diagnosis and therapy. Orthopade. 2005;34(7):703–14; quiz 715–6.

    Article  CAS  PubMed  Google Scholar 

  20. Penido MG, Alon US. Phosphate homeostasis and its role in bone health. Pediatr Nephrol. 2012;27(11):2039–48.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Frame B, Parfitt AM. Osteomalacia: current concepts. Ann Intern Med. 1978;89(6):966–82.

    Article  CAS  PubMed  Google Scholar 

  22. Andersen MG, Beck-Nielsen SS, Haubek D, Hintze H, Gjorup H, Poulsen S. Periapical and endodontic status of permanent teeth in patients with hypophosphatemic rickets. J Oral Rehabil. 2012;39(2):144–50.

    Article  CAS  PubMed  Google Scholar 

  23. Berndt M, Ehrich JH, Lazovic D, et al. Clinical course of hypophosphatemic rickets in 23 adults. Clin Nephrol. 1996;45(1):33–41.

    CAS  PubMed  Google Scholar 

  24. Sun GE, Suer O, Carpenter TO, Tan CD, Li-Ng M. Heart failure in hypophosphatemic rickets: complications from high-dose phosphate therapy. Endocr Pract. 2013;19(1):e8–11.

    Article  PubMed  Google Scholar 

  25. Fishman G, Miller-Hansen D, Jacobsen C, Singhal VK, Alon US. Hearing impairment in familial X-linked hypophosphatemic rickets. Eur J Pediatr. 2004;163(10):622–3.

    PubMed  Google Scholar 

  26. Alon US, Monzavi R, Lilien M, Rasoulpour M, Geffner ME, Yadin O. Hypertension in hypophosphatemic rickets – role of secondary hyperparathyroidism. Pediatr Nephrol. 2003;18(2):155–8.

    PubMed  Google Scholar 

  27. Brodehl J, Krause A, Hoyer PF. Assessment of maximal tubular phosphate reabsorption: comparison of direct measurement with the nomogram of bijvoet. Pediatr Nephrol. 1988;2(2):183–9.

    Article  CAS  PubMed  Google Scholar 

  28. Carpenter TO, Insogna KL, Zhang JH, et al. Circulating levels of soluble klotho and FGF23 in X-linked hypophosphatemia: circadian variance, effects of treatment, and relationship to parathyroid status. J Clin Endocrinol Metab. 2010;95(11):E352–7.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Morey M, Castro-Feijoo L, Barreiro J, et al. Genetic diagnosis of X-linked dominant hypophosphatemic rickets in a cohort study: tubular reabsorption of phosphate and 1,25(OH)2D serum levels are associated with PHEX mutation type. BMC Med Genet. 2011;12:116. 2350-12-116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Du L, Desbarats M, Viel J, Glorieux FH, Cawthorn C, Ecarot B. cDNA cloning of the murine pex gene implicated in X-linked hypophosphatemia and evidence for expression in bone. Genomics. 1996;36(1):22–8.

    Article  CAS  PubMed  Google Scholar 

  31. Morgan JM, Hawley WL, Chenoweth AI, Retan WJ, Diethelm AG. Renal transplantation in hypophosphatemia with vitamin D-resistant rickets. Arch Intern Med. 1974;134(3):549–52.

    Article  CAS  PubMed  Google Scholar 

  32. Meyer Jr RA, Tenenhouse HS, Meyer MH, Klugerman AH. The renal phosphate transport defect in normal mice parabiosed to X-linked hypophosphatemic mice persists after parathyroidectomy. J Bone Miner Res. 1989;4(4):523–32.

    Article  CAS  PubMed  Google Scholar 

  33. Liu S, Zhou J, Tang W, Jiang X, Rowe DW, Quarles LD. Pathogenic role of Fgf23 in hyp mice. Am J Physiol Endocrinol Metab. 2006;291(1):E38–49.

    Article  CAS  PubMed  Google Scholar 

  34. Yamazaki Y, Okazaki R, Shibata M, et al. Increased circulatory level of biologically active full-length FGF-23 in patients with hypophosphatemic rickets/osteomalacia. J Clin Endocrinol Metab. 2002;87(11):4957–60.

    Article  CAS  PubMed  Google Scholar 

  35. Aono Y, Yamazaki Y, Yasutake J, et al. Therapeutic effects of anti-FGF23 antibodies in hypophosphatemic rickets/osteomalacia. J Bone Miner Res. 2009;24(11):1879–88.

    Article  CAS  PubMed  Google Scholar 

  36. Gattineni J, Baum M. Regulation of phosphate transport by fibroblast growth factor 23 (FGF23): implications for disorders of phosphate metabolism. Pediatr Nephrol. 2010;25(4):591–601.

    Article  PubMed  Google Scholar 

  37. Bianchine JW, Stambler AA, Harrison HE. Familial hypophosphatemic rickets showing autosomal dominant inheritance. Birth Defects Orig Artic Ser. 1971;7(6):287–95.

    CAS  PubMed  Google Scholar 

  38. Gribaa M, Younes M, Bouyacoub Y, et al. An autosomal dominant hypophosphatemic rickets phenotype in a tunisian family caused by a new FGF23 missense mutation. J Bone Miner Metab. 2010;28(1):111–5.

    Article  PubMed  Google Scholar 

  39. Econs MJ, McEnery PT. Autosomal dominant hypophosphatemic rickets/osteomalacia: clinical characterization of a novel renal phosphate-wasting disorder. J Clin Endocrinol Metab. 1997;82(2):674–81.

    Article  CAS  PubMed  Google Scholar 

  40. Kruse K, Woelfel D, Strom TM. Loss of renal phosphate wasting in a child with autosomal dominant hypophosphatemic rickets caused by a FGF23 mutation. Horm Res. 2001;55(6):305–8.

    CAS  PubMed  Google Scholar 

  41. Farrow EG, Yu X, Summers LJ, et al. Iron deficiency drives an autosomal dominant hypophosphatemic rickets (ADHR) phenotype in fibroblast growth factor-23 (Fgf23) knock-in mice. Proc Natl Acad Sci U S A. 2011;108(46):E1146–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Imel EA, Peacock M, Gray AK, Padgett LR, Hui SL, Econs MJ. Iron modifies plasma FGF23 differently in autosomal dominant hypophosphatemic rickets and healthy humans. J Clin Endocrinol Metab. 2011;96(11):3541–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Perry W, Stamp TC. Hereditary hypophosphataemic rickets with autosomal recessive inheritance and severe osteosclerosis. A report of two cases. J Bone Joint Surg (Br). 1978;60-B(3):430–4.

    CAS  Google Scholar 

  44. Feng JQ, Ward LM, Liu S, et al. Loss of DMP1 causes rickets and osteomalacia and identifies a role for osteocytes in mineral metabolism. Nat Genet. 2006;38(11):1310–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lorenz-Depiereux B, Bastepe M, Benet-Pages A, et al. DMP1 mutations in autosomal recessive hypophosphatemia implicate a bone matrix protein in the regulation of phosphate homeostasis. Nat Genet. 2006;38(11):1248–50.

    Article  CAS  PubMed  Google Scholar 

  46. Lorenz-Depiereux B, Schnabel D, Tiosano D, Hausler G, Strom TM. Loss-of-function ENPP1 mutations cause both generalized arterial calcification of infancy and autosomal-recessive hypophosphatemic rickets. Am J Hum Genet. 2010;86(2):267–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Levy-Litan V, Hershkovitz E, Avizov L, et al. Autosomal-recessive hypophosphatemic rickets is associated with an inactivation mutation in the ENPP1 gene. Am J Hum Genet. 2010;86(2):273–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Rutsch F, Ruf N, Vaingankar S, et al. Mutations in ENPP1 are associated with ‘idiopathic’ infantile arterial calcification. Nat Genet. 2003;34(4):379–81.

    Article  CAS  PubMed  Google Scholar 

  49. Chong WH, Andreopoulou P, Chen CC, et al. Tumor localization and biochemical response to cure in tumor-induced osteomalacia. J Bone Miner Res. 2013;28(6):1386–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Weidner N, Santa Cruz D. Phosphaturic mesenchymal tumors. A polymorphous group causing osteomalacia or rickets. Cancer. 1987;59(8):1442–54.

    Article  CAS  PubMed  Google Scholar 

  51. Chong WH, Molinolo AA, Chen CC, Collins MT. Tumor-induced osteomalacia. Endocr Relat Cancer. 2011;18(3):R53–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. White KE, Jonsson KB, Carn G, et al. The autosomal dominant hypophosphatemic rickets (ADHR) gene is a secreted polypeptide overexpressed by tumors that cause phosphate wasting. J Clin Endocrinol Metab. 2001;86(2):497–500.

    Article  CAS  PubMed  Google Scholar 

  53. Brownstein CA, Adler F, Nelson-Williams C, et al. A translocation causing increased alpha-klotho level results in hypophosphatemic rickets and hyperparathyroidism. Proc Natl Acad Sci U S A. 2008;105(9):3455–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kovesdy CP, Quarles LD. Fibroblast growth factor-23: what we know, what we don’t know, and what we need to know. Nephrol Dial Transplant. 2013;28(9):2228–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Boyce AM, Glover M, Kelly MH, et al. Optic neuropathy in McCune-albright syndrome: effects of early diagnosis and treatment of growth hormone excess. J Clin Endocrinol Metab. 2013;98(1):E126–34.

    Article  CAS  PubMed  Google Scholar 

  56. Narumi S, Matsuo K, Ishii T, Tanahashi Y, Hasegawa T. Quantitative and sensitive detection of GNAS mutations causing mccune-albright syndrome with next generation sequencing. PLoS ONE. 2013;8(3):e60525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Tieder M, Modai D, Samuel R, et al. Hereditary hypophosphatemic rickets with hypercalciuria. N Engl J Med. 1985;312(10):611–7.

    Article  CAS  PubMed  Google Scholar 

  58. Lorenz-Depiereux B, Benet-Pages A, Eckstein G, et al. Hereditary hypophosphatemic rickets with hypercalciuria is caused by mutations in the sodium-phosphate cotransporter gene SLC34A3. Am J Hum Genet. 2006;78(2):193–201.

    Article  CAS  PubMed  Google Scholar 

  59. Jaureguiberry G, Carpenter TO, Forman S, Juppner H, Bergwitz C. A novel missense mutation in SLC34A3 that causes hereditary hypophosphatemic rickets with hypercalciuria in humans identifies threonine 137 as an important determinant of sodium-phosphate cotransport in NaPi-IIc. Am J Physiol Renal Physiol. 2008;295(2):F371–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Prie D, Huart V, Bakouh N, et al. Nephrolithiasis and osteoporosis associated with hypophosphatemia caused by mutations in the type 2a sodium-phosphate cotransporter. N Engl J Med. 2002;347(13):983–91.

    Article  CAS  PubMed  Google Scholar 

  61. Carpenter TO, Imel EA, Holm IA, Jan de Beur SM, Insogna KL. A clinician’s guide to X-linked hypophosphatemia. J Bone Miner Res. 2011;26(7):1381–8.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Schmitt CP, Mehls O. The enigma of hyperparathyroidism in hypophosphatemic rickets. Pediatr Nephrol. 2004;19(5):473–7.

    Article  PubMed  Google Scholar 

  63. Reusz GS, Latta K, Hoyer PF, Byrd DJ, Ehrich JH, Brodehl J. Evidence suggesting hyperoxaluria as a cause of nephrocalcinosis in phosphate-treated hypophosphataemic rickets. Lancet. 1990;335(8700):1240–3.

    Article  CAS  PubMed  Google Scholar 

  64. Patzer L, van’t Hoff W, Shah V, et al. Urinary supersaturation of calcium oxalate and phosphate in patients with X-linked hypophosphatemic rickets and in healthy schoolchildren. J Pediatr. 1999;135(5):611–7.

    Article  CAS  PubMed  Google Scholar 

  65. Alon U, Donaldson DL, Hellerstein S, Warady BA, Harris DJ. Metabolic and histologic investigation of the nature of nephrocalcinosis in children with hypophosphatemic rickets and in the hyp mouse. J Pediatr. 1992;120(6):899–905.

    Article  CAS  PubMed  Google Scholar 

  66. Friedman NE, Lobaugh B, Drezner MK. Effects of calcitriol and phosphorus therapy on the growth of patients with X-linked hypophosphatemia. J Clin Endocrinol Metab. 1993;76(4):839–44.

    CAS  PubMed  Google Scholar 

  67. Verge CF, Lam A, Simpson JM, Cowell CT, Howard NJ, Silink M. Effects of therapy in X-linked hypophosphatemic rickets. N Engl J Med. 1991;325(26):1843–8.

    Article  CAS  PubMed  Google Scholar 

  68. Imel EA, DiMeglio LA, Hui SL, Carpenter TO, Econs MJ. Treatment of X-linked hypophosphatemia with calcitriol and phosphate increases circulating fibroblast growth factor 23 concentrations. J Clin Endocrinol Metab. 2010;95(4):1846–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Sullivan W, Carpenter T, Glorieux F, Travers R, Insogna K. A prospective trial of phosphate and 1,25-dihydroxyvitamin D3 therapy in symptomatic adults with X-linked hypophosphatemic rickets. J Clin Endocrinol Metab. 1992;75(3):879–85.

    CAS  PubMed  Google Scholar 

  70. Karaplis AC, Bai X, Falet JP, Macica CM. Mineralizing enthesopathy is a common feature of renal phosphate-wasting disorders attributed to FGF23 and is exacerbated by standard therapy in hyp mice. Endocrinology. 2012;153(12):5906–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wilson DM. Growth hormone and hypophosphatemic rickets. J Pediatr Endocrinol Metab. 2000;13 Suppl 2:993–8.

    PubMed  Google Scholar 

  72. Baroncelli GI, Bertelloni S, Ceccarelli C, Saggese G. Effect of growth hormone treatment on final height, phosphate metabolism, and bone mineral density in children with X-linked hypophosphatemic rickets. J Pediatr. 2001;138(2):236–43.

    Article  CAS  PubMed  Google Scholar 

  73. Haffner D, Nissel R, Wuhl E, Mehls O. Effects of growth hormone treatment on body proportions and final height among small children with X-linked hypophosphatemic rickets. Pediatrics. 2004;113(6):e593–6.

    Article  PubMed  Google Scholar 

  74. Reusz GS, Miltenyi G, Stubnya G, et al. X-linked hypophosphatemia: effects of treatment with recombinant human growth hormone. Pediatr Nephrol. 1997;11(5):573–7.

    Article  CAS  PubMed  Google Scholar 

  75. Seikaly MG, Brown R, Baum M. The effect of recombinant human growth hormone in children with X-linked hypophosphatemia. Pediatrics. 1997;100(5):879–84.

    Article  CAS  PubMed  Google Scholar 

  76. Zivicnjak M, Schnabel D, Staude H, et al. Three-year growth hormone treatment in short children with X-linked hypophosphatemic rickets: effects on linear growth and body disproportion. J Clin Endocrinol Metab. 2011;96(12):E2097–105.

    Article  CAS  PubMed  Google Scholar 

  77. Yavropoulou MP, Kotsa K, Gotzamani Psarrakou A, et al. Cinacalcet in hyperparathyroidism secondary to X-linked hypophosphatemic rickets: case report and brief literature review. Hormones (Athens). 2010;9(3):274–8.

    Article  Google Scholar 

  78. Alon US, Levy-Olomucki R, Moore WV, Stubbs J, Liu S, Quarles LD. Calcimimetics as an adjuvant treatment for familial hypophosphatemic rickets. Clin J Am Soc Nephrol. 2008;3(3):658–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Geller JL, Khosravi A, Kelly MH, Riminucci M, Adams JS, Collins MT. Cinacalcet in the management of tumor-induced osteomalacia. J Bone Miner Res. 2007;22(6):931–7.

    Article  CAS  PubMed  Google Scholar 

  80. Wohrle S, Henninger C, Bonny O, et al. Pharmacological inhibition of fibroblast growth factor (FGF) receptor signaling ameliorates FGF23-mediated hypophosphatemic rickets. J Bone Miner Res. 2013;28(4):899–911.

    Article  PubMed  Google Scholar 

  81. Goetz R, Nakada Y, Hu MC, et al. Isolated C-terminal tail of FGF23 alleviates hypophosphatemia by inhibiting FGF23-FGFR-klotho complex formation. Proc Natl Acad Sci U S A. 2010;107(1):407–12.

    Article  CAS  PubMed  Google Scholar 

  82. Petje G, Meizer R, Radler C, Aigner N, Grill F. Deformity correction in children with hereditary hypophosphatemic rickets. Clin Orthop Relat Res. 2008;466(12):3078–85.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Chaussain-Miller C, Sinding C, Wolikow M, Lasfargues JJ, Godeau G, Garabedian M. Dental abnormalities in patients with familial hypophosphatemic vitamin D-resistant rickets: prevention by early treatment with 1-hydroxyvitamin D. J Pediatr. 2003;142(3):324–31.

    Article  CAS  PubMed  Google Scholar 

  84. Haffner D, Weinfurth A, Manz F, et al. Long-term outcome of paediatric patients with hereditary tubular disorders. Nephron. 1999;83(3):250–60.

    Article  CAS  PubMed  Google Scholar 

  85. Jehan F, Gaucher C, Nguyen TM, et al. Vitamin D receptor genotype in hypophosphatemic rickets as a predictor of growth and response to treatment. J Clin Endocrinol Metab. 2008;93(12):4672–82.

    Article  CAS  PubMed  Google Scholar 

  86. Silverman SL. Bisphosphonate use in conditions other than osteoporosis. Ann N Y Acad Sci. 2011;1218:33–7.

    Article  CAS  PubMed  Google Scholar 

  87. Classen CF, Mix M, Kyank U, Hauenstein C, Haffner D. Pamidronic acid and cabergoline as effective long-term therapy in a 12-year-old girl with extended facial polyostotic fibrous dysplasia, prolactinoma and acromegaly in McCune-albright syndrome: a case report. J Med Case Rep. 2012;6:32. 1947-6-32.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dieter Haffner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Haffner, D., Waldegger, S. (2016). Disorders of Phosphorus Metabolism. In: Geary, D., Schaefer, F. (eds) Pediatric Kidney Disease. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-52972-0_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-52972-0_35

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-52970-6

  • Online ISBN: 978-3-662-52972-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics