Skip to main content

A Review on Bionanocomposites Based on Chitosan and Its Derivatives for Biomedical Applications

  • Chapter
  • First Online:
Eco-friendly Polymer Nanocomposites

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 74))

Abstract

Bionanocomposites are emerging nanostructure hybrid materials composed of natural polymers and inorganic solids. Bionanocomposites became a subject of intensive research owing to their inherent properties such as nontoxicity, biocompatibility, biodegradability as well as their improved structural and functional properties. Among these bionanocomposites, chitosan-based nanocomposites have attracted a great deal of attention especially in biomedical field. Globally, chitosan is the second most bountiful natural polymer following cellulose. Chitosan is a biocompatible and biodegradable polymer possessing unique structural, chemical, and biological properties. The last decade has witnessed enormous multidisciplinary research focused on improving the properties of chitosan and its derivatives. As a result, several chitosan-based nanocomposites with enhanced physical and chemical properties have been developed in eco-friendly and cost-effective manner. This chapter provides an overview on different aspects of chitosan including its properties and modifications, and focuses on chitosan-based nanocomposites. Important biomedical applications of chitosan-based nanocomposites are also discussed in this chapter including tissue engineering , wound healing, tissue regeneration, drug delivery, and biosensors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdelgawad AM, Hudson SM, Rojas OJ (2014) Antimicrobial wound dressing nanofiber mats from multicomponent (chitosan/silver-NPs/polyvinyl alcohol) systems. Carbohydr Polym 100:166–178

    CAS  Google Scholar 

  2. Abolhasani M, Arefazar A, Mozdianfard M (2010) Effect of dispersed phase composition on morphological and mechanical properties of PET/EVA/PP ternary blends. J Polym Sci, Part B: Polym Phys 48:251–259

    CAS  Google Scholar 

  3. Aguzzi C, Sandri G, Bonferoni C, Cerezo P, Rossi S, Ferrari F, Caramella C, Viseras C (2014) Solid state characterisation of silver sulfadiazine loaded on montmorillonite/chitosan nanocomposite for wound healing. Colloids Surf B 113:152–157

    CAS  Google Scholar 

  4. Aimin C, Chunlin H, Juliang B, Tinyin Z, Zhichao D (1999) Antibiotic loaded chitosan bar: an in vitro, in vivo study of a possible treatment for osteomyelitis. Clin Orthop Relat Res 366:239–247

    Google Scholar 

  5. Anitha A, Divya Rani V, Krishna R, Sreeja V, Selvamurugan N, Nair S, Tamura H, Jayakumar R (2009) Synthesis, characterization, cytotoxicity and antibacterial studies of chitosan, O-carboxymethyl and N,O-carboxymethyl chitosan nanoparticles. Carbohydr Polym 78:672–677

    CAS  Google Scholar 

  6. Anitha A, Rejinold NS, Bumgardner JD, Nair SV, Jayakumar R (2012) Approaches for functional modification or cross‐linking of chitosan. Chitosan-Based Systems for Biopharmaceuticals: Delivery, Targeting and Polymer Therapeutics, pp 107–124

    Google Scholar 

  7. Archana D, Singh BK, Dutta J, Dutta P (2013) In vivo evaluation of chitosan–PVP–titanium dioxide nanocomposite as wound dressing material. Carbohydr Polym 95:530–539

    CAS  Google Scholar 

  8. Bae KH, Moon CW, Lee Y, Park TG (2009) Intracellular delivery of heparin complexed with chitosan-g-poly (ethylene glycol) for inducing apoptosis. Pharm Res 26:93–100

    CAS  Google Scholar 

  9. Berger J, Reist M, Mayer J, Felt O, Peppas N, Gurny R (2004) Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. Eur J Pharm Biopharm 57:19–34

    CAS  Google Scholar 

  10. Bhattarai N, Edmondson D, Veiseh O, Matsen FA, Zhang M (2005) Electrospun chitosan-based nanofibers and their cellular compatibility. Biomaterials 26:6176–6184

    CAS  Google Scholar 

  11. Bowman K, Leong KW (2006) Chitosan nanoparticles for oral drug and gene delivery. Int J Nanomed 1:117

    CAS  Google Scholar 

  12. Brannon-Peppas L, Blanchette JO (2012) Nanoparticle and targeted systems for cancer therapy. Adv Drug Deliv Rev 64:206–212

    Google Scholar 

  13. Cho K, Wang X, Nie S, Shin DM (2008) Therapeutic nanoparticles for drug delivery in cancer. Clin Cancer Res 14:1310–1316

    CAS  Google Scholar 

  14. Chouwatat P, Polsana P, Noknoi P, Siralertmukul K, Srikulkit K (2010) Preparation of hydrophobic chitosan using complexation method for PLA/chitosan blend. J Met, Mater Miner 20:41–44

    CAS  Google Scholar 

  15. Chow KS, Khor E (2000) Novel fabrication of open-pore chitin matrixes. Biomacromolecules 1:61–67

    CAS  Google Scholar 

  16. Chrissafis K, Paraskevopoulos KM, Papageorgiou GZ, Bikiaris DN (2008) Thermal and dynamic mechanical behavior of bionanocomposites: fumed silica nanoparticles dispersed in poly (vinyl pyrrolidone), chitosan, and poly (vinyl alcohol). J Appl Polym Sci 110:1739–1749

    CAS  Google Scholar 

  17. Costa-Júnior ES, Barbosa-Stancioli EF, Mansur AA, Vasconcelos WL, Mansur HS (2009) Preparation and characterization of chitosan/poly (vinyl alcohol) chemically crosslinked blends for biomedical applications. Carbohydr Polym 76:472–481

    Google Scholar 

  18. Dai T, Tanaka M, Huang Y-Y, Hamblin MR (2011) Chitosan preparations for wounds and burns: antimicrobial and wound-healing effects

    Google Scholar 

  19. Darder M, Aranda P, Ruiz-Hitzky E (2007) Bionanocomposites: a new concept of ecological, bioinspired, and functional hybrid materials. Adv Mater 19:1309–1319

    CAS  Google Scholar 

  20. Dash M, Chiellini F, Ottenbrite R, Chiellini E (2011) Chitosan—a versatile semi-synthetic polymer in biomedical applications. Prog Polym Sci 36:981–1014

    CAS  Google Scholar 

  21. Davis ME (2008) Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discovery 7:771–782

    CAS  Google Scholar 

  22. Denis TGS, Dai T, Huang Y-Y, Hamblin MR (2012) Wound-healing properties of chitosan and its use in wound dressing biopharmaceuticals. Chitosan-Based Systems for Biopharmaceuticals: Delivery, Targeting and Polymer Therapeutics pp 281–304

    Google Scholar 

  23. Depan D, Venkata Surya P, Girase B, Misra R (2011) Organic/inorganic hybrid network structure nanocomposite scaffolds based on grafted chitosan for tissue engineering. Acta Biomater 7:2163–2175

    CAS  Google Scholar 

  24. Dvir T, Timko BP, Kohane DS, Langer R (2011) Nanotechnological strategies for engineering complex tissues. Nat Nanotechnol 6:13–22

    CAS  Google Scholar 

  25. Elsabee MZ, Abdou ES (2013) Chitosan based edible films and coatings: a review. Mater Sci Eng, C 33:1819–1841

    CAS  Google Scholar 

  26. Feng C, Wang Z, Jiang C, Kong M, Zhou X, Li Y, Cheng X, Chen X (2013) Chitosan/o-carboxymethyl chitosan nanoparticles for efficient and safe oral anticancer drug delivery: In vitro and in vivo evaluation. Int J Pharm 457:158–167

    CAS  Google Scholar 

  27. Francesko A, Tzanov T (2011) Chitin, chitosan and derivatives for wound healing and tissue engineering, biofunctionalization of polymers and their applications. Springer, Berlin, pp 1–27

    Google Scholar 

  28. Garrait G, Beyssac E, Subirade M (2014) Development of a novel drug delivery system: chitosan nanoparticles entrapped in alginate microparticles. J Microencapsul 31:363–372

    CAS  Google Scholar 

  29. Gopal A, Kant V, Gopalakrishnan A, Tandan SK, Kumar D (2014) Chitosan-based copper nanocomposite accelerates healing in excision wound model in rats. Eur J Pharmacol 731:8–19

    CAS  Google Scholar 

  30. Gulrez SK, Al-Assaf S, Phillips GO (2011) Hydrogels: methods of preparation, characterisation and applications. Progress in Molecular and Environmental Bioengineering-From Analysis and Modeling to Technology pplications

    Google Scholar 

  31. Hein S, Wang K, Stevens W, Kjems J (2008) Chitosan composites for biomedical applications: status, challenges and perspectives. Mater Sci Technol 24:1053–1061

    CAS  Google Scholar 

  32. Hench LL (1991) Bioceramics: from concept to clinic. J Am Ceram Soc 74:1487–1510

    CAS  Google Scholar 

  33. Hosseinzadeh H, Atyabi F, Dinarvand R, Ostad SN (2012) Chitosan-Pluronic nanoparticles as oral delivery of anticancer gemcitabine: preparation and in vitro study. Int J Nanomed 7:1851

    CAS  Google Scholar 

  34. Hu C-MJ, Zhang L (2009) Therapeutic nanoparticles to combat cancer drug resistance. Curr Drug Metab 10:836–841

    CAS  Google Scholar 

  35. Huang P, Yang C, Liu J, Wang W, Guo S, Li J, Sun Y, Dong H, Deng L, Zhang J (2014) Improving the oral delivery efficiency of anticancer drugs by chitosan coated polycaprolactone-grafted hyaluronic acid nanoparticles. J Mater Chem B 2:4021–4033

    CAS  Google Scholar 

  36. Jana S, Maji N, Nayak AK, Sen KK, Basu SK (2013) Development of chitosan-based nanoparticles through inter-polymeric complexation for oral drug delivery. Carbohydr Polym 98:870–876

    CAS  Google Scholar 

  37. Jayakumar R, Menon D, Manzoor K, Nair S, Tamura H (2010) Biomedical applications of chitin and chitosan based nanomaterials—a short review. Carbohydr Polym 82:227–232

    CAS  Google Scholar 

  38. Jayakumar R, Prabaharan M, Nair S, Tokura S, Tamura H, Selvamurugan N (2010) Novel carboxymethyl derivatives of chitin and chitosan materials and their biomedical applications. Prog Mater Sci 55:675–709

    CAS  Google Scholar 

  39. Jayakumar R, Prabaharan M, Sudheesh Kumar P, Nair S, Tamura H (2011) Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnol Adv 29:322–337

    CAS  Google Scholar 

  40. Jere D, Jiang H-L, Kim Y-K, Arote R, Choi Y-J, Yun C-H, Cho M-H, Cho C-S (2009) Chitosan-graft-polyethylenimine for Akt1 siRNA delivery to lung cancer cells. Int J Pharm 378:194–200

    CAS  Google Scholar 

  41. Jin J, Song M (2006) Chitosan and chitosan–PEO blend membranes crosslinked by genipin for drug release. J Appl Polym Sci 102:436–444

    CAS  Google Scholar 

  42. Kaushik A, Khan R, Solanki PR, Pandey P, Alam J, Ahmad S, Malhotra B (2008) Iron oxide nanoparticles–chitosan composite based glucose biosensor. Biosens Bioelectron 24:676–683

    CAS  Google Scholar 

  43. Kaushik A, Solanki PR, Ansari AA, Sumana G, Ahmad S, Malhotra BD (2009) Iron oxide-chitosan nanobiocomposite for urea sensor. Sens Actuators B: Chem 138:572–580

    CAS  Google Scholar 

  44. Kean T, Thanou M (2010) Biodegradation, biodistribution and toxicity of chitosan. Adv Drug Deliv Rev 62:3–11

    CAS  Google Scholar 

  45. Kim I-Y, Seo S-J, Moon H-S, Yoo M-K, Park I-Y, Kim B-C, Cho C-S (2008) Chitosan and its derivatives for tissue engineering applications. Biotechnol Adv 26:1–21

    CAS  Google Scholar 

  46. Kong M, Chen XG, Xing K, Park HJ (2010) Antimicrobial properties of chitosan and mode of action: a state of the art review. Int J Food Microbiol 144:51–63

    CAS  Google Scholar 

  47. Koo JH (2006) Polymer nanocomposites, McGraw-Hill Professional Pub

    Google Scholar 

  48. Kosaka T, Kaneko Y, Nakada Y, Matsuura M, Tanaka S (1996) Effect of chitosan implantation on activation of canine macrophages and polymorphonuclear cells after surgical stress. J Vet Med Sci: Jpn Soc Vet Sci 58:963–967

    CAS  Google Scholar 

  49. Kumar MR, Muzzarelli RA, Muzzarelli C, Sashiwa H, Domb A (2004) Chitosan chemistry and pharmaceutical perspectives. Chem Rev 104:6017–6084

    Google Scholar 

  50. Kumirska J, Weinhold MX, Thöming J, Stepnowski P (2011) Biomedical activity of chitin/chitosan based materials—influence of physicochemical properties apart from molecular weight and degree of N-acetylation. Polymers 3:1875–1901

    CAS  Google Scholar 

  51. Lakshmanan V-K, Snima K, Bumgardner JD, Nair SV, Jayakumar R (2011) Chitosan-based nanoparticles in cancer therapy, chitosan for biomaterials I. Springer, Berlin, pp 55–91

    Google Scholar 

  52. Liu DBDAT (2011) Tissue engineering. Asia-Pac J Chem Eng 6:813–815

    Google Scholar 

  53. Liu X-P, Zhou S-T, Li X-Y, Chen X-C, Zhao X, Qian Z-Y, Zhou L-N, Li Z, Wang Y-M, Zhong Q (2010) Research anti-tumor activity of N-trimethyl chitosan-encapsulated camptothecin in a mouse melanoma model

    Google Scholar 

  54. Liu Y, Kim H-I (2012) Characterization and antibacterial properties of genipin-crosslinked chitosan/poly (ethylene glycol)/ZnO/Ag nanocomposites. Carbohydr Polym 89:111–116

    CAS  Google Scholar 

  55. Lin M-F, Thakur VK, Tan EJ, Lee PS (2011) Dopant induced hollow BaTiO3 nanostructures for application in high performance capacitors. J Mater Chem 21:16500–16504

    CAS  Google Scholar 

  56. Lin M-F, Thakur VK, Tan EJ, Lee PS (2011) Surface functionalization of BaTiO3 nanoparticles and improved electrical properties of BaTiO3/polyvinylidene fluoride composite. RSC Adv 1:576–578

    CAS  Google Scholar 

  57. Ma J, Liu C, Li R, Wang J (2012) Properties and structural characterization of chitosan/poly (vinyl alcohol)/graphene oxide nano composites. e-Polymers 12:386–398

    Google Scholar 

  58. Ma L, Gao C, Mao Z, Zhou J, Shen J, Hu X, Han C (2003) Collagen/chitosan porous scaffolds with improved biostability for skin tissue engineering. Biomaterials 24:4833–4841

    CAS  Google Scholar 

  59. Madihally SV, Matthew HW (1999) Porous chitosan scaffolds for tissue engineering. Biomaterials 20:1133–1142

    CAS  Google Scholar 

  60. Malhotra BD, Kaushik A (2009) Metal oxide–chitosan based nanocomposite for cholesterol biosensor. Thin Solid Films 518:614–620

    CAS  Google Scholar 

  61. Mi F-L, Tan Y-C, Liang H-F, Sung H-W (2002) In vivo biocompatibility and degradability of a novel injectable-chitosan-based implant. Biomaterials 23:181–191

    CAS  Google Scholar 

  62. Min KH, Park K, Kim Y-S, Bae SM, Lee S, Jo HG, Park R-W, Kim I-S, Jeong SY, Kim K (2008) Hydrophobically modified glycol chitosan nanoparticles-encapsulated camptothecin enhance the drug stability and tumor targeting in cancer therapy. J Control Release 127:208–218

    CAS  Google Scholar 

  63. Nam HY, Kwon SM, Chung H, Lee S-Y, Kwon S-H, Jeon H, Kim Y, Park JH, Kim J, Her S (2009) Cellular uptake mechanism and intracellular fate of hydrophobically modified glycol chitosan nanoparticles. J Control Release 135:259–267

    CAS  Google Scholar 

  64. Nishikawa H, Ueno A, Nishikawa S, Kido J-I, Ohishi M, Inoue H, Nagata T (2000) Sulfated glycosaminoglycan synthesis and its regulation by transforming growth factor-β in rat clonal dental pulp cells. J Endod 26:169–171

    CAS  Google Scholar 

  65. Noh SM, Park MO, Shim G, Han SE, Lee HY, Huh JH, Kim MS, Choi JJ, Kim K, Kwon IC (2010) Pegylated poly-l-arginine derivatives of chitosan for effective delivery of siRNA. J Control Release 145:159–164

    CAS  Google Scholar 

  66. Okamoto Y, Watanabe M, Miyatake K, Morimoto M, Shigemasa Y, Minami S (2002) Effects of chitin/chitosan and their oligomers/monomers on migrations of fibroblasts and vascular endothelium. Biomaterials 23:1975–1979

    CAS  Google Scholar 

  67. Olteanu CE (2007) Applications of functionalized chitosan. Sci Study Res VIII:227–256

    Google Scholar 

  68. Pan Y, Li Y-J, Zhao H-Y, Zheng J-M, Xu H, Wei G, Hao J-S, Cui F-D (2002) Bioadhesive polysaccharide in protein delivery system: chitosan nanoparticles improve the intestinal absorption of insulin in vivo. Int J Pharm 249:139–147

    CAS  Google Scholar 

  69. Park BK, Kim M-M (2010) Applications of chitin and its derivatives in biological medicine. Int J Mol Sci 11:5152–5164

    CAS  Google Scholar 

  70. Patel MP, Patel RR, Patel JK (2010) Chitosan mediated targeted drug delivery system: a review. J Pharm Pharm Sci 13:536–557

    CAS  Google Scholar 

  71. Peter M, Binulal N, Soumya S, Nair S, Furuike T, Tamura H, Jayakumar R (2010) Nanocomposite scaffolds of bioactive glass ceramic nanoparticles disseminated chitosan matrix for tissue engineering applications. Carbohydr Polym 79:284–289

    CAS  Google Scholar 

  72. Pham GD, Nguyen XP, Vu DH, Nguyen NT, Tran VH, Mai TTT, Nguyen HB, Le QD, Nguyen TN, Ba TC (2011) Some biomedical applications of chitosan-based hybrid nanomaterials. Adv Nat Sci: Nanosci Nanotechnol 2:045004

    Google Scholar 

  73. Pillai C, Paul W, Sharma CP (2009) Chitin and chitosan polymers: chemistry, solubility and fiber formation. Prog Polym Sci 34:641–678

    CAS  Google Scholar 

  74. Qi B, Yu A, Zhu S, Chen B, Li Y (2010) The preparation and cytocompatibility of injectable thermosensitive chitosan/poly (vinyl alcohol) hydrogel. J Huazhong Univ Sci Technol [Med Sci] 30:89–93

    Google Scholar 

  75. Qian F, Cui F, Ding J, Tang C, Yin C (2006) Chitosan graft copolymer nanoparticles for oral protein drug delivery: preparation and characterization. Biomacromolecules 7:2722–2727

    CAS  Google Scholar 

  76. Qu G, Yao Z, Zhang C, Wu X, Ping Q (2009) PEG conjugated N-octyl-O-sulfate chitosan micelles for delivery of paclitaxel: in vitro characterization and in vivo evaluation. Eur J Pharm Sci 37:98–105

    CAS  Google Scholar 

  77. Rajam AM, Jithendra P, Rose C, Mandal AB (2012) In vitro evaluation of dual growth factor-incorporated chitosan nanoparticle impregnated collagen–chitosan scaffold for tissue engineering. J Bioact Compatible Polym 27:265–277

    CAS  Google Scholar 

  78. Ramanathan S, Ponnuswamy V, Mariappan R, Nazeer KP, Murugavel S (2012) Physical investigations on chitosan graft polyaniline. Elixir Org Chem 43:6952–6954

    Google Scholar 

  79. Risbud MV, Hardikar AA, Bhat SV, Bhonde RR (2000) pH-sensitive freeze-dried chitosan–polyvinyl pyrrolidone hydrogels as controlled release system for antibiotic delivery. J Control Release 68:23–30

    CAS  Google Scholar 

  80. Rosso F, Giordano A, Barbarisi M, Barbarisi A (2004) From cell–ECM interactions to tissue engineering. J Cell Physiol 199:174–180

    CAS  Google Scholar 

  81. Roy K, Ghosn B, Kasturi SP (2008) Enhancing polysaccharide-mediated delivery of nucleic acids through functionalization with secondary and tertiary amines. Curr Top Med Chem 8:331–340

    Google Scholar 

  82. Rúnarsson ÖV, Holappa J, Jónsdóttir S, Steinsson H, Másson M (2008) N-selective ‘one pot’synthesis of highly N-substituted trimethyl chitosan (TMC). Carbohydr Polym 74:740–744

    Google Scholar 

  83. Safavi A, Farjami F (2011) Electrodeposition of gold–platinum alloy nanoparticles on ionic liquid–chitosan composite film and its application in fabricating an amperometric cholesterol biosensor. Biosens Bioelectron 26:2547–2552

    CAS  Google Scholar 

  84. Samal SK, Dash M, Van Vlierberghe S, Kaplan DL, Chiellini E, Van Blitterswijk C, Moroni L, Dubruel P (2012) Cationic polymers and their therapeutic potential. Chem Soc Rev 41:7147–7194

    CAS  Google Scholar 

  85. Sanoj Rejinold N, Muthunarayanan M, Divyarani V, Sreerekha P, Chennazhi K, Nair S, Tamura H, Jayakumar R (2011) Curcumin-loaded biocompatible thermoresponsive polymeric nanoparticles for cancer drug delivery. J Colloid Interface Sci 360:39–51

    CAS  Google Scholar 

  86. Sarmento B, das Neves J (2012) Chitosan-based systems for biopharmaceuticals: delivery, targeting and polymer therapeutics, Wiley, New York

    Google Scholar 

  87. Sébastien F, Stéphane G, Copinet A, Coma V (2006) Novel biodegradable films made from chitosan and poly (lactic acid) with antifungal properties against mycotoxinogen strains. Carbohydr Polym 65:185–193

    Google Scholar 

  88. Shalumon K, Binulal N, Selvamurugan N, Nair S, Menon D, Furuike T, Tamura H, Jayakumar R (2009) Electrospinning of carboxymethyl chitin/poly (vinyl alcohol) nanofibrous scaffolds for tissue engineering applications. Carbohydr Polym 77:863–869

    CAS  Google Scholar 

  89. Shan C, Yang H, Han D, Zhang Q, Ivaska A, Niu L (2010) Graphene/AuNPs/chitosan nanocomposites film for glucose biosensing. Biosens Bioelectron 25:1070–1074

    CAS  Google Scholar 

  90. Shantha K, Bala U, Rao KP (1995) Tailor-made chitosans for drug delivery. Eur Polymer J 31:377–382

    CAS  Google Scholar 

  91. Shi C, Zhu Y, Ran X, Wang M, Su Y, Cheng T (2006) Therapeutic potential of chitosan and its derivatives in regenerative medicine. J Surg Res 133:185–192

    CAS  Google Scholar 

  92. Shukla SK, Mishra AK, Arotiba OA, Mamba BB (2013) Chitosan-based nanomaterials: a state-of-the-art review. Int J Biol Macromol 59:46–58

    CAS  Google Scholar 

  93. Sonia T, Sharma CP (2011) Chitosan and its derivatives for drug delivery perspective, chitosan for biomaterials I. Springer, Berlin, pp 23–53

    Google Scholar 

  94. Sultana N, Mokhtar M, Hassan MI, Jin RM, Roozbahani F, Khan TH (2014) Chitosan-based nanocomposite scaffolds for tissue engineering applications. Materials and Manufacturing Processes

    Google Scholar 

  95. Sun X, Zhai C, Wang X (2013) Amperometric acetylcholinesterase biosensor based on O-Carboxymethyl chitosan-gold nanoparticle nanocomposite by in-situ synthesis method. Sens J IEEE 13:172–179

    CAS  Google Scholar 

  96. Tan WB, Jiang S, Zhang Y (2007) Quantum-dot based nanoparticles for targeted silencing of HER2/neu gene via RNA interference. Biomaterials 28:1565–1571

    CAS  Google Scholar 

  97. Taranejoo S, Janmaleki M, Rafienia M, Kamali M, Mansouri M (2011) Chitosan microparticles loaded with exotoxin A subunit antigen for intranasal vaccination against Pseudomonas aeruginosa: an in vitro study. Carbohydr Polym 83:1854–1861

    CAS  Google Scholar 

  98. Teles F, Fonseca L (2008) Applications of polymers for biomolecule immobilization in electrochemical biosensors. Mater Sci Eng C 28:1530–1543

    CAS  Google Scholar 

  99. Thakur VK, Yan J, Lin M-F et al (2012) Novel polymer nanocomposites from bioinspired green aqueous functionalization of BNNTs. Polym Chem 3:962–969

    CAS  Google Scholar 

  100. Thakur VK, Lin M-F, Tan EJ, Lee PS (2012) Green aqueous modification of fluoropolymers for energy storage applications. J Mater Chem 22:5951–5959

    CAS  Google Scholar 

  101. Thakur VK, Ding G, Ma J et al (2012) Hybrid materials and polymer electrolytes for electrochromic device applications. Adv Mater 24:4071–4096

    CAS  Google Scholar 

  102. Thakur VK, Thakur MK (2014) Recent trends in hydrogels based on psyllium polysaccharide: a review. J Clean Prod 82:1–15

    CAS  Google Scholar 

  103. Thakur VK, Thakur MK (2014) Recent advances in graft copolymerization and applications of chitosan: a review. ACS Sustain Chem Eng 2:2637–2652

    CAS  Google Scholar 

  104. Thakur VK, Thakur MK (2014) Processing and characterization of natural cellulose fibers/thermoset polymer composites. Carbohydr Polym 109:102–117

    CAS  Google Scholar 

  105. Thakur VK, Thakur MK, Gupta RK (2014) Review: raw natural fiber-based polymer composites. Int J Polym Anal Charact 19:256–271

    CAS  Google Scholar 

  106. Thakur VK, Thakur MK, Raghavan P, Kessler MR (2014) Progress in green polymer composites from lignin for multifunctional applications: a review. ACS Sustain Chem Eng 2:1072–1092

    CAS  Google Scholar 

  107. Thakur VK, Vennerberg D, Madbouly SA, Kessler MR (2014) Bio-inspired green surface functionalization of PMMA for multifunctional capacitors. RSC Adv 4:6677–6684

    CAS  Google Scholar 

  108. Thakur VK, Thunga M, Madbouly SA, Kessler MR (2014) PMMA-g-SOY as a sustainable novel dielectric material. RSC Adv 4:18240–18249

    CAS  Google Scholar 

  109. Thakur VK, Grewell D, Thunga M, Kessler MR (2014) Novel composites from eco-friendly soy Flour/SBS triblock copolymer. Macromol Mater Eng 299:953–958

    CAS  Google Scholar 

  110. Thien DVH, Hsiao SW, Ho MH, Li CH, Shih JL (2013) Electrospun chitosan/hydroxyapatite nanofibers for bone tissue engineering. J Mater Sci 48:1640–1645

    Google Scholar 

  111. Tiyaboonchai W (2013) Chitosan nanoparticles: a promising system for drug delivery. Naresuan Univ J 11:51–66

    Google Scholar 

  112. van Vlerken LE, Amiji MM (2006) Multi-functional polymeric nanoparticles for tumour-targeted drug delivery. Expert opinion drug delivery 205–216

    Google Scholar 

  113. Varkouhi AK, Verheul RJ, Schiffelers RM, Lammers T, Storm G, Hennink WE (2010) Gene silencing activity of siRNA polyplexes based on thiolated N,N,N-trimethylated chitosan. Bioconjug Chem 21:2339–2346

    CAS  Google Scholar 

  114. Vasir JK, Reddy MK, Labhasetwar VD (2005) Nanosystems in drug targeting: opportunities and challenges. Curr Nanosci 1:47–64

    CAS  Google Scholar 

  115. Verheul RJ, van der Wal S, Hennink WE (2010) Tailorable thiolated trimethyl chitosans for covalently stabilized nanoparticles. Biomacromolecules 11:1965–1971

    CAS  Google Scholar 

  116. Wanchoo R, Thakur A, Sweta A (2008) Viscometric and rheological behaviour of chitosan-hydrophilic polymer blends. Chem Biochem Eng Q 22:15–24

    CAS  Google Scholar 

  117. Wang S-F, Shen L, Zhang W-D, Tong Y-J (2005) Preparation and mechanical properties of chitosan/carbon nanotubes composites. Biomacromolecules 6:3067–3072

    CAS  Google Scholar 

  118. Wang S, Tan Y, Zhao D, Liu G (2008) Amperometric tyrosinase biosensor based on Fe3 O4 nanoparticles–chitosan nanocomposite. Biosens Bioelectron 23:1781–1787

    CAS  Google Scholar 

  119. Wang JJ, Zeng ZW, Xiao RZ, Xie T, Zhou GL, Zhan XR, Wang SL (2011) Recent advances of chitosan nanoparticles as drug carriers. Int J Nanomed 6:765–774

    CAS  Google Scholar 

  120. Xia W, Liu P, Zhang J, Chen J (2011) Biological activities of chitosan and chitooligosaccharides. Food Hydrocolloids 25:170–179

    CAS  Google Scholar 

  121. Xu XH, Ren GL, Cheng J, Liu Q, Li DG, Chen Q (2006) Self-assembly of polyaniline-grafted chitosan/glucose oxidase nanolayered films for electrochemical biosensor applications. J Mater Sci 41:4974–4977

    CAS  Google Scholar 

  122. Xu T, Xin M, Li M, Huang H, Zhou S (2010) Synthesis, characteristic and antibacterial activity of N,N,N-trimethyl chitosan and its carboxymethyl derivatives. Carbohydr Polym 81:931–936

    CAS  Google Scholar 

  123. Yadav VK, Gupta A, Kumar R, Yadav JS, Kumar B (2010) Mucoadhesive polymers: means of improving the mucoadhesive properties of drug delivery system. J Chem Pharm Res 2:418–432

    CAS  Google Scholar 

  124. Yang S, Leong K-F, Du Z, Chua C-K (2001) The design of scaffolds for use in tissue engineering. Part I. Traditional factors. Tissue Eng 7:679–689

    CAS  Google Scholar 

  125. Yang X, Tu Y, Li L, Shang S, Tao X-M (2010) Well-dispersed chitosan/graphene oxide nanocomposites. ACS Appl Mater Interfaces 2:1707–1713

    CAS  Google Scholar 

  126. Yannas JBI, Quinby W Jr, Bondoc C, Jung W (1981) Successful use of a physiologically acceptable artificial skin in the treatment of extensive burn injury. Ann Surg 194:413

    Google Scholar 

  127. Yin L, Ding J, He C, Cui L, Tang C, Yin C (2009) Drug permeability and mucoadhesion properties of thiolated trimethyl chitosan nanoparticles in oral insulin delivery. Biomaterials 30:5691–5700

    CAS  Google Scholar 

  128. Yu MK, Park J, Jon S (2012) Targeting strategies for multifunctional nanoparticles in cancer imaging and therapy. Theranostics 2:3

    CAS  Google Scholar 

  129. Zhai X, Wei W, Zeng J, Liu X, Gong S (2006) New nanocomposite based on prussian blue nanoparticles/carbon nanotubes/chitosan and its application for assembling of amperometric glucose biosensor. Anal Lett 39:913–926

    CAS  Google Scholar 

  130. Zhang L, Li Y, Jimmy CY (2014) Chemical modification of inorganic nanostructures for targeted and controlled drug delivery in cancer treatment. J Mater Chem B 2:452–470

    CAS  Google Scholar 

  131. Zhou HY, Zhang YP, Zhang WF, Chen XG (2011) Biocompatibility and characteristics of injectable chitosan-based thermosensitive hydrogel for drug delivery. Carbohydr Polym 83:1643–1651

    CAS  Google Scholar 

  132. Zohuriaan-Mehr MJ (2005) Advances in chitin and chitosan modification through graft copolymerization: a comprehensive review. Iran Polym J 14:235–265

    CAS  Google Scholar 

  133. Zou Y, Xiang C, Sun L-X, Xu F (2008) Glucose biosensor based on electrodeposition of platinum nanoparticles onto carbon nanotubes and immobilizing enzyme with chitosan-SiO2 sol–gel. Biosens Bioelectron 23:1010–1016

    CAS  Google Scholar 

  134. Zuo P-P, Feng H-F, Xu Z-Z, Zhang L-F, Zhang Y-L, Xia W, Zhang W-Q (2013) Fabrication of biocompatible and mechanically reinforced graphene oxide-chitosan nanocomposite films. Chem Cent J 7:39

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ibrahim M. El-Sherbiny .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

El-Sherbiny, I.M., El-Baz, N.M. (2015). A Review on Bionanocomposites Based on Chitosan and Its Derivatives for Biomedical Applications. In: Thakur, V., Thakur, M. (eds) Eco-friendly Polymer Nanocomposites. Advanced Structured Materials, vol 74. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2473-0_6

Download citation

Publish with us

Policies and ethics