Skip to main content
Log in

Clinical electrophysiology of the retinal pigment epithelium

  • Published:
Documenta Ophthalmologica Aims and scope Submit manuscript

Abstract

There is no ideal electrophysiological test for retinal pigment epithelial (RPE) function. The light-induced responses (EOG, c-wave, fast oscillation) that require photoreception are not pure RPE signals, and even the widely-used EOG has not been associated with any specific physiological disturbance of the RPE or retina. The discovery of non-photic RPE responses (hyperosmolarity, acetazolamide and bicarbonate) has enhanced the possibility of finding tissue-specific RPE tests, but these responses have yet to be correlated with specific RPE functional activity or pathology. We may face a dilemma in our search for RPE tests, insofar as electrophysiology measures membrane changes, but RPE membrane activity is related only indirectly to many functions of the RPE cell. These concerns notwithstanding, RPE electrophysiology can be a valuable clinical tool if one accounts for the physiological limitations and assets of the procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Marmor MF, Lurie M. Light-induced electrical responses of the pigment epithelium: Physiological properties and clinical significance of the c-wave, standing potential changes (EOG) and melanin response. In: Zinn K, Marmor MF, eds. The retinal pigment epithelium. Cambridge: Harvard University Press, 1979: 226–46.

    Google Scholar 

  2. Marmor MF. Clinical electrophysiologic tests for evaluating the retinal pigment epithelium. In: Zingirian M, Piccolino FC, eds. Retinal pigment epithelium: Proceedings of the International Meeting of S. Margherita Ligure, Italy, 1988. Amsterdam: Kugler & Ghedini Publications, 1989: 9–15.

    Google Scholar 

  3. Holmgren F. Method att objectivera effecten afljusintryck pa retina. Upsala Lakarforenings Forhandlingar 1865, 1: 184–98.

    Google Scholar 

  4. Dewar J, M'Kendrick JG. On the physiological action of light. Trans R Soc. Edinburgh 1873; 27: 141–66.

    Google Scholar 

  5. Miles WR. Modifications of the human-eye potential by dark and light adaptation. Science 1940; 91: 456.

    Google Scholar 

  6. Kolder H. Spontane und experimentelle Anderungen des Bestandpotenials des menschlichen Auges. Pfluegers Arch 1959; 268: 258–72.

    Google Scholar 

  7. Arden GB, Kelsey JH. Changes produced by light in the standing potential of the human eye. J Physiol 1962; 161: 189–204.

    Google Scholar 

  8. Arden GB, Barrada A, Kelsey, JH. New clinical test of retinal function based upon the standing potential of the eye. Br J Ophthalmol 1962; 46: 449–67.

    Google Scholar 

  9. Thaler A, Heilig P, Gordesch J. Light peak to dark trough ratio in clinical electrooculography. Bibl Ophthal 1976; 85: 110–4.

    Google Scholar 

  10. Cross HE. Electro-oculography in Best's macular dystrophy. Am J Ophthalmol 1974; 77: 46–50.

    Google Scholar 

  11. Taumer R, Rohde N, Wollensak J. Course of disturbance of EOG in retinal vessel occlusions. Graefes Arch Clin Exp Ophthalmol 1982; 219: 29–33.

    Google Scholar 

  12. Krill AE. Retinopathy secondary to rubella. Int Ophthalmol Clin 1972; 12: 89–103.

    Google Scholar 

  13. Weingeist TA, Kobrin JL, Watzke RC. Histopathology of Best's macular dystrophy. Arch Ophthalmol 1982; 100: 1108–14.

    Google Scholar 

  14. Frangieh GT, Green WR, Fine SL. A histopathologic study of Best's macular dystrophy. Arch Ophthalmol 1982; 100: 1115–21.

    Google Scholar 

  15. Steinberg RH, Miller SS. Transport and membrane properties of the retinal pigment epithelium. In: Zinn K, Marmor MF, eds. The retinal pigment epithelium, Cambridge: Harvard University Press, 1979: 205–25.

    Google Scholar 

  16. Steinberg RH, Schmidt R, Brown KT. Intracellular responses to light from cat pigment epithelium: origin of the electroretinogram c-wave. Nature 1970; 227: 728–30.

    Google Scholar 

  17. Oakley B II, Green DG. Correlation of light-induced changes in retinal extracellular potassium concentration with c-wave of the electroretinogram. J Neurophysiol 1976; 39: 1117–33.

    Google Scholar 

  18. Lurie M, Marmor MF. Similarities between the c-wave and slow PIII in the rabbit eye. Invest Ophthalmol Vis Sci 1980; 19: 1113–7.

    Google Scholar 

  19. Lurie M, Marmor MF. Light-induced electrical responses of the retinal pigment epithelium. In Tazawa Y, ed. XXIII Concilium Ophthalmologicum, Kyoto, 1978. Jap J Ophthalmol 1979; 1: 129–33.

  20. Hanitzsch R. The time course of the light-induced extracellular potassium change around receptors and at the vitreal surface compared with the time course of slow PIII wave in the isolated rabbit retina. Physiol Bohemoslov 1988; 37: 227–33.

    Google Scholar 

  21. Steinberg RH, Linsermeier RA, Griff ER. Three light-evoked responses of the retinal pigment epithelium. Vision Res 1983; 23: 1315–23.

    Google Scholar 

  22. Gallemore RP, Griff ER, Steinberg RH. Evidence in support of a photoreceptoral origin for the ‘light-peak’ substance. Invest Ophthalmol Vis Sci 1988; 29: 566–71.

    Google Scholar 

  23. Yonemura D, Kawasaki K. New approaches to ophthalmic electrodiagnosis by retinal oscillatory potential, drug-induced responses from retinal pigment epithelium and cone potential. Doc Ophthalmol 1979; 48: 163–222.

    Google Scholar 

  24. Kawasaki K, Mukoh S, Yonemura D, Fujii S, Segawa Y. Acetazolamide-induced changes of the membrane potentials of the reinal pigment epithelial cell. Doc Ophthalmol 1986; 63: 375–81.

    Google Scholar 

  25. Mukoh S, Kawasaki K, Yonemura D, Tanabe J. Hyperosmolarity-induced hyperpolarization of the membrane potential of the retinal pigment epithelium. Doc Ophthalmol 1985; 60: 369–74.

    Google Scholar 

  26. Segawa Y. Electrical response of the retinal pigment epithelium to sodium bicarbonate, I: experimental studies in animals. J Juzen Med Soc 1987; 96: 1008–21.

    Google Scholar 

  27. Nilsson SE, Andersson BE. Corneal D.C. recordings of slow ocular potential changes such as the ERG c-wave and the light peak in clinical work. Doc Ophthalmol 1988; 68: 313–25.

    Google Scholar 

  28. Marmor MF, Hock PA. A practical method for c-wave recording in man. Doc Ophthalmol Proc Series 1982; 31: 67–72.

    Google Scholar 

  29. Hock PA, Marmor MF. Variability of the human c-wave. Doc Ophthalmol Proc Series 1983; 37: 151–7.

    Google Scholar 

  30. Nilsson SE, Skoog K-O. The ERG c-wave in vitelliruptive macular degeneration (VMD). Acta Ophthalmol 1980; 58: 659–66.

    Google Scholar 

  31. Rover J, Bach M. The C-wave in hereditary degenerations of the ocular fundus. Doc Ophthalmol 1985; 60; 127–32.

    Google Scholar 

  32. Marmor MF. Retinal detachment from hyperosmotic intravitreal injection. Invest Ophthalmol Vis Sci 1979; 18: 1237–44.

    Google Scholar 

  33. Kolder H, Brecher GA. Fast oscillations of the corneoretinal potential in man. Arch Ophthalmol 1966; 75: 232–37.

    Google Scholar 

  34. Thaler ARG, Lessel MR, Heilig P, Scheiber V. The fast oscillation of the electro-oculogram. Ophthalmic Res 1982; 14: 210–14.

    Google Scholar 

  35. DeRouck A, Kayembe D. A clinical procedure for the simultaneous recording of fast and slow EOG oscillations. Int Ophthalmol 1981; 3: 179–89.

    Google Scholar 

  36. Weleber RG. Fast and slow oscillations of the electro-oculogram in Best's macular dystrophy and retinitis pigmentosa. Arch Ophthalmol 1989; 107: 530–7.

    Google Scholar 

  37. Steinberg RH. Monitoring communications between photoreceptors and pigment epithelial cells: effects of ‘mild’ systemic hypoxia [Friedenwald Lecture]. Invest Ophthalmol Vis Sci 1987; 27: 1888–1904.

    Google Scholar 

  38. Marmor MF, Donovan WJ, Gaba DM. Effects of hypoxia and hyperoxia on the human standing potential. Doc Ophthalmol 1985; 60: 347–52.

    Google Scholar 

  39. Yonemura D, Kawasaki K, Madachi-Yamamoto S. Hyperosmolarity response of ocular standing potential as a clinical test for retinal pigment epithelium activity. Chorioretinal Dystrophies 1984; 56: 163–73.

    Google Scholar 

  40. Yonemura D, Kawasaki K, Wakabayashi K, Madachi-Yamamoto S, Kawaguchi I. New approach to electrophysiological analysis of flecked retina syndrome. Doc Ophthalmol Proc Series 1982; 31: 165–75.

    Google Scholar 

  41. Yonemura D, Kawasaki K, Wakabayashi K, Tanabe J. EOG application for Stargardt's disease and X-lined juvenile retinoschisis. Doc Ophthalmol Proc Series 1983; 37: 115–20.

    Google Scholar 

  42. Kawasaki K, Madachi-Yamamoto S, Yonemura D. Hyperosmolarity response of ocular standing potential as a clinical test for retinal pigment epithelium activity: rhegmatogenous retinal detachment. Doc Ophthalmol 1984; 57: 175–80.

    Google Scholar 

  43. Kawasaki K, Yonemura D, Yanagida T, Segawa Y, Wakabayashi K, Mukoh S, Ishida H, Fujii S, Takahara Y. Suppression of hyperosmolarity response after cataract surgery. Doc Ophthalmol 1986; 63: 367–73.

    Google Scholar 

  44. Segawa Y. Electrical response of the retinal pigment epithelium to sodium bicarbonate: II. Clinical use for electrophysiological evaluation of the retinal pigment epithelium activity. J Juzem Med Soc 1987; 96: 1022–41.

    Google Scholar 

  45. Mori T, Miyoshi K, Tazawa Y, Marmor MF. Combining photic and non-photic EOG responses for clinical evaluation of the RPE. Invest Ophthalmol Vis Sci 1989; 30 (suppl): 235.

    Google Scholar 

  46. Joseph D, Miller S. Alpha-adrenergic receptors mediate basal membrane voltage and resistance changes in bovine and retinal pigment epithelium (RPE). Invest Ophthalmol Vis Sci 1988; 29 (suppl): 20.

    Google Scholar 

  47. Marmor MF, Maack, T. Enhancement of retinal adhesion and subretinal fluid resorption by acetazolamide. Invest Ophthalmol Vis Sci 1982; 23: 121–4.

    Google Scholar 

  48. Cox SN, Hay E, Bird AC. Treatment of chronic macular edema with acetazolamide. Arch Ophthalmol 1988; 106: 1190–95.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marmor, M.F. Clinical electrophysiology of the retinal pigment epithelium. Doc Ophthalmol 76, 301–313 (1991). https://doi.org/10.1007/BF00142668

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00142668

Key words

Navigation